-
随着社会的发展和人口老龄化趋势的加快,药物的生产和消费总量与日俱增,家庭中的废弃药品也随之增加[1]。由于缺少相应的处置管理意识[2],大量药物随生活垃圾的卫生填埋进入垃圾填埋场中。未经处理的药物经垃圾内源分解产水或外源降雨及径流淋滤[3]进一步迁移至垃圾填埋场深处,进入周边土壤和地下水环境[4-5],造成严重的生态和健康风险[6-7]。
根据目前国内的垃圾填埋场设计运行规范来看,部分垃圾填埋场设计运行时间可达20年以上[8-10],早期填埋的垃圾逐渐矿化[11],而新的垃圾会持续堆叠在已矿化的垃圾上。大量研究表明,矿化垃圾具有比表面积大、多孔结构稳定、有机质含量高、阳离子交换容量大等特点[12],可有效吸附并固定氨氮[13]、有机毒物[14-15]和磷酸盐[16]等,并进一步通过物理化学及生物作用,减轻垃圾渗滤液对周围环境的污染。但是,目前针对矿化垃圾吸附药物的相关报道尚不多见,对于药物随垃圾渗滤液在垃圾填埋场中的迁移过程尚未有明确的认识,矿化垃圾能否有效吸附并固定药物值得进一步探究。
作为一类广谱性抗生素,四环素因其成本低廉、毒副作用小等优点而广泛应用于人类疾病治疗和牲畜生产中。但是,由于四环素生物可利用性较低,导致其中的大量活性组分随代谢物排出体外,在环境中长时间停留且难以生物降解,已造成严重的土壤和地下水污染[17-18]。因此,本研究以四环素为典型模式药物,研究其在矿化垃圾上的吸附热力学及动力学,结合矿化垃圾的结构及组成等性质分析了吸附机理,并探究四环素初始浓度、pH及不同阳离子类型对吸附过程的影响,以明确垃圾渗滤液中的药物在矿化垃圾上的吸附特性。同时,通过土柱实验验证矿化垃圾对四环素的动态吸附能力。本研究通过研究四环素在矿化垃圾上的吸附特性,以期为控制垃圾填埋场中药物污染及环境风险提供数据支撑和理论参考。
四环素在矿化垃圾上的吸附特性及动态过程
Research on the adsorption characteristics and dynamic process of tetracycline on aged refuse
-
摘要: 为明确垃圾渗滤液中四环素在矿化垃圾上的吸附规律,通过傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、孔径测试及N2吸附解吸测试表征了矿化垃圾的结构特点和化学性质,探讨了矿化垃圾对四环素的静态吸附规律及初始浓度、pH和不同阳离子类型等环境因素对其吸附效率的影响,并进一步通过动态吸附实验模拟了实际动态条件下的吸附过程。结果表明,矿化垃圾表面含有大量的官能团及良好的孔隙结构;矿化垃圾对四环素具有良好的吸附效果,吸附过程符合Freundlich等温吸附模型和拟二级动力学模型;初始浓度和pH升高会降低吸附效率,K+对吸附性能的抑制高于Ca2+离子;动态吸附实验表明矿化垃圾对四环素的承载量为3.9 mg·g-1,动态吸附性能良好。Abstract: The present study aimed to clarify the adsorption pattern of tetracycline in leachate on aged refuse. The structural characteristics and chemical properties of aged refuse were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), pore size test and N2 adsorption/desorption test. The static adsorption pattern of tetracycline on aged refuse was explored. Moreover, the effects of environmental factors such as initial concentration, pH and different types of cations on its adsorption efficiency were reported. The adsorption process under actual dynamic conditions was further studied by a column adsorption experiment. The results showed that the aged refuse contained numerous functional groups and well-developed pore structures on the surface. A good adsorption efficiency was observed for the adsorption of tetracycline by aged refuse, and the adsorption process conformed to Freundlich’s isothermal adsorption model and pseudo second-order kinetic model. A decrease of the adsorption efficiency was observed when the initial concentration and pH increased, while the inhibition of K+ on the adsorption was higher than that of Ca2+. Finally, it was found from the dynamic adsorption test that the dynamic adsorption performance of aged refuse was good with a bearing capacity of 3.9 mg·g−1.
