-
四氯乙烯(PCE)被广泛用作为干洗剂、杀虫剂、冰箱制冷剂等,泄露后逐渐下渗至含水层,其用量大、污染范围广,因此成为常见的地下水污染物[1-2]。此外,四氯乙烯水溶性低,疏水性强,往往以不连续的残余饱和相形式存在于介质孔隙中,不易随水流动,同时不断向地下水释放污染[3-4]。传统的抽取-处理方法很难将其去除,且费用较高[5]。表面活性剂强化含水层修复(SEAR)技术是对传统抽取-处理方法的改进[6-7],表面活性剂能够显著提升重质非水相污染物(DNAPLs)在水中的溶解度并增强其在多孔介质中的迁移能力[8-9],该方法的处理效率较传统抽取-处理的技术手段有大幅度提升。常用的表面活性剂存在增溶能力有限[10-11]、不耐受低温及电解质[7]、吸附损失大[12]及生产成本高等不足。另外,部分表面活性剂不易生物降解[13-14],可能对含水层产生二次污染。
近年来,烷基糖苷(APG)作为新一代环境友好绿色表面活性剂受到广泛关注[15],它具有表面活性优良、复配性能佳、耐强酸强碱及抗盐性强等诸多优点, 适合地下水低温、含盐的环境;其具有良好的生物降解性[16],且最终降解产物为二氧化碳、水和无机物等[17],不会给地下水引入新的污染。目前已经工业化生产并且价格低廉。相关研究[18-19]利用其对苯系物进行增溶,充分证明了其较强的增溶能力,优于Tween80、LAS等传统表面活性剂。单一表面活性剂对污染物的增溶能力有限,将表面活性剂与其他增溶材料或短链醇复配,能够显著提高污染物的增溶效果[20-22]。常见的增溶材料(如β-环糊精)[23-26]及短链醇[27-28]等都具有良好的协同增溶作用。
本研究选择四氯乙烯作为污染物,选用月桂基烷基糖苷(APG1214)表面活性剂作为增溶体系的主体,并用β-环糊精和短链醇与烷基糖苷进行复配以增强对PCE的增溶能力。测定了APG1214的临界胶束浓度及初级生物降解度,主要研究了单一APG1214溶液及其与β-环糊精、异丙醇的复配体系对PCE的增溶性能;溶液浓度、环境温度及无机盐离子浓度对PCE增溶效果的影响,考察复配体系相比于单一体系的优势及对于地下环境的适应能力,并确定最佳复配组合。研究作为SEAR技术中表面活性剂增溶试剂的实验室筛选阶段,可为后续污染场地的修复提供一定的参考依据。
烷基糖苷复配体系对地下水中四氯乙烯的增溶作用
Solubilization of tetrachloroethylene in groundwater by alkyl glycoside compounded system
-
摘要: 为选出适用于地下水环境的四氯乙烯增溶试剂,选用高效绿色表面活性剂烷基糖苷及其与β-环糊精、异丙醇的复配体系对四氯乙烯进行增溶,分别考察了溶液浓度、环境温度和无机盐浓度变化对四氯乙烯增溶效果的影响,并筛选出最佳的复配组合。结果表明,烷基糖苷的临界胶束浓度约为100 mg·L−1,初级生物降解度为91%;烷基糖苷复配体系对四氯乙烯的增溶效果明显优于单一体系,且增溶能力随体系浓度增大而增强;复配体系的增溶能力随环境温度降低而略有降低,在一定范围内随无机盐浓度升高而先升高后降低。烷基糖苷增溶四氯乙烯的最佳复配组合为:烷基糖苷浓度10000 mg·L−1,β-环糊精浓度3750 mg·L−1,异丙醇体积浓度2.5%,该复配组合具备良好的增溶能力及抗低温、抗盐性能。该体系的筛选可为后续场地修复中提供一定的实验依据。Abstract: In order to screen out suitable tetrachloroethylene solubilizing reagent which can be used in groundwater environment, the high efficient, green surfactant alkyl glycoside and its compounded system with β-cyclodextrin and isopropanol were used to solubilize PCE. The critical micelle concentration and primary biodegradability of alkyl glycosides were determined. The influence of solution concentration, ambient temperature and electrolyte concentration on solubilization effect of PCE were investigated, and the optimal combination of compounded system was finally determined. The results show that the critical micelle concentration of alkyl glycosides is about 100 mg·L−1, and the primary biodegradability is 91%. The solubilization effect of the APG compounded system is better than that of the single system. The solubilization ability of the compound system decreases slightly with the decrease of ambient temperature, and increases first and then decreases with the increase of electrolyte concentration in a certain range. The optimal combination of APG compounded system is as follows: the concentration of APG is 10000 mg·L−1, the concentration of β-cyclodextrin is 3750 mg·L−1 and the volume concentration of isopropanol is 2.5%. The combination has good solubilization ability, low-temperature resistance and salt resistance. The screening of this system can provide some experimental basis for subsequent site restoration.
