-
我国北方岩溶水系统具有汇水面积广、多呈层状发育、输入输出水量稳定、水质良好等特点,为北方30多个地级市和100多个县级市生活用水及工农业生产提供了重要的水资源保障[1-2]. 岩溶地下水的化学成分是水在循环过程中与周围环境长期相互作用的产物,在水体的相互转化和运移过程中,主要受地层岩性、水文情势、大气输入以及人为作用的影响,同时伴随溶解物质相互转化[3-5]. 近年来,在气候变化和人类活动等叠加作用下,我国北方岩溶地下水水质呈恶化趋势,主要表现为水化学类型中重碳酸盐型水的占比逐渐下降,硫酸盐型水和其它类型水的占比增多,地下水中TDS、总硬度、硫酸盐、氯化物、硝酸盐等浓度不断增加. 人类工农业活动产生的“三废”,经降水冲刷进入到含水层是影响地下水水质的一个重要原因[6].
淄河流域岩溶地下水是淄博市及周边地区重要的供水水源,在地区经济可持续发展中发挥着不可替代的作用[7]. 20世纪80年代以来,随着经济的迅猛发展,流域地下水开采量大幅增加,水资源供需矛盾与环境问题日趋严重,特别是位于淄河下游的大武水源地,为我国北方特大型岩溶-裂隙地下水水源地,但由于受到当地石油化工企业的渗漏污染[8],水质恶化,人类活动已经成为影响该区域地下水化学组分的演化的重要因素[9-10]. 然而,以往学者对临淄大武水源地水质研究较多,而对淄河流域整体岩溶水系统水化学特征、控制因素及演化规律分析较少.
本文以淄河流域岩溶地下水为研究对象,利用2018年对区内70个岩溶水枯水期(6月)和丰水期(9月)采样化学分析数据,结合水文地质条件,对研究区地下水水化学特征进行分析,运用Gibbs图、离子比例系数、因子分析法探讨影响地下水组分的主要控制因素,对于识别岩溶水化学组分来源、判断水岩相互作用过程,了解淄河流域岩溶地下水环境现状,指导地下水合理开发利用具有较大的理论和实际意义.
淄河流域岩溶地下水化学特征及控制因素分析
Analysis on hydrochemical characteristics and controlling factors of karst groundwater in Zihe River Basin
-
摘要: 选取淄河流域2018年枯水期及丰水期各采集的70件地下水样品,综合运用水化学(piper三线图、Gibbs模型、相关性分析、离子比例分析)和多元统计分析(主成分分析、因子分析)方法,探讨了该流域岩溶地下水化学特征及控制因素. 结果表明:(1)流域岩溶地下水化学类型以
$ {\mathrm{H}\mathrm{C}\mathrm{O}}_{3}-\mathrm{C}\mathrm{a} $ 型及$ {\mathrm{H}\mathrm{C}\mathrm{O}}_{3}\cdot{\mathrm{S}\mathrm{O}}_{4}-\mathrm{C}\mathrm{a} $ 型为主,化学组分主要来源于广泛分布的灰岩、白云岩等可溶性碳酸盐岩,并受岩石风化程度能力控制. 丰水期地下水位抬升,增加了岩盐、硫酸盐等矿物的溶解. (2)沿淄河乡镇一带居民及工农业聚集区,地下水TDS明显增高,主要影响离子为总硬度、$ {\mathrm{C}\mathrm{l}}^{-} $ 、$ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ 、$ {\mathrm{N}\mathrm{O}}_{3}^{-} $ . 淄河下游临淄区堠皋一带,水质较差,反映化工企业对该区域地下水水质造成影响. (3)$ {\mathrm{C}\mathrm{l}}^{-} $ 、$ {\mathrm{N}\mathrm{O}}_{3}^{-} $ 受人类活动影响较大,可能来自生活污水和农业活动等不同的污染物,并且丰水期加速了污染物质的溶解. (4)水岩作用因子分析反映出方解石和石膏等溶解、工农业生产生活、白云岩溶解等对水化学组分影响,贡献率分别为37.21%、21.38%、15.98%.Abstract: Select Zihe river basin during 2018 dry season and the wet season collection of 70 samples of groundwater, the integrated use of water chemistry (Piper three-line diagram, Gibbs model, correlation analysis, ion ratio analysis) and multivariate statistical analysis (principal component analysis, factor analysis) method, discusses the karst groundwater chemical characteristics and control factors of the basin. The results show that: (1) the hydrochemical types of karst groundwater in the basin are mainly HCO3-Ca and HCO3·SO4-Ca, and the chemical components mainly come from widely distributed soluble carbonate rocks such as limestone and dolomite, and are controlled by the degree of rock weathering. The rise of groundwater level during wet season increases the dissolution of rock salt, sulfate and other minerals. (2) Along Zihe Township, residents and industrial and agricultural gathering areas, the TDS of groundwater