-
Key words:
- aged refuse /
- tetracycline /
- static adsorption /
- dynamic adsorption
-
表 1 矿化垃圾理化性质
Table 1. Physicochemical properties of aged refuse
材料
Material粒径/目
Particle sizepH 有机质/%
Organic matter含水率/%
Water contentpHPZC 矿化垃圾 <10 7.72 3.076 0.2 7.89 表 2 四环素的吸附等温线相关参数
Table 2. Fitting parameters for Langmuir and Freundlich isotherms of tetracycline adsorbed by aged refuse
吸附剂Sorbent Langmuir Freundlich qm/(mg·g−1) KL R2 1/n KF R2 矿化垃圾 15.684 0.069 0.968 0.615 1.517 0.979 表 3 矿化垃圾吸附不同浓度四环素的拟动力学参数
Table 3. The fitting parameters for pseudo kinetics of tetracycline adsorbed by aged refuse under different concentrations
初始浓度/(mg·L−1)
Initial concentration拟一级 Pseudo-first-order 拟二级 Pseudo-second-order k1 qe/(mg·L−1) R2 k2 qe/(mg·L−1) R2 20 4.162 3.052 0.981 1.387 3.253 0.992 30 2.159 4.872 0.952 0.711 4.948 0.977 40 3.478 6.003 0.805 0.510 6.248 0.900 50 0.945 7.123 0.872 0.187 7.701 0.965 60 3.891 8.544 0.958 0.553 8.658 0.993 -
[1] SREEDHAR A, APTE M, MALLYA R. Pharmaceutical waste management [J]. International Journal of Pharmaceuticals, 2018, 52(1): 82-86. [2] LAN J, HOU H Y, MENG K, et al. The recovery of expired ferrous gluconate and spent Li foils into high performance straw-bundle-like α-LiFeO2/C cathode [J]. Electrochimica Acta, 2021, 390: 138827. doi: 10.1016/j.electacta.2021.138827 [3] YU X, SUI Q, LYU S G, et al. Rainfall influences occurrence of pharmaceutical and personal care products in landfill leachates: Evidence from seasonal variations and extreme rainfall episodes [J]. Environmental Science & Technology, 2021, 55(8): 4822-4830. [4] YU X, SUI Q, LYU S G, et al. Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills?A case study of the largest landfill in China [J]. Environment International, 2020, 135: 105404. doi: 10.1016/j.envint.2019.105404 [5] WU D Q, SUI Q, YU X, et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China [J]. Science of the Total Environment, 2021, 753: 141653. doi: 10.1016/j.scitotenv.2020.141653 [6] LI L, ZHAO X L, LIU D, et al. Occurrence and ecological risk assessment of PPCPs in typical inflow rivers of Taihu Lake, China [J]. Journal of Environmental Management, 2021, 285: 112176. doi: 10.1016/j.jenvman.2021.112176 [7] LIU N, JIN X W, FENG C L, et al. Ecological risk assessment of fifty pharmaceuticals and personal care products (PPCPs) in Chinese surface waters: A proposed multiple-level system [J]. Environment International, 2020, 136: 105454. doi: 10.1016/j.envint.2019.105454 [8] 穷达卓玛, 汪晶, 周文武, 等. 拉萨垃圾填埋场渗滤液处理站周边土壤重金属含量分析及评价 [J]. 环境化学, 2020, 39(5): 1404-1409. doi: 10.7524/j.issn.0254-6108.2019081401 QIONG D, WANG J, ZHOU W W, et al. Analysis and evaluation of heavy metal content in soil around leachate treatment station of Lhasa landfill site [J]. Environmental Chemistry, 2020, 39(5): 1404-1409(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081401
[9] 周文武, 陈冠益, 穷达卓玛, 等. 拉萨市垃圾填埋场地下水水质的居民健康风险评价 [J]. 环境化学, 2020, 39(6): 1513-1522. doi: 10.7524/j.issn.0254-6108.2019041101 ZHOU W W, CHEN G Y, QIONG D, et al. Health risk assessment of groundwater quality in Lhasa landfill [J]. Environmental Chemistry, 2020, 39(6): 1513-1522(in Chinese). doi: 10.7524/j.issn.0254-6108.2019041101
[10] 刘洪华, 朱水, 董杰, 等. 某生活垃圾处理园区周边土壤重金属分布特征及风险评价 [J]. 环境化学, 2021, 40(8): 2388-2398. doi: 10.7524/j.issn.0254-6108.2020041802 LIU H H, ZHU S, DONG J, et al. Distribution characteristics and risk assessment of heavy metals in soil around an integrated waste management facility [J]. Environmental Chemistry, 2021, 40(8): 2388-2398(in Chinese). doi: 10.7524/j.issn.0254-6108.2020041802
[11] 赵海涛, 刘平, 王小治, 等. 矿化垃圾基本理化性状剖面变化特征研究 [J]. 环境工程学报, 2010, 4(7): 1624-1628. ZHAO H T, LIU P, WANG X Z, et al. Profile characteristics in physical and chemical properties of aged-refuse [J]. Chinese Journal of Environmental Engineering, 2010, 4(7): 1624-1628(in Chinese).
