-
近年来,空气颗粒物污染成为研究热点之一[1-2],细颗粒物PM2.5不仅对大气环境造成影响,而且已严重危害居民健康,长期暴露于空气污染中有患心血管疾病、呼吸道疾病以及肺病等多种风险[3-5]. PM2.5主要由金属与类金属离子、水溶性离子、有机物、碳质成分和生物组分等构成[6]. 多环芳香烃(polycyclic aromatic hydrocarbons,PAHs)是PM2.5主要成分之一。1976年,美国环境保护署(US EPA)就将16种PAHs列为优先控制污染物[7],其中苯并[a]芘被列为高致癌物质. 因此,PAHs的污染来源分析对于大气治理是十分有必要的. 目前,正矩阵因子分析法 (positive matrix factorization,PMF)、特征比值法和主成分分析法 (principal component analysis,PCA) 是普遍应用的源解析法. 气象因素是影响空气污染的主要因素之一,T-mode斜交旋转分解法[8]、PCA 算法[9]、Lamb-Jenkinson[10]等诸多模型都展现了处理大样本数据的优势[11-12]. 目前,关于中国城市大气颗粒物组分的研究大部分集中于京津地区和西北、南方等城市,鲜有关于北方城市大气颗粒物组分的研究. 王春梅等[13]采用特征比值法对北京个体暴露PM2.5中PAHs污染来源进行分析,结果为个体暴露与室外来源一致,主要为交通来源和燃煤排放的综合来源. 祁倩倩等[14]采用特征比值法对乌鲁木齐市PAHs污染来源分析,得出乌鲁木齐市大气PM2.5PAHs主要来源为燃烧源、汽车尾气和石油的混合源. Wu等[15]采用特征比值法和PCA算法对武汉市鄂州地区大气中PAHs来源进行研究,结果表明该地区PAHs主要来源为石油、煤炭和生物质.
与以往研究不同的是,北方寒冷地区每年10月到4月冬季集中供暖期间,大量的煤炭燃烧也是造成雾霾的主要成因之一. 同时,北方城市一年四季气象因素变化大,为雾霾成因分析提高了难度. 黑龙江省是重要的粮食产地,每年秸秆焚烧也是造成雾霾的成因之一. PAHs主要来源于燃烧,因此分析北方寒冷地区的PAHs来源及气象因素,对有针对性地治理雾霾提供了决策依据. 本研究首次全面阐述以黑龙江省哈尔滨市为代表的北方地区的PM2.5中PAHs组分特点,阐明PM2.5以及PAHs与气象因素之间的关系,对各组分采用PCA算法进行主成分分析,阐明黑龙江省雾霾成因中的PAHs各组分排名,同时对排名靠前的成分进行溯源分析,本研究对黑龙江省雾霾治理和防治有着重要理论依据与意义.
哈尔滨市大气PM2.5中多环芳香烃污染特征及来源解析
Pollution characteristics and source apportionment of polycyclic aromatic hydrocarbons in PM2.5 in Harbin City
-
摘要: 本文旨在分析哈尔滨市两城区(道里区和香坊区)2014年—2019年PM2.5中16种芳香烃质量浓度变化规律,明确芳香烃中主要的污染及来源. 将颗粒物中的多环芳香烃收集于滤膜,滤膜用乙醚/正己烷的混合溶剂提取,提取液经过浓缩、净化后,用具有荧光及紫外检测器的高效液相色谱仪分离检测. 通过空气污染人群健康检测系统选取与PM2.5监测期相同时期的平均气压、平均温度、平均相对湿度、降水量、日照小时数、平均风速等6种气象因素数据,采用Spearman法分析6种气象因素与16种多环芳香烃的相关性. 结果表明, 道里区PM2.5平均质量浓度为84.9 μg·m-3,香坊区为86.5 μg·m-3. 两城区的PM2.5与平均气压呈显著正相关,与平均温度、平均相对湿度、降水量、日照小时数呈显著负相关. 道里区和香坊区在2014—2019年多环芳香烃平均质量浓度分别为50.7 ng·m-3、59.5 ng·m-3. 其贡献值由高到低为芘>荧蒽>䓛>苯并[a]蒽>苯并[b]荧蒽>苯并[a]芘>苯并[k]荧蒽>苯并[g,h,i]苝>茚并[1,2,3-c,d]芘>菲>二苯并[a,h]蒽>蒽>苊烯>茐>萘>苊. 气象因素中日照小时数、平均风速和降水量与多环芳香烃有显著相关性. 哈尔滨市道里区和香坊区多环芳香烃中芘、荧蒽、䓛、苯并[a]蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[a]芘、茚并[1,2,3-c,d]芘为主要成分. 