increases significantly, and the main influencing ions are total hardness, chloride, sulfate, nitrate.The water quality in Hougao area of Linzi District in the lower reaches of Zihe River is poor, which reflects the impact of chemical enterprises on the groundwater quality in this area. (3) Chloride and nitrate are greatly affected by human activities and may come from different pollutants such as domestic sewage and agricultural activities, and the dissolution of pollutants is accelerated in wet season. (4) The factor analysis of water rock interaction reflects the influence of calcite and gypsum dissolution, industrial and agricultural production and life, dolomite dissolution on hydrochemical components, and the contribution rates are 37.21%, 21.38% and 15.98% respectively.-
Key words:
- Zihe River Basin /
- karst groundwater /
- hydrochemistry /
- principal component analysis.
-
表 1 淄河流域岩溶地下水主要离子含量统计值
Table 1. Statistical values of main ions in karst groundwater of Zihe River Basin
项目
ItempH TDS/(mg·L−1) 水化学/(mg·L−1)
Hydrochemisty$ {\mathrm{K}}^{+} $ $ {\mathrm{N}\mathrm{a}}^{+} $ $ {\mathrm{C}\mathrm{a}}^{2+} $ $ {\mathrm{M}\mathrm{g}}^{2+} $ $ {\mathrm{C}\mathrm{l}}^{-} $ $ {{\mathrm{S}\mathrm{O}}_{4}}^{2-} $ $ {{\mathrm{H}\mathrm{C}\mathrm{O}}_{3}}^{-} $ $ {{\mathrm{N}\mathrm{O}}_{3}}^{-} $ 枯水期 最大值 8.40 1495.0 33.79 160.0 270.66 50.12 456.73 494.87 433.78 166.35 最小值 7.10 335.0 0.16 1.66 26.25 8.99 8.52 48.13 124.78 0.10 平均值 7.63 498.54 1.90 23.84 108.92 22.97 36.80 119.79 262.41 40.50 标准差 0.28 185.97 3.99 23.65 37.78 6.62 57.25 65.00 45.28 29.98 变异系数 0.04 0.37 2.10 0.99 0.35 0.29 1.56 0.54 0.17 0.74 丰水期 最大值 7.72 1370.0 26.60 161.0 245.00 48.10 404.00 266.00 542.00 162.00 最小值 7.05 294.0 0.40 5.00 19.00 6.30 11.90 37.60 119.00 14.30 平均值 7.47 484.09 1.73 20.70 107.89 23.18 37.63 92.87 280.63 44.57 标准差 0.12 146.44 3.13 24.17 29.71 7.51 50.41 37.31 54.51 29.74 变异系数 0.02 0.30 1.81 1.17 0.28 0.26 1.34 0.40 0.19 0.67 表 2 地下水主要离子主成分方差可解释量
Table 2. Interpretable quantities of principal component variance of main ions in groundwater
成分
Component初始特征值
Initial eigenvalue提取载荷平方和
Extracting load sum of squares旋转载荷平方和
Quadratic sum of rotational loads总计 方差% 累积% 总计 方差% 累积% 总计 方差% 累积% 1 2.604 37.207 37.207 2.604 37.207 37.207 2.058 29.401 29.401 2 1.497 21.385 58.592 1.497 21.385 58.592 1.904 27.203 56.604 3 1.118 15.976 74.567 1.118 15.976 74.567 1.257 17.963 74.567 4 0.795 11.362 85.930 5 0.481 6.866 92.796 6 0.386 5.510 98.306 7 0.119 1.694 100.000 提取方法:主成分分析法. 表 3 地下水主要离子旋转后的成分矩阵
Table 3. Composition matrix of main ions in groundwater after rotation
变量
Variable成分