[12] 谢明德, 唐一鸣, 冯梅, 等. 利用矿化垃圾层预防和控制渗滤液导排系统堵塞 [J]. 环境化学, 2021, 40(2): 614-623. doi: 10.7524/j.issn.0254-6108.2020080302 XIE M D, TANG Y M, FENG M, et al. Prevent and control the clogging of leachate drainage system by using the aged refuse layer [J]. Environmental Chemistry, 2021, 40(2): 614-623(in Chinese). doi: 10.7524/j.issn.0254-6108.2020080302
[13] 聂发辉, 刘荣荣, 李文婷, 等. 改性矿化垃圾对渗滤液生化出水中COD和氨氮的吸附 [J]. 环境工程学报, 2016, 10(6): 2786-2792. doi: 10.12030/j.cjee.201501115 NIE F H, LIU R R, LI W T, et al. Adsorption of COD and ammonia nitrogen in leachate from biochemical process on modified aged refuse adsorbent [J]. Chinese Journal of Environmental Engineering, 2016, 10(6): 2786-2792(in Chinese). doi: 10.12030/j.cjee.201501115
[14] 陈炜鸣, 辜哲培, 何晨, 等. 老龄垃圾渗滤液中溶解性有机物在SAARB和MBR处理过程的转化特征 [J]. 环境科学学报, 2021, 41(11): 4637-4647. CHEN W M, GU Z P, HE C, et al. Molecular insights into the removal characteristics of dissolved organic matters from mature landfill leachate by SAARB and MBR processes [J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4637-4647(in Chinese).
[15] 柴晓利, 郭强, 李玉亮, 等. 酚类化合物在矿化垃圾中吸附性能的研究 [J]. 环境化学, 2007, 26(2): 164-167. doi: 10.3321/j.issn:0254-6108.2007.02.010 CHAI X L, GUO Q, LI Y L, et al. Adsorption characteristics of phenolic compound by aged-refuse [J]. Environmental Chemistry, 2007, 26(2): 164-167(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.02.010
[16] CHEN K N, ZHAO K Q, ZHANG H H, et al. Phosphorus removal from aqueous solutions using a synthesized adsorbent prepared from mineralized refuse and sewage sludge [J]. Environmental Technology, 2013, 34(9/10/11/12): 1489-1496. [17] 郭志伟, 赵宝龙, 郑志宏, 等. 碳化改性硅藻土对四环素的吸附研究[J/OL]. [2021-12-24]. 环境工程. http://kns.cnki.net/kcms/detail/11.2097.X.20211022.1820.002.html. GUO Z W, ZHAO B L, ZHENG Z H, et al. Preparation of the modified diatomite via carbonization and its adsorption performance for tetracycline[J/OL]. [2021-12-24]. Environmental Engineering. http://kns.cnki.net/kcms/detail/11.2097.X.20211022.1820.002.html(in Chinese).
[18] 陈瑞萍, 张丽, 于洁, 等. 活性污泥对四环素的吸附性能研究 [J]. 环境科学, 2012, 33(1): 156-162. CHEN R P, ZHANG L, YU J, et al. Study on the sorption behavior of tetracycline onto activated sludge [J]. Environmental Science, 2012, 33(1): 156-162(in Chinese).
[19] 刘萍, 夏江宝. 滨海盐碱地根际溶磷细菌磷素转化特征 [J]. 生态学报, 2021, 41(11): 4531-4540. LIU P, XIA J B. Properties of rhizosphere phosphate-solubilizing bacteria in coastal saline and alkaline land [J]. Acta Ecologica Sinica, 2021, 41(11): 4531-4540(in Chinese).