-
Key words:
- alkyl glycoside /
- perchloroethylene /
- solubilization /
- groundwater.
-
表 1 不同体系的增溶回归方程
Table 1. The static solubilization regression equation of different surfactants
体系
System回归方程
Regression equationR2 WSR Tween80
APG1214
APG1214+β-cd
APG1214+β-cd+IPAy = 0.5833x − 647.64
y = 0.5581x − 187.87
y = 1.8593x − 2444.4
y = 2.6744x − 1580.80.9493
0.9759
0.9870
0.99080.561
0.576
1.184
1.751 -
[1] 刘懿丹. 干洗服装中四氯乙烯残留量检测及环境释放行为的研究[D]. 杭州: 浙江理工大学, 2018. LIU Y D. Study on the determination and environmental release behavior of tetrachloroethylene residues in dry-cleaned apparels[D]. Hangzhou: Zhejiang Sci-Tech University, 2018(in Chinese).
[2] 张凤君, 王斯佳, 马慧, 等. 三氯乙烯和四氯乙烯在土壤和地下水中的污染及修复技术 [J]. 科技导报, 2012, 30(18): 65-72. doi: 10.3981/j.issn.1000-7857.2012.18.010 ZHANG F J, WANG S J, MA H, et al. Contaminations and remediation technologies of trichloroethylene and perchloroethylene in the soil and groundwater: A review [J]. Science & Technology Review, 2012, 30(18): 65-72(in Chinese). doi: 10.3981/j.issn.1000-7857.2012.18.010
[3] ENGELMANN C, HÄNDEL F, BINDER M, et al. The fate of DNAPL contaminants in non-consolidated subsurface systems - Discussion on the relevance of effective source zone geometries for plume propagation [J]. Journal of Hazardous Materials, 2019, 375: 233-240. doi: 10.1016/j.jhazmat.2019.04.083 [4] CÁPIRO N L, STAFFORD B P, RIXEY W G, et al. Fuel-grade ethanol transport and impacts to groundwater in a pilot-scale aquifer tank [J]. Water Research, 2007, 41(3): 656-664. doi: 10.1016/j.watres.2006.09.024 [5] SHENG Y Z, ZHANG X, ZHAI X B, et al. A mobile, modular and rapidly-acting treatment system for optimizing and improving the removal of non-aqueous phase liquids (NAPLs) in groundwater [J]. Journal of Hazardous Materials, 2018, 360: 639-650. doi: 10.1016/j.jhazmat.2018.08.044 [6] QIN X S, HUANG G H, CHAKMA A, et al. Simulation-based process optimization for surfactant-enhanced aquifer remediation at heterogeneous DNAPL-contaminated sites [J]. Science of the Total Environment, 2007, 381(1/2/3): 17-37. [7] 王永剑, 单广波, 徐佰青, 等. 表面活性剂在石油烃污染土壤修复中的应用研究进展 [J]. 当代化工, 2021, 50(6): 1425-1430. doi: 10.3969/j.issn.1671-0460.2021.06.036 WANG Y J, SHAN G B, XU B Q, et al. Research progress in application of surfactants in petroleum hydrocarbon contaminated soil remediation [J]. Contemporary Chemical Industry, 2021, 50(6): 1425-1430(in Chinese). doi: 10.3969/j.issn.1671-0460.2021.06.036
[8] 李隋. 表面活性剂强化抽取处理修复DNAPL污染含水层的实验研究: 以硝基苯为例[D]. 长春: 吉林大学, 2008. LI S. Research on surfactant enhanced pump and treat remediation of a DNAPL contaminated aquifer—case study on nitrobenzene[D]. Changchun: Jilin University, 2008(in Chinese).
