-
运河桐乡水源地处长江三角洲平原河网地区,承载桐乡市3个自来水厂的供水工程,是桐乡市集中饮用水源,每天向3个水厂供水45万吨,其水质好坏直接关系到桐乡市70多万人的饮用水安全. 随着长三角社会经济的快速发展和城市化进程加快,运河水体负荷不断增加[1],加上平原河网地势平坦,水动力条件较差,水环境自净能力差[2-3],运河桐乡水源地近年来夏季溶解氧(dissolved oxygen, DO)时有超标. DO是评价水体自净能力和受污染程度的重要指标[4-5]. 当水体中DO ≤ 2 mg·L−1时,厌氧微生物在水体中占主导地位[6],有机物分解过程会产生对人体有毒有害的物质和刺激性气体[7-8],从而影响河网生态环境和饮用水安全[9].
平原河网地区造成水体DO低下的原因往往比较复杂. 影响水体DO浓度的因素很多,包括pH、温度、电导率、营养物质浓度、大气复氧水平和水动力过程等[10-12]. 国内外学者尝试使用了多种方法对水体中DO低下的原因进行研究. 例如,Lopamudra[13]建立Streeter-phelps模型,发现下游水体低DO可能是由于上游水体点源污染增加或溶解态氮浓度较高而导致藻类过度生长所致. Espinosa-Díaz等[14]对圣玛尔塔湾连续19年的DO数据进行时间序列分析,发现水体DO浓度下降与沉积物中有机物的消耗有关. Jarvis等[15]对墨西哥湾北部水体建立三维水动力-生物地球化学模型,发现风力驱动因素会促进近海水域DO的消耗. 赵海超等[16]通过氮磷形态及相关性分析发现水体富营养化和底泥释放氮磷营养盐导致了洱海DO浓度降低. 黄钰铃[17]等通过水体分层研究发现,泸沽湖北侧湖区DO低是由于湖区水动力特性、以及水生植物和浮游植物群落的差异所致. 由此可见,不同水体低DO成因不尽相同,必须依托一定的技术手段深入解析水体低DO成因,才能更有针对性地提出治理对策.
三维荧光光谱(Three-dimensional fluorescence excitation-emission matrix spectroscopy,3DEEMs)作为一种新型水污染溯源技术,具有快速、准确的优点[18]. 将3DEEMs和平行因子分析(Parallel factor analysis,PARAFAC)结合使用能有效揭示水体中溶解性有机物(Dissolved organic matter,DOM)的荧光组分信息,被广泛用于探究不同水体DOM组成及来源[19-20]. 这种方法不受水体类型限制,应用于对不同污染源的识别分析,但还未见利用这种方法对水体低DO进行成因分析的相关报道.
本文基于常规水质监测数据,研究了运河桐乡段水体的DO时空分布特征及其主要影响因素;基于三维荧光光谱结合平行因子分析法和氮形态解析,探究了桐乡入境水和桐乡内部污染源对水源地DO的影响;通过底泥分析结合现场踏勘,分析了底泥污染物释放对水源地DO的影响. 研究结果不仅可以为长三角平原河网地区“精准治污”提供新思路,也能为其他地区低氧水体的治理提供参考.