主成分分析结果表明,哈尔滨市大气中多环芳香烃的主要来源可能为冬季供暖期的煤炭燃烧及生物质燃烧、汽车尾气及工业排放,应加强对其主要污染来源的监测和污染控制,以减少哈尔滨市大气PM2.5中多环芳香烃污染对健康的危害.Abstract: To obtain the mass concentrations change and main sources of polycyclic aromatic hydrocarbons(PAHs), 16 kinds of PAHs in PM2.5 from two districts (Daoli district and Xiangfang district) were analyzed during 2014 to 2019 in Harbin city. PAHs in PM2.5 were collected in the filter membrane and extracted with ether / n-hexane mixed solvent. After concentration and purification, the extract was separated and detected by high performance liquid chromatography with fluorescence and ultraviolet detector. Six meteorological factors including mean air pressure, mean temperature, mean relative humidity, precipitation, illumination and mean wind speed during the PM2.5 monitoring period were provided by the information system of air pollution health impact monitoring. Spearman method was used to analyze the correlation between six meteorological factors and 16 kinds of PAHs. The results showed that the average mass concentration was 84.9 μg·m−3 in Daoli district and 86.5 μg·m−3 in Xiangfang district. The mass concentrations of PM2.5 in two districts were positively correlated with average air pressure, and negatively correlated with average temperature, average relative humidity, precipitation and illumination. The average concentrations of PAHs were 50.7 ng·m−3 and 59.5 ng·m−3 in Daoli district and Xiangfang district from 2014 to 2019, respectively. The contribution rates ranked as pyrene > fluoranthene > chrysere > benzo [a] anthracene > benzo [b] fluoranthene > benzo [a] pyrene > benzo [k] fluoranthene > benzo [g,h,i] perylene > indeno [1,2,3-c,d] pyrene > phenanthrene > dibenzo [a,h] anthracene > acenaphthene > fluorene > naphthalene > acenaphthene. The meteorological factors of illumination, daily average wind speed and precipitation were significantly correlated with PAHs. Eight kinds of PAHs pyrene, fluoranthene, chrysere, benzo [a] anthracene, benzo [b] fluoranthene, benzo [k] fluoranthene, benzo [a] pyrene, indeno [1,2,3-c,d] pyrene were main components in two districts of Harbin city. Principal component analysis results indicated that the main sources of PAHs in the atmosphere of Harbin City may be due to coal combustion during the heating period, automobile exhaust and industrial emission. The monitoring of the main pollution sources should be strengthened to reduce the health risk caused by PAHs in PM2.5 in Harbin city.