[9] 侯泽宇, 王宇, 卢文喜. 地下水DNAPLs污染修复多相流模拟的替代模型 [J]. 中国环境科学, 2019, 39(7): 2913-2920. doi: 10.3969/j.issn.1000-6923.2019.07.027 HOU Z Y, WANG Y, LU W X. Surrogate models of multi-phase flow simulation model for DNAPL-contaminated aquifer remediation [J]. China Environmental Science, 2019, 39(7): 2913-2920(in Chinese). doi: 10.3969/j.issn.1000-6923.2019.07.027
[10] PEI G P, ZHU Y E, CAI X T, et al. Surfactant Flushing remediation of o-dichlorobenzene and p-dichlorobenzene contaminated soil [J]. Chemosphere, 2017, 185: 1112-1121. doi: 10.1016/j.chemosphere.2017.07.098 [11] LV C, CHEN J, WANG X. Evaluation of surfactant performance in in situ foam Flushing for remediation of dichlorodiphenyltrichloroethane-contaminated soil [J]. International Journal of Environmental Science and Technology, 2017, 14(3): 631-638. doi: 10.1007/s13762-016-1175-0 [12] 王勇. 表面活性剂在砂岩上吸附规律研究[D]. 成都: 西南石油大学, 2017. WANG Y. Study on adsorption law of surfactant on sandstone. Chengdu: Southwest Petroleum University, 2017(in Chinese).
[13] UPADHYE S, SONDE R. Degradation of sodium dodecyl sulfate by the bacterial isolates obtained from polluted aquatic bodies [J]. Journal of Pure and Applied Microbiology, 2012, 6(1): 303-308. [14] 白利松, 赵勇. 表面活性剂的绿色化及研究进展 [J]. 中国洗涤用品工业, 2017(8): 48-54. BAI L S, ZHAO Y. Research progress of green surfactants [J]. China Cleaning Industry, 2017(8): 48-54(in Chinese).
[15] 雷自刚. 烷基糖苷APG1214的绿色合成及应用性能研究[D]. 西安: 西安石油大学, 2020. LEI Z G. Study on the green synthesis and application performance of alkyl polyglycoside APG1214[D]. Xi'an: Xi'an Shiyou University, 2020(in Chinese).
[16] 史晓宇, 唐天龙. 烷基糖苷的合成应用与知识产权状况 [J]. 大众科技, 2013, 15(7): 94-96. doi: 10.3969/j.issn.1008-1151.2013.07.033 SHI X Y, TANG T L. Application and intellectual property rights of Alkyl polyglycoside [J]. Popular Science & Technology, 2013, 15(7): 94-96(in Chinese). doi: 10.3969/j.issn.1008-1151.2013.07.033
[17] 秦勇, 张高勇, 康保安, 等. 烷基多苷(APG)生物降解性的研究 [J]. 环境科学研究, 2003, 16(4): 28-31. doi: 10.3321/j.issn:1001-6929.2003.04.008 QIN Y, ZHANG G Y, KANG B A, et al. Research on primary biodegradation of APG [J]. Research of Environmental Sciences, 2003, 16(4): 28-31(in Chinese). doi: 10.3321/j.issn:1001-6929.2003.04.008
[18] 赵少丹. 表面活性剂淋洗修复苯胺污染土壤的实验研究[D]. 北京: 中国地质大学(北京), 2018. ZHAO S D. Experimental study on remediation of aniline contaminated soil by surfactant leaching[D]. Beijing: China University of Geosciences, 2018(in Chinese).