基于3DEMMs-PARAFAC技术的运河桐乡水源地夏季低溶解氧成因研究
Study on the cause of low dissolved oxygen in summer in Tongxiang water source of Canal based on 3DEMMs-PARAFAC technology
-
摘要: 运河桐乡水源地处长江流域太湖水系,是桐乡市70多万人的集中饮用水水源,近年来连续数年夏季溶解氧(DO)偏低,影响水源地水质稳定达标. 基于三维荧光光谱(3DEEMs)结合平行因子分析(PARAFAC)技术,以及常规水质分析和氮形态解析,研究了上游来水、桐乡自身污染以及运河底泥释放对水源地DO的影响,解析了夏季低DO成因. 结果表明,桐乡入境水具有生活污水荧光特征峰,夏季DO浓度低、氨氮浓度高,是造成运河桐乡水源地DO不能稳定达标的首要原因,桐乡入境水和桐乡水源地取水口DO显著正相关(R2 =0.76,P <0.01). 其次,运河桐乡段水体中DOM主要由3个荧光组分组成,其中C1(230/275,307)和C2(235/295,338)为类蛋白质荧光组分,C3(255/330,297/422)为类腐殖质荧光组分;水源地保护区内类蛋白质物质荧光强度大幅增强,在总荧光强度中占比67.6%—95.9%,显示村镇生活污水排放对水源地水质有所影响. 此外,运河干流通航引起底泥悬浮、水体浊度上升从而影响光合作用,以及支流底泥在缺氧条件下的氮磷释放进一步加剧了水源地DO消耗. 在此基础上针对性提出对策建议,为运河桐乡水源地水质提升和平原河网地区低氧水体治理提供理论依据.Abstract: Located in the Taihu River system of the Yangtze River Basin, Tongxiang Canal is used as the centralized drinking water source for more than 700,000 people. In recent years, the low summer dissolved oxygen (DO) has affected the water quality of the water source to reach the standard. Based on the three dimensional fluorescence spectrum (3DEEMs) combined with the parallel factor analysis (PARAFAC) technology, as well as the conventional water quality analysis and nitrogen form analysis, factors that influence DO were studied, including upstream inflow, Tongxiang’s municipal pollution and the sediment release. The results showed that the incoming water in Tongxiang had the fluorescent characteristic peak of domestic sewage, and the low concentration of DO and high concentration of ammonia nitrogen are the primary contributor to the low DO concentration in the Tongxiang canal water source in summers. A significant positive correlation of the daily average DO concentration was found between the upstream inflow and the intake of water source (R2=0.76, P<0.01). Secondly, DOM in Tongxiang section of Canal is mainly composed of three fluorescent components. C1 (230/275,307) and C2 (235/295,338) are protein-like fluorescent components, and C3 (255/330,297/422) are humus-like fluorescent components; the fluorescence intensity of protein-like substances increased significantly in the water source protection area, accounting for 67.6%—95.9% of the total fluorescence intensity, indicating that rural domestic sewage discharge had an impact on the water quality of the water source. In addition, inland shipping negatively affects photosynthesis by causing sediment suspension and turbidity of the river, and nitrogen and phosphorus released from tributary sediment under oxygen-poor conditions further aggravate DO consumption in the waterbody. On this basis, countermeasures and suggestions were put forward for forming a framework to improve the quality of the Tongxiang canal water source and other low oxygen water body in plain river network areas.
-
表 1 水源地保护区底泥现场调查及监测结果
Table 1. Field investigation and monitoring results of sediments in the water source protection area
底泥分布区域
Sediment distribution area颜色
Colour厚薄
Thick/Thin气味
Odour质地
Grain总氮/(mg·kg−1)
TN总磷/(mg·kg−1)
TP干流
(G1—G9)浅 薄 无异味 泥沙状 617±157.8 804±171.21 支流
(Z1—Z7)深 厚 有异味 黏土状 727±302.0 863±186.78 浙江省河流沉积物背景值[38] — — — — 440 239 注:物理性状为现场观察记录;数据格式:Mean±SD.
Note: Physical properties were determined on field. Data format: Mean±SD. -
[1] 魏志远, 王婷, 徐凯, 等. 平原河网水体氮污染对氮循环菌的影响 [J]. 湖泊科学, 2016, 28(4): 812-817. doi: 10.18307/2016.0414 WEI Z Y, WANG T, XU K, et al. Effects of aquatic nitrogen pollution on the nitrogen cycling bacteria in plain river network [J]. Journal of Lake Sciences, 2016, 28(4): 812-817(in Chinese). doi: 10.18307/2016.0414
[2] FINLAY J C, HOOD J M, LIMM M P, et al. Light-mediated thresholds in stream-water nutrient composition in a river network [J]. Ecology, 2011, 92(1): 140-150. doi: 10.1890/09-2243.1 [3] 潘泓哲, 李一平, 唐春燕, 等. 多目标优化下平原河网引调水改善水环境效果评估 [J]. 湖泊科学, 2021, 33(4): 1138-1152. doi: 10.18307/2021.0415 PAN H Z, LI Y P, TANG C Y, et al. Evaluation of the effect of water diversion on improving water environment in plain river network under the multi-objective optimization [J]. Journal of Lake Sciences, 2021, 33(4): 1138-1152(in Chinese). doi: 10.18307/2021.0415
[4] 张培培, 吴艺帆, 庞树江, 等. 再生水补给河流北运河CODCr降解系数变化及影响因素 [J]. 湖泊科学, 2019, 31(1): 99-112. doi: 10.18307/2019.0110 ZHANG P P, WU Y F, PANG S J, et al. CODCr degradation coefficient of urban river recharged with reclaimed water and its impacting factors [J]. Journal of Lake Sciences, 2019, 31(1): 99-112(in Chinese). doi: 10.18307/2019.0110
[5] 石子泊, 邹志红. 基于小波变换的ARIMA模型在水质预测中的应用研究 [J]. 环境工程学报, 2014, 8(10): 4550-4554. SHI Z B, ZOU Z H. Applied study of ARIMA model based on wavelet analysis on water quality prediction [J]. Chinese Journal of Environmental Engineering, 2014, 8(10): 4550-4554(in Chinese).