-
表 1 两城区PAHs2014—2019年年均质量浓度(ng·m−3)
Table 1. Annual average mass concentrations of PAHs in two districts during 2014 to 2019(ng·m−3)
PAHs 道里区
Daoli district香坊区
Xiangfang district平均值
AveragePyr 7.58 9.05 8.31 Fla 7.57 9.00 8.28 Chry 6.25 7.12 6.68 BaA 6.01 7.27 6.64 BbF 4.49 5.18 4.84 BaP 4.23 5.02 4.63 BkF 4.30 4.80 4.55 BghiP 2.80 3.32 3.06 InP 3.24 3.84 3.54 Phe 2.18 2.50 2.34 DahA 0.78 0.97 0.87 Ant 0.45 0.50 0.47 Acy 0.27 0.30 0.29 Flu 0.24 0.32 0.28 Nap 0.16 0.15 0.15 Ace 0.14 0.15 0.14 表 2 2014—2019年哈尔滨市来源特征比值
Table 2. Source characteristics ratio of Harbin, 2014—2019
特征比值
Characteristic ratio实际比值
Actual ratio参考值
Reference value来源
SourceFlu·(Flu+Pyr)−1 0.03 <0.5 汽油排放 >0.5 柴油排放 BaA·(BaA+Chry)−1 0.50 <0.2 石油 0.2—0.35 石油和燃烧混合 >0.35 燃烧源 InP·(Inp+BghiP)−1 0.54 0.2—0.5 液体化石燃料燃烧 >0.5 生物质燃烧 表 3 16种PAHs主成分分析
Table 3. PCA analysis of 16 kinds PAHs
PAHs 道里区
Daoli district香坊区
Xiangfang districtPC1 PC2 PC3 PC1 PC2 PC3 Nap −2.596 −0.155 −0.152 −2.611 −0.188 0.038 Acy −2.503 −0.124 −0.151 −2.509 −0.159 0.040 Flu −2.578 0.055 −0.096 −2.555 0.062 0.033 Ace −2.635 −0.092 −0.138 −2.631 −0.122 0.038 Phe −1.263 1.492 0.435 −1.284 1.435 −0.038 Ant −2.416 0.108 −0.099 −2.419 0.033 0.057 Fla 3.457 1.061 −0.159 3.658 0.842 0.035 Pyr 3.591 0.713 −0.001 3.796 0.553 −0.104 Chry 2.861 −0.574 −0.106 2.704 −0.550 0.035 BaA 2.443 −0.348 −0.682 2.633 −0.539 0.706 BbF 1.242 −0.259 0.054 1.131 −0.146 −0.003 BkF 1.387 −0.995 0.562 1.096 −0.656 −0.557 BaP 1.152 −0.526 0.350 1.150 −0.355 −0.352 DahA −2.103 0.030 −0.092 −2.069 0.033 0.093 BghiP −0.248 −0.111 0.121 −0.279 −0.002 −0.011 InP 0.211 −0.275 0.155 0.188 −0.238 −0.010 贡献率% 91.5% 6.4% 1.4% 93.7% 4.9% 1.1% -
[1] GUAN Y, KANG L, WANG Y, et al. Health loss attributed to PM2.5 pollution in China's cities: Economic impact, annual change and reduction potential [J]. Journal of Cleaner Production, 2019, 217: 284-294. doi: 10.1016/j.jclepro.2019.01.284 [2] DIAO B D, DING L, ZHANG Q, et al. Impact of urbanization on PM2.5-related health and economic loss in China 338 cities [J]. International Journal of Environmental Research and Public Health, 2020, 17(3): 990. doi: 10.3390/ijerph17030990 [3] 黄虹, 万雪莹, 陈廷涛, 等. PM2.5的健康危害、毒理效应与作用机制的研究 [J]. 地球环境学报, 2020, 11(2): 125-142. HUANG H, WAN X Y, CHEN T T, et al. Update on the toxicological effects and mechanism of PM2.5 [J]. Journal of Earth Environment, 2020, 11(2): 125-142(in Chinese).
[4] LI Y W, LI C C, LIU J Y, et al. An association between PM2.5 and pediatric respiratory outpatient visits in four Chinese cities [J]. Chemosphere, 2021, 280: 130843. doi: 10.1016/j.chemosphere.2021.130843 [5] LI B X, YANG J, DONG H, et al. PM2.5 constituents and mortality from a spectrum of causes in Guangzhou, China [J]. Ecotoxicology and Environmental Safety, 2021, 222: 112498. doi: 10.1016/j.ecoenv.2021.112498 [6] WANG Y F, WANG H Y, ZHANG S H. A weighted higher-order network analysis of fine particulate matter PM2.5 transport in Yangtze River Delta [J]. Physica A:Statistical Mechanics and Its Applications, 2018, 496: 654-662. doi: 10.1016/j.physa.2017.12.096 [7] 吴志远, 张丽娜, 夏天翔, 等. 基于土壤重金属及PAHs来源的人体健康风险定量评价: 以北京某工业污染场地为例 [J]. 环境科学, 2020, 41(9): 4180-4196. WU Z Y, ZHANG L N, XIA T X, et al. Quantitative assessment of human health risks based on soil heavy metals and PAHs sources: Take a polluted industrial site of Beijing as an example [J]. Environmental Science, 2020, 41(9): 4180-4196(in Chinese).