Component1 2 3 $ {\mathrm{N}\mathrm{a}}^{+}+{\mathrm{K}}^{+} $ −0.228 0.733 −0.319 $ {\mathrm{M}\mathrm{g}}^{2+} $ −0.096 0.088 0.951 $ {\mathrm{C}\mathrm{a}}^{2+} $ 0.902 0.291 −0.055 $ {\mathrm{C}\mathrm{l}}^{-} $ 0.355 0.748 0.155 $ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ 0.709 0.217 −0.153 $ {\mathrm{H}\mathrm{C}\mathrm{O}}_{3}^{-} $ 0.661 −0.250 0.414 $ {\mathrm{N}\mathrm{O}}_{3}^{-} $ 0.342 0.778 0.170 提取方法:主成分分析法. 旋转方法:Kaiser正态化最大方差法. -
[1] 梁永平, 申豪勇, 赵春红, 等. 对中国北方岩溶水研究方向的思考与实践 [J]. 中国岩溶, 2021, 40(3): 363-380. LIANG Y P, SHEN H Y, ZHAO C H, et al. Thinking and practice on the research direction of Karst water in Northern China [J]. Carsologica Sinica, 2021, 40(3): 363-380(in Chinese).
[2] 吴潇. 柳林泉岩溶水系统水文地球化学演化及污染溯源研究[D]. 武汉: 中国地质大学, 2021. WU X. Hydrogeochemical evolution and pollution tracing in Liulin Karst water system[D]. Wuhan: China University of Geosciences, 2021(in Chinese).
[3] 寇永朝, 华琨, 李洲, 等. 泾河支流地表水地下水的水化学特征及其控制因素 [J]. 环境科学, 2018, 39(7): 3142-3149. KOU Y C, HUA K, LI Z, et al. Major ionic features and their possible controls in the surface water and groundwater of the Jinghe River [J]. Environmental Science, 2018, 39(7): 3142-3149(in Chinese).
[4] HINDSHAW R S, TIPPER E T, REYNOLDS B C, et al. Hydrological control of stream water chemistry in a glacial catchment (Damma Glacier, Switzerland) [J]. Chemical Geology, 2011, 285(1/2/3/4): 215-230. [5] MOUSSA A B, ZOUARI K, MARC V. Hydrochemical and isotope evidence of groundwater salinization processes on the coastal plain of Hammamet-Nabeul, north-eastern Tunisia [J]. Physics and Chemistry of the Earth, Parts A/B/C, 2011, 36(5/6): 167-178. [6] 高旭波, 王万洲, 侯保俊, 等. 中国北方岩溶地下水污染分析 [J]. 中国岩溶, 2020, 39(3): 287-298. GAO X B, WANG W Z, HOU B J, et al. Analysis of Karst groundwater pollution in Northern China [J]. Carsologica Sinica, 2020, 39(3): 287-298(in Chinese).
[7] 窦明, 王呈祥, 左其亭. 淄博市大武水源地水资源综合评价 [J]. 水资源与水工程学报, 2005, 16(4): 5-10. DOU M, WANG C X, ZUO Q T. Research on water resources assessment of Dawu headwaters ground in Zibo City [J]. Journal of Water Resources and Water Engineering, 2005, 16(4): 5-10(in Chinese).
[8] 朱恒华, 刘治政, 贾超, 等. 熵权-集对分析法在大武地下水水质评价中的应用 [J]. 地下水, 2021, 43(2): 11-16. ZHU H H, LIU Z Z, JIA C, et al. Application of entropy weight-set pair analysis method in groundwater quality assessment of Dawu [J]. Ground Water, 2021, 43(2): 11-16(in Chinese).
[9] 刘松霖. 淄博市大武水源地地下水水质演化规律分析及污染趋势预测[D]. 北京: 中国地质大学(北京), 2013. LIU S L. The analysis of water quality evaluation regular pattern and the pollution trend prediction of groundwater in Dawu well field, Zibo city[D]. Beijing: China University of Geosciences, 2013(in Chinese).