[6] PIATKA D R, WILD R, HARTMANN J, et al. Transfer and transformations of oxygen in rivers as catchment reflectors of continental landscapes: A review [J]. Earth-Science Reviews, 2021, 220: 103729. doi: 10.1016/j.earscirev.2021.103729 [7] BOUFFARD D, ACKERMAN J D, BOEGMAN L. Factors affecting the development and dynamics of hypoxia in a large shallow stratified lake: Hourly to seasonal patterns [J]. Water Resources Research, 2013, 49(5): 2380-2394. doi: 10.1002/wrcr.20241 [8] TAN P Y, ZHU D Z, ZHANG Y P, et al. Optimization of water Flushing in lowland urban river in Jiaxing, Zhejiang using dissolved oxygen as the indicator [J]. MATEC Web of Conferences, 2018, 246: 2048. doi: 10.1051/matecconf/201824602048 [9] JANE S F, HANSEN G J A, KRAEMER B M, et al. Widespread deoxygenation of temperate lakes [J]. Nature, 2021, 594(7861): 66-70. doi: 10.1038/s41586-021-03550-y [10] LI G, LIU J X, DIAO Z H, et al. Subsurface low dissolved oxygen occurred at fresh- and saline-water intersection of the Pearl River Estuary during the summer period [J]. Marine Pollution Bulletin, 2018, 126: 585-591. doi: 10.1016/j.marpolbul.2017.09.061 [11] BANERJEE A, CHAKRABARTY M, RAKSHIT N, et al. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach [J]. Ecological Indicators, 2019, 100: 99-117. doi: 10.1016/j.ecolind.2018.09.051 [12] ZHU N Y, JI X, TAN J L, et al. Prediction of dissolved oxygen concentration in aquatic systems based on transfer learning [J]. Computers and Electronics in Agriculture, 2021, 180: 105888. doi: 10.1016/j.compag.2020.105888 [13] CHAKRABORTI L. Impact of upstream plant level pollution on downstream water quality: Evidence from the clean water act [J]. Journal of Environmental Planning and Management, 2021, 64(3): 517-535. doi: 10.1080/09640568.2020.1776227 [14] ESPINOSA-DÍAZ L F, ZAPATA-REY Y T, IBARRA-GUTIERREZ K, et al. Spatial and temporal changes of dissolved oxygen in waters of the Pajarales complex, Ciénaga Grande de Santa Marta: Two decades of monitoring [J]. Science of the Total Environment, 2021, 785: 147203. doi: 10.1016/j.scitotenv.2021.147203 [15] JARVIS B M, GREENE R M, WAN Y S, et al. Contiguous low oxygen waters between the continental shelf hypoxia zone and nearshore coastal waters of Louisiana, USA: Interpreting 30 years of profiling data and three-dimensional ecosystem modeling [J]. Environmental Science & Technology, 2021, 55(8): 4709-4719. [16] 赵海超, 王圣瑞, 赵明, 等. 洱海水体溶解氧及其与环境因子的关系 [J]. 环境科学, 2011, 32(7): 1952-1959. ZHAO H C, WANG S R, ZHAO M, et al. Relationship between the DO and the environmental factors of the water body in lake Erhai [J]. Environmental Science, 2011, 32(7): 1952-1959(in Chinese).
[17] 黄钰铃, 王泽平, 郎学彪, 等. 泸沽湖水体溶解氧含量时空分布规律研究 [J]. 环境科学与技术, 2020, 43(9): 135-140. HUANG Y L, WANG Z P, LANG X B, et al. Spatial-temporal distribution of dissolved oxygen in Lugu Lake [J]. Environmental Science & Technology, 2020, 43(9): 135-140(in Chinese).