[8] 杨旭, 张小玲, 康延臻, 等. 京津冀地区冬半年空气污染天气分型研究 [J]. 中国环境科学, 2017, 37(9): 3201-3209. doi: 10.3969/j.issn.1000-6923.2017.09.001 YANG X, ZHANG X L, KANG Y Z, et al. Circulation weather type classification for air pollution over the Beijing-Tianjin-Hebei region during winter [J]. China Environmental Science, 2017, 37(9): 3201-3209(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.09.001
[9] ZHANG J P, ZHU T, ZHANG Q H, et al. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings [J]. Atmospheric Chemistry and Physics, 2012, 12(11): 5031-5053. doi: 10.5194/acp-12-5031-2012 [10] 梁卓然, 顾婷婷, 杨续超, 等. 基于环流分型法的地面臭氧预测模型 [J]. 中国环境科学, 2017, 37(12): 4469-4479. doi: 10.3969/j.issn.1000-6923.2017.12.008 LIANG Z R, GU T T, YANG X C, et al. Study on circulation classification based surface ozone concentration prediction model [J]. China Environmental Science, 2017, 37(12): 4469-4479(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.12.008
[11] 于彩霞, 石春娥, 凌新锋, 等. 基于综合观测的中国中东部地区一次严重污染过程分析 [J]. 环境科学学报, 2020, 40(7): 2346-2355. doi: 10.13671/j.hjkxxb.2020.0103 YU C X, SHI C E, LING X F, et al. Analysis of a severe fog-haze process in central and Eastern China based on comprehensive observations [J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2346-2355(in Chinese). doi: 10.13671/j.hjkxxb.2020.0103
[12] 戴竹君, 刘端阳, 王宏斌, 等. 江苏秋冬季重度霾的分型研究 [J]. 气象学报, 2016, 74(1): 133-148. doi: 10.11676/qxxb2016.007 DAI Z J, LIU D Y, WANG H B, et al. The classification study of the heavy haze during autumn and winter of Jiangsu [J]. Acta Meteorologica Sinica, 2016, 74(1): 133-148(in Chinese). doi: 10.11676/qxxb2016.007
[13] 王春梅, 陶晶, 李婷, 等. 北京城市居民冬季个体暴露PM2.5中多环芳烃特征与室外的差异研究 [J]. 环境与健康杂志, 2021, 38(3): 215-219. WANG C M, TAO J, LI T, et al. Differences on characteristics between personal and outdoor exposure to polycyclic aromatic hydrocarbons in PM2.5 for urban residents in winter in Beijing [J]. Journal of Environment and Health, 2021, 38(3): 215-219(in Chinese).
[14] 祁倩倩, 吴智慧, 彭小武, 等. 乌鲁木齐市大气PM2.5中多环芳烃的污染特征研究 [J]. 新疆环境保护, 2020, 42(4): 7-12. QI Q Q, WU Z H, PENG X W, et al. Pollution characteristics of polycyclic aromatic hydrocarbons within atmospheric PM2.5 in Urumqi [J]. Environmental Protection of Xinjiang, 2020, 42(4): 7-12(in Chinese).