[20] 王芳芳. 矿化垃圾吸附—还原铬(Ⅵ)的机理研究[D]. 青岛: 青岛理工大学, 2012, 85. WANG F F. Adsorption coupled reduction mechanism research on Cr(Ⅵ) by using aged refuse[D]. Qingdao: Qingdao Tehcnology University, 2012, 85(in Chinese).
[21] 朱丹琛, 李名洁, 陈彰旭, 等. 水热法合成二氧化锰及其对染料的脱色性能研究 [J]. 无机盐工业, 2021, 53(11): 60-65. ZHU D C, LI M J, CHEN Z X, et al. Study on hydrothermal synthesis of MnO2 and its decolorization performance on dyes [J]. Inorganic Chemicals Industry, 2021, 53(11): 60-65(in Chinese).
[22] 方俊华, 张啸, 荆慧娟. 磁化改性污泥基生物炭对水中磷的吸附 [J]. 水处理技术, 2021(12): 37-41. FANG J H, ZHANG X, JING H J. Adsorption of phosphorus in water by magnetized modified sludge-based biochar [J]. Technology of Water Treatment, 2021(12): 37-41(in Chinese).
[23] 唐钰, 段艳平, 涂耀仁, 等. 重金属对药物和个人护理品在土壤/沉积物中吸附的影响机制: 现状与展望 [J]. 环境化学, 2021, 40(1): 164-173. doi: 10.7524/j.issn.0254-6108.2019091902 TANG Y, DUAN Y P, TU Y R, et al. The effects mechanism of heavy metals on the adsorption of PPCPs in soils/sediments: Status and prospects [J]. Environmental Chemistry, 2021, 40(1): 164-173(in Chinese). doi: 10.7524/j.issn.0254-6108.2019091902
[24] 范世锁, 刘文浦, 王锦涛, 等. 茶渣生物炭制备及其对溶液中四环素的去除特性 [J]. 环境科学, 2020, 41(3): 1308-1318. FAN S S, LIU W P, WANG J T, et al. Preparation of tea waste biochar and its application in tetracycline removal from aqueous solution [J]. Environmental Science, 2020, 41(3): 1308-1318(in Chinese).
[25] PILS J R V, LAIRD D A. Sorption of tetracycline and chlortetracycline on K- and Ca-saturated soil clays, humic substances, and clay-humic complexes [J]. Environmental Science & Technology, 2007, 41(6): 1928-1933. [26] ZHAO Y P, GENG J J, WANG X R, et al. Tetracycline adsorption on kaolinite: pH, metal cations and humic acid effects [J]. Ecotoxicology, 2011, 20(5): 1141-1147. doi: 10.1007/s10646-011-0665-6 [27] 聂静, 曾强, 光布加甫·珊珠, 等. 土柱淋滤实验应用进展与展望[C]. 中国环境科学学会学术年会, 2014: 471-475. NIE J, ZENG Q, GUANGBUJIAFU S Z, et al. Environment science and resources utilization[A]. Annual meeting of Chinese society of Environmental Sciences, 2014: 471-475(in Chinese).
[28] SORWAT J, MELLAGE A, MAISCH M, et al. Chromium (VI) removal kinetics by magnetite-coated sand: Small-scale flow-through column experiments [J]. Journal of Hazardous Materials, 2021, 415: 125648. doi: 10.1016/j.jhazmat.2021.125648 [29] SUI Q, ZHAO W T, CAO X Q, et al. Pharmaceuticals and personal care products in the leachates from a typical landfill reservoir of municipal solid waste in Shanghai, China: Occurrence and removal by a full-scale membrane bioreactor [J]. Journal of Hazardous Materials, 2017, 323: 99-108. doi: 10.1016/j.jhazmat.2016.03.047 [30] CHRISTL I, RUIZ M, SCHMIDT J R, et al. Clarithromycin and tetracycline binding to soil humic acid in the absence and presence of calcium [J]. Environmental Science & Technology, 2016, 50(18): 9933-9942. [31] GU C, KARTHIKEYAN K G, SIBLEY S D, et al. Complexation of the antibiotic tetracycline with humic acid [J]. Chemosphere, 2007, 66(8): 1494-1501. doi: 10.1016/j.chemosphere.2006.08.028 [32] ZHAO Y P, GENG J J, WANG X R, et al. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances [J]. Journal of Colloid and Interface Science, 2011, 361(1): 247-251. doi: 10.1016/j.jcis.2011.05.051