[18] 白小梅, 李悦昭, 姚志鹏, 等. 三维荧光指纹谱在水体污染溯源中的应用进展 [J]. 环境科学与技术, 2020, 43(1): 172-180,193. BAI X M, LI Y Z, YAO Z P, et al. Application progress of three-dimensional excitation emission matrix fluorescence spectroscopy in source tracing of water pollution [J]. Environmental Science & Technology, 2020, 43(1): 172-180,193(in Chinese).
[19] SONG K S, SHANG Y X, WEN Z D, et al. Characterization of CDOM in saline and freshwater lakes across China using spectroscopic analysis [J]. Water Research, 2019, 150: 403-417. doi: 10.1016/j.watres.2018.12.004 [20] 黄廷林, 方开凯, 张春华, 等. 荧光光谱结合平行因子分析研究夏季周村水库溶解性有机物的分布与来源 [J]. 环境科学, 2016, 37(9): 3394-3401. HUANG T L, FANG K K, ZHANG C H, et al. Analysis of distribution characteristics and source of dissolved organic matter from Zhoucun reservoir in summer based on fluorescence spectroscopy and PARAFAC [J]. Environmental Science, 2016, 37(9): 3394-3401(in Chinese).
[21] 姜霞, 王书航. 沉积物质量调查评估手册[M]. 北京: 科学出版社, 2012. JIANG X, WANG S H. Sediment quality investigation and Evaluation Manual [M]. Beijing: Science Press, 2012: 1-17 (in Chinese).
[22] 杨诗笛, 曹星星, 吴攀, 等. 贵州草海岩溶湿地水体不同形态氮的时空分布特征 [J]. 生态学杂志, 2021, 40(1): 93-102. YANG S D, CAO X X, WU P, et al. Temporal and spatial distribution characteristics of different forms of nitrogen in Karst wetland in Caohai, Guizhou [J]. Chinese Journal of Ecology, 2021, 40(1): 93-102(in Chinese).
[23] 魏复盛主编, 国家环境保护总局, 水和废水监测分析方法编委会编. 水和废水监测分析方法[M]. 4版. 北京: 中国环境科学出版社, 2002. Ministry of Environmental Protection of the People's Republic of China. Methods for Monitoring and Analysis of Water And Wastewater (Fourth Edition)(Supplement) [M]. Beijing: China Environment Science Press, 2002(in Chinese).
[24] 张亚楠, 马启敏, 岳宗恺, 等. 东昌湖表层沉积物中氮的赋存形态 [J]. 环境化学, 2013, 32(3): 459-465. ZHANG Y N, MA Q M, YUE Z K, et al. Study of nitrogen forms in the sediments from Dongchang Lake [J]. Environmental Chemistry, 2013, 32(3): 459-465(in Chinese).
[25] 李昀, 魏鸿杰, 王侃, 等. 溶解性有机物(DOM)与区域土地利用的关系: 基于三维荧光-平行因子分析(EEM-PARAFAC) [J]. 环境科学, 2019, 40(4): 1751-1759. LI Y, WEI H J, WANG K, et al. Analysis of the relationship between dissolved organic matter (DOM) and watershed land-use based on three-dimensional fluorescence-parallel factor (EEM-PARAFAC) analysis [J]. Environmental Science, 2019, 40(4): 1751-1759(in Chinese).
[26] 祝鹏, 廖海清, 华祖林, 等. 平行因子分析法在太湖水体三维荧光峰比值分析中的应用 [J]. 光谱学与光谱分析, 2012, 32(1): 152-156. ZHU P, LIAO H Q, HUA Z L, et al. Parallel factor analysis as an analysis technique for the ratio of three-dimensional fluorescence peak in Taihu Lake [J]. Spectroscopy and Spectral Analysis, 2012, 32(1): 152-156(in Chinese).
[27] 朱爱菊, 孙东耀, 谭季, 等. 亚热带河口陆基养虾塘水体CDOM三维荧光光谱平行因子分析 [J]. 环境科学, 2019, 40(1): 164-171. ZHU A J, SUN D Y, TAN J, et al. Parallel factor analysis of fluorescence excitation emission matrix spectroscopy of CDOM from the mid-culture period of shrimp ponds in a subtropical estuary [J]. Environmental Science, 2019, 40(1): 164-171(in Chinese).