[15] WU D H, LIU H X, WANG Z G, et al. Atmospheric concentrations and air-soil exchange of polycyclic aromatic hydrocarbons (PAHs) in typical urban-rural fringe of Wuhan-Ezhou region, central China [J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104(1): 96-106. doi: 10.1007/s00128-019-02743-6 [16] 詹庆明, 戴文博, 刘稳. 襄阳市PM2.5污染时空分布特征及其与气象要素的关系[J]. 测绘地理信息, 2022, 47(3): 132-136, YU Q M, DAI W B, ZHENG H. Spatial and temporal distribution of PM2.5 pollution in Xiangyang and Its relationship with meteorological elements[J]. Journal of Geomatic, 2022, 47(3): 132-136(in Chinese).
[17] 张艺璇, 曹芳, 郑涵, 等. 2017年秋季长春市PM2.5中多环芳烃的污染来源及健康风险评价 [J]. 环境科学, 2020, 41(2): 564-573. ZHANG Y X, CAO F, ZHENG H, et al. Source apportionment and health risk assessment of polycyclic aromatic hydrocarbons in PM2.5 in Changchun City, autumn of 2017 [J]. Environmental Science, 2020, 41(2): 564-573(in Chinese).
[18] LARREA VALDIVIA A E, REYES LARICO J A, SALCEDO PEÑA J, et al. Health risk assessment of polycyclic aromatic hydrocarbons (PAHs) adsorbed in PM2.5 and PM10 in a region of Arequipa, Peru [J]. Environmental Science and Pollution Research International, 2020, 27(3): 3065-3075. doi: 10.1007/s11356-019-07185-5 [19] YI C, SHAO F K, QIN Y, et al. Size-segregated emission factors and health risks of PAHs from residential coal flaming/smoldering combustion [J]. Environmental Science and Pollution Research, 2019, 26(31): 31793-31803. doi: 10.1007/s11356-019-06340-2 [20] 贺博文, 聂赛赛, 李仪琳, 等. 承德市PM2.5中多环芳烃的季节分布特征、来源解析及健康风险评价[J]. 环境科学, 2022,43(5):2343-2354. HE B W, NIE S S, LI Y L, et al. Seasonal distribution characteristics, source analysis, and health risk evaluation of PAHs in PM2.5 in Chengde[J]. Environmental Science, 2022,43(5):2343-2354(in Chinese).
[21] 齐静文, 张瑞芹, 姜楠, 等. 洛阳市秋冬季PM2.5中多环芳烃的污染特征、来源解析及健康风险评价 [J]. 环境科学, 2021, 42(2): 595-603. QI J W, ZHANG R Q, JIANG N, et al. Characterization, sources, and health risks of PM2.5-bound PAHs during autumn and winter in Luoyang City [J]. Environmental Science, 2021, 42(2): 595-603(in Chinese).
[22] BOUROTTE C, FORTI M C, TANIGUCHI S, et al. A wintertime study of PAHs in fine and coarse aerosols in São Paulo City, Brazil [J]. Atmospheric Environment, 2005, 39(21): 3799-3811. doi: 10.1016/j.atmosenv.2005.02.054 [23] 王俊龙, 孙莹, 赵晨凯, 等. 沈阳市2016—2018年大气PM2.5污染状况及来源分析 [J]. 海峡预防医学杂志, 2021, 27(1): 1-4. WANG J L, SUN Y, ZHAO C K, et al. Analysis on pollution status and source apportionments of PM2.5 in atmosphere in Shenyang City, 2016—2018 [J]. Strait Journal of Preventive Medicine, 2021, 27(1): 1-4(in Chinese).
[24] GONG X S, SHEN Z X, ZHANG Q, et al. Characterization of polycyclic aromatic hydrocarbon (PAHs) source profiles in urban PM2.5 fugitive dust: A large-scale study for 20 Chinese cites [J]. Science of the Total Environment, 2019, 687: 188-197. doi: 10.1016/j.scitotenv.2019.06.099 [25] PÉREZ-FERNÁNDEZ B, VIÑAS L, FRANCO M Á, et al. PAHs in the Ría de Arousa (NW Spain): A consideration of PAHs sources and abundance [J]. Marine Pollution Bulletin, 2015, 95(1): 155-165. doi: 10.1016/j.marpolbul.2015.04.028