[19] 孙崇凤. 可降解表面活性剂增效洗脱污染土壤中二氯苯的研究[D]. 太原: 山西大学, 2015. SUN C F. Enhanced soil washing of dichlorobenzene by biodegradable surfactants[D]. Taiyuan: Shanxi University, 2015(in Chinese).
[20] ZHOU W J, ZHU L Z. Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant [J]. Environmental Pollution, 2007, 147(2): 350-357. doi: 10.1016/j.envpol.2006.05.025 [21] ZHOU W J, ZHU L Z. Enhanced soil Flushing of phenanthrene by anionic-nonionic mixed surfactant [J]. Water Research, 2008, 42(1/2): 101-108. [22] 李凯丽, 裴宗平, 张鑫. 复配表面活性剂APG/SDBS对菲、芘的增溶特性 [J]. 环境科学学报, 2018, 38(8): 3260-3265. LI K L, PEI Z P, ZHANG X. Dissolution characteristics of phenanthrene and Pyrene in complex surfactant system [J]. Acta Scientiae Circumstantiae, 2018, 38(8): 3260-3265(in Chinese).
[23] 王博豪. β-环糊精在饮料工业上的研究应用 [J]. 广东化工, 2021, 48(16): 141-142. doi: 10.3969/j.issn.1007-1865.2021.16.058 WANG B H. Research and application of β-cyclodextrin in beverage industry [J]. Guangdong Chemical Industry, 2021, 48(16): 141-142(in Chinese). doi: 10.3969/j.issn.1007-1865.2021.16.058
[24] 肖姗姗, 吉时蕾, 蒋欣欣, 等. 环糊精及其衍生物在药物制剂中的应用 [J]. 聊城大学学报(自然科学版), 2021, 34(6): 77-83,91. XIAO S S, JI S L, JIANG X X, et al. Application of cyclodextrin and its derivatives in pharmaceutical preparations [J]. Journal of Liaocheng University (Natural Science Edition), 2021, 34(6): 77-83,91(in Chinese).
[25] 邓军. 表面活性剂和环糊精对土壤有机污染物的增溶作用及机理[D]. 长沙: 湖南大学, 2007. DENG J. Study on solubilization effects and mechanisms of soil organic contaminants in surfactant and cyclodextrin solutions[D]. Changsha: Hunan University, 2007(in Chinese).
[26] 刘宏, 刘迅. 环糊精和表面活性剂对多氯联苯污染土壤的洗脱增效修复对比研究 [J]. 四川环境, 2018, 37(2): 1-6. doi: 10.3969/j.issn.1001-3644.2018.02.001 LIU H, LIU X. Comparison study of hydroxypropyl-β-cyclodextrin(HPCD) and sodium dodecyl sulfate(SDS) on Aroclor1242 elution from contaminated soil [J]. Sichuan Environment, 2018, 37(2): 1-6(in Chinese). doi: 10.3969/j.issn.1001-3644.2018.02.001
[27] SABATINI D A, KNOX R C, HARWELL J H, et al. Integrated design of surfactant enhanced DNAPL remediation: Efficient supersolubilization and gradient systems [J]. Journal of Contaminant Hydrology, 2000, 45(1/2): 99-121. [28] TAYLOR T P, RATHFELDER K M, PENNELL K D, et al. Effects of ethanol addition on micellar solubilization and plume migration during surfactant enhanced recovery of tetrachloroethene [J]. Journal of Contaminant Hydrology, 2004, 69(1/2): 73-99. [29] 中国日用化学研究院有限公司, 赞宇科技集团股份有限公司, 西安开米股份有限公司, 等. 表面活性剂生物降解度试验方法[S], 国家市场监督管理总局, 中国国家标准化管理委员会, 2018: 24. China Daily Chemical Research Institute Co. , Ltd. , Zanyu Technology Group Co. , Ltd. , Xi 'an Kaimi Co. , Ltd. Test method for biodegradability of surfactants[S]. State Administration for Market Regulation, Standardization Administration of China, 2018: 24.