[28] 吕晶晶, 龚为进, 窦艳艳, 等. PARAFAC和FRI解析ISI中DOM分布 [J]. 中国环境科学, 2019, 39(5): 2039-2047. LÜ J J, GONG W J, DOU Y Y, et al. The distribution of DOM in aeration pretreatment improved soil infiltration system based on FRI and PARAFAC [J]. China Environmental Science, 2019, 39(5): 2039-2047(in Chinese).
[29] MURPHY K R, STEDMON C A, GRAEBER D, et al. Fluorescence spectroscopy and multi-way techniques. PARAFAC [J]. Analytical Methods, 2013, 5(23): 6557. doi: 10.1039/c3ay41160e [30] 刘炜, 焦树林, 李银久, 等. 喀斯特地表植被覆盖变化及其与气候因子相关性分析 [J]. 水土保持研究, 2021, 28(3): 203-215. LIU W, JIAO S L, LI Y J, et al. Analysis on the correlation between vegetation cover of land surface and climatic factors in Karst area [J]. Research of Soil and Water Conservation, 2021, 28(3): 203-215(in Chinese).
[31] 潘宗源, 吴远斌, 贾龙, 等. 湖南宁乡大成桥岩溶地下水对暴雨响应特征及多元回归预测模型 [J]. 中国岩溶, 2020, 39(2): 232-242. PAN Z Y, WU Y B, JIA L, et al. Response characteristics of Karst groundwater to rainstorm and the multiple regression prediction model in Dachengqiao, Ningxiang County, Hunan Province [J]. Carsologica Sinica, 2020, 39(2): 232-242(in Chinese).
[32] 杨金强, 赵南京, 殷高方, 等. 城市生活污水处理过程三维荧光光谱在线监测分析方法 [J]. 光谱学与光谱分析, 2020, 40(7): 1993-1997. YANG J Q, ZHAO N J, YIN G F, et al. On-line monitoring and analysis method of three-dimensional fluorescence spectrum in urban domestic sewage treatment process [J]. Spectroscopy and Spectral Analysis, 2020, 40(7): 1993-1997(in Chinese).
[33] COBLE P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy [J]. Marine Chemistry, 1996, 51(4): 325-346. doi: 10.1016/0304-4203(95)00062-3 [34] COBLE P G, del CASTILLO C E, AVRIL B. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 1998, 45(10/11): 2195-2223. [35] LAPIERRE J F, del GIORGIO P A. Partial coupling and differential regulation of biologically and photochemically labile dissolved organic carbon across boreal aquatic networks [J]. Biogeosciences, 2014, 11(20): 5969-5985. doi: 10.5194/bg-11-5969-2014 [36] BAKER A. Fluorescence excitation-emission matrix characterization of river waters impacted by a tissue mill effluent [J]. Environmental Science & Technology, 2002, 36(7): 1377-1382. [37] MURPHY K R, STEDMON C A, WAITE T D, et al. Distinguishing between terrestrial and autochthonous organic matter sources in marine environments using fluorescence spectroscopy [J]. Marine Chemistry, 2008, 108(1/2): 40-58. [38] 汪庆华, 董岩翔, 周国华, 等. 浙江省土壤地球化学基准值与环境背景值 [J]. 生态与农村环境学报, 2007, 23(2): 81-88. WANG Q H, DONG Y X, ZHOU G H, et al. Soil geochemical baseline and environmental background values of agricultural regions in Zhejiang Province [J]. Journal of Ecology and Rural Environment, 2007, 23(2): 81-88(in Chinese).
[39] 朱心悦, 逄勇, 徐丽媛. 嘉兴市区水功能区水质达标纳污能力研究 [J]. 水资源与水工程学报, 2014, 25(1): 22-27. ZHU X Y, PANG Y, XU L Y. Research on water environmental capacity of water quality standard in water function zone of Jiaxing [J]. Journal of Water Resources and Water Engineering, 2014, 25(1): 22-27(in Chinese).
[40] 娄孝飞, 王颖, 张海军, 等. 嘉兴市区河道水质变化趋势及影响因素分析 [J]. 净水技术, 2020, 39(6): 67-72,82. LOU X F, WANG Y, ZHANG H J, et al. Analysis and influencing factors of river water quality change trends in Jiaxing City [J]. Water Purification Technology, 2020, 39(6): 67-72,82(in Chinese).
[41] 邓思思. 嘉兴平原河网溶解氧平衡研究[D]. 杭州: 浙江大学, 2013. DENG S S. Dissolved oxygen in lowland Jiaxing rivers[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
[42] 杨雪玲. 非点源溶解性有机物的消毒副产物生成特征研究[D]. 宁波大学, 2018. 11-12 YANG X L, Study on the characteristics of disinfection by-products formation of non-point sources dissolved organic matter[D]. Ningbo University , 2018. 11-12
[43] 王立岷, 赵筠, 陆梦. 京杭运河嘉兴段船舶交通量调查 [J]. 中国水运, 2015(9): 64-65. WANG L M, ZHAO J, LU M. Survey on vessel traffic volume in Jiaxing Bay, Grand Canal [J]. China Water Transport, 2015(9): 64-65(in Chinese).
[44] 陈朱虹, 陈能汪, 吴殷琪, 等. 河流库区沉积物-水界面营养盐及气态氮的释放过程和通量 [J]. 环境科学, 2014, 35(9): 3325-3335. CHEN Z H, CHEN N W, WU Y Q, et al. Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River reservoir [J]. Environmental Science, 2014, 35(9): 3325-3335(in Chinese).
[45] 王书航, 郑朔方, 蔡青, 等. 南湖及周边水体中氮的时空分布、影响因素及控制对策 [J]. 环境工程技术学报, 2020, 10(6): 920-927. WANG S H, ZHENG S F, CAI Q, et al. Spatio-temporal distribution, influencing factors and control strategies of nitrogen of Nanhu Lake and its surrounding rivers [J]. Journal of Environmental Engineering Technology, 2020, 10(6): 920-927(in Chinese).
[46] 周锴, 钟小燕, 庾从蓉, 等. 太湖河道水深对底泥营养物质再释放过程的影响 [J]. 环境科学学报, 2020, 40(2): 597-603. ZHOU K, ZHONG X Y, YU C R, et al. Water depth impact on nutrients re-release from sediment in Taihu River Channel [J]. Acta Scientiae Circumstantiae, 2020, 40(2): 597-603(in Chinese).
[47] 史鹏程, 朱广伟, 杨文斌, 等. 新安江水库悬浮颗粒物时空分布、沉降通量及其营养盐效应 [J]. 环境科学, 2020, 41(5): 2137-2148. SHI P C, ZHU G W, YANG W B, et al. Spatial-temporal distribution of suspended solids and its sedimentation flux and nutrients effects in xin'anjiang reservoir, China [J]. Environmental Science, 2020, 41(5): 2137-2148(in Chinese).
[48] 温腾. 泥沙型浑浊水体中浊度对苦草和黑藻生长的影响[D]. 南京: 南京师范大学, 2008. WEN T. Effect of water turbidity on the growth and development of Vallisneria Asiatic and Hydrilla verticillata[D]. Nanjing: Nanjing Normal University, 2008(in Chinese).
[49] 朱光敏. 水体浊度和低光条件对沉水植物生长的影响[D]. 南京: 南京林业大学, 2009. ZHU G M. Effects of turbidity and low light intensity on the growth of macrophytes[D]. Nanjing: Nanjing Forestry University, 2009(in Chinese).
[50] 唐诗, 孙涛, 沈小梅, 等. 水体浊度变化影响下的河口溶解氧系统动力学模型及应用 [J]. 水利学报, 2013, 44(11): 1286-1294. TANG S, SUN T, SHEN X M, et al. Dissolved oxygen dynamics model and its application in estuary subject to turbidity variability [J]. Journal of Hydraulic Engineering, 2013, 44(11): 1286-1294(in Chinese).
[51] 宋成涛, 吴立志. 沙河黑臭水体污染底泥清除标准分析 [J]. 水运工程, 2018(8): 200-204,213. SONG C T, WU L Z. Standard analysis for removal of contaminated sediment of black and odorous water in Shahe River [J]. Port & Waterway Engineering, 2018(8): 200-204,213(in Chinese).
[52] 张茜, 冯民权, 郝晓燕. 上覆水环境条件对底泥氮磷释放的影响研究 [J]. 环境污染与防治, 2020, 42(1): 7-11. ZHANG Q, FENG M Q, HAO X Y. Study on effect of overlying water environment on the nitrogen and phosphorus release of sediment [J]. Environmental Pollution & Control, 2020, 42(1): 7-11(in Chinese).