[30] 赵喆, 王齐放. 表面活性剂临界胶束浓度测定方法的研究进展 [J]. 实用药物与临床, 2010, 13(2): 140-144. doi: 10.3969/j.issn.1673-0070.2010.02.025 ZHAO Z, WANG Q F. Progress on methods of measuring surface active agent's critical micelle concentration [J]. Practical Pharmacy and Clinical Remedies, 2010, 13(2): 140-144(in Chinese). doi: 10.3969/j.issn.1673-0070.2010.02.025
[31] 刘霞, 王建涛, 张萌, 等. 螯合剂和生物表面活性剂对Cu、Pb污染塿土的淋洗修复 [J]. 环境科学, 2013, 34(4): 1590-1597. LIU X, WANG J T, ZHANG M, et al. Remediation of Cu-Pb-contaminated loess soil by leaching with chelating agent and biosurfactant [J]. Environmental Science, 2013, 34(4): 1590-1597(in Chinese).
[32] 冯瑜, 张广良, 宋鹏, 等. 表面活性剂生物降解性及其法规 [J]. 日用化学品科学, 2014, 37(6): 33-39. FENG Y, ZHANG G L, SONG P, et al. Standards and regulations of surfactant biodegradation [J]. Detergent & Cosmetics, 2014, 37(6): 33-39(in Chinese).
[33] VALENTE A J M, NILSSON M, SÖDERMAN O. Interactions between n-octyl and n-nonyl beta-D-glucosides and alpha- and beta-cyclodextrins as seen by self-diffusion NMR [J]. Journal of Colloid and Interface Science, 2005, 281(1): 218-224. doi: 10.1016/j.jcis.2004.08.018 [34] FATMA N, PANDA M, KABIR-UD-DIN. A study on the solubilization of polycyclic aromatic hydrocarbons in gemini-conventional mixed surfactant systems by 1H NMR spectroscopy [J]. Materials Chemistry and Physics, 2020, 254: 123223. doi: 10.1016/j.matchemphys.2020.123223 [35] 吴振. 温度和pH影响OSβG胶束化及其增溶和控释β-胡萝卜素的机制研究[D]. 重庆: 西南大学, 2021. WU Z. Molecular mechanisms underlying the effects of temperature and pH on OSβG micellization, solubilization and controlled-release of β-carotene by the resultant micelles[D]. Chongqing: Southwest University, 2021(in Chinese).
[36] 籍海燕, 闵洁. 烷基糖苷水溶液的表面活性以及电解质的影响 [J]. 毛纺科技, 2010, 38(2): 12-15. doi: 10.3969/j.issn.1003-1456.2010.02.004 JI H Y, MIN J. Study of alkyl polyglucosides' surface activity and electrolyte effects on the surface tension and micellization of the solutions [J]. Wool Textile Journal, 2010, 38(2): 12-15(in Chinese). doi: 10.3969/j.issn.1003-1456.2010.02.004
[37] 贾少华, 宋存义, 栾海波, 等. 烷基糖苷对石油增溶作用及其影响因素研究 [J]. 土壤, 2014, 46(4): 697-702. JIA S H, SONG C Y, LUAN H B, et al. Enhanced solubilization of crude oil by using alkyl polyglucoside [J]. Soils, 2014, 46(4): 697-702(in Chinese).