[10] 冯建国, 季德帅, 高宗军, 等. 山东淄博大武水源地地下水水化学特征及水质评价 [J]. 长江科学院院报, 2020, 37(9): 18-23. FENG J G, JI D S, GAO Z J, et al. Hydrochemical characteristics and water quality evaluation of groundwater in Zibo Dawu water source, Shandong Province [J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(9): 18-23(in Chinese).
[11] 李铎. 淄河断裂岩溶发育规律探讨 [J]. 河北地质学院学报, 1995, 18(2): 123-128. LI D. Approach to the regularity of the Karst development in Zihe fracture [J]. Journal of Hebei College of Geology, 1995, 18(2): 123-128(in Chinese).
[12] 邢永强, 窦明, 张璋, 等. 大武水源地地下水动态分析及水质评价 [J]. 河南科学, 2008, 26(1): 80-87. XING Y Q, DOU M, ZHANG Z, et al. Dynamic analysis and water quality evaluation ofGroundwater in Dawu headwaters ground [J]. Henan Science, 2008, 26(1): 80-87(in Chinese).
[13] PIPER A M. A graphic procedure in the geochemical interpretation of water-analyses [J]. Eos, Transactions American Geophysical Union, 1944, 25(6): 914-928. doi: 10.1029/TR025i006p00914 [14] 张艳, 吴勇, 杨军, 等. 阆中市思依镇水化学特征及其成因分析 [J]. 环境科学, 2015, 36(9): 3230-3237. ZHANG Y, WU Y, YANG J, et al. Hydrochemical characteristic and reasoning analysis in siyi town, Langzhong City [J]. Environmental Science, 2015, 36(9): 3230-3237(in Chinese).
[15] LOWENSTEIN T K, TIMOFEEFF M N, KOVALEVYCH V M, et al. The major-ion composition of Permian seawater [J]. Geochimica et Cosmochimica Acta, 2005, 69(7): 1701-1719. doi: 10.1016/j.gca.2004.09.015 [16] 游京, 齐跃明, 邵光宇, 等. 淄河源区浅层地下水化学特征及主要离子来源研究 [J]. 广西师范大学学报(自然科学版), 2020, 38(4): 132-139. YOU J, QI Y M, SHAO G Y, et al. Hydrochemical characteristics and main ion sources of shallow groundwater in Zihe River source region, Shandong, China [J]. Journal of Guangxi Normal University (Natural Science Edition), 2020, 38(4): 132-139(in Chinese).
[17] 孙静. 淄博市地下水环境变化研究[D]. 济南: 山东大学, 2016. SUN J. Variation of ground water environment in Zibo[D]. Jinan: Shandong University, 2016(in Chinese).
[18] 杨丽芝, 朱恒华, 刘治政, 等. 淄博大武水源地地下水健康风险评价 [J]. 干旱区资源与环境, 2021, 35(12): 106-113. YANG L Z, ZHU H H, LIU Z Z, et al. Health risk assessment of groundwater in the Dawu water source area, Zibo city [J]. Journal of Arid Land Resources and Environment, 2021, 35(12): 106-113(in Chinese).
[19] FETH J H, GIBBS R J. Mechanisms controlling world water chemistry: Evaporation-crystallization process [J]. Science, 1971, 172(3985): 870-872. doi: 10.1126/science.172.3985.870 [20] 姜体胜, 曲辞晓, 王明玉, 等. 北京平谷平原区浅层地下水化学特征及成因分析 [J]. 干旱区资源与环境, 2017, 31(11): 122-127. JIANG T S, QU C X, WANG M Y, et al. Hydrochemical characteristics of shallow groundwater and the origin in the Pinggu plain, Beijing [J]. Journal of Arid Land Resources and Environment, 2017, 31(11): 122-127(in Chinese).
[21] 蒋万军, 赵丹, 王广才, 等. 新疆吐-哈盆地地下水水文地球化学特征及形成作用 [J]. 现代地质, 2016, 30(4): 825-833. JIANG W J, ZHAO D, WANG G C, et al. Hydro-geochemical characteristics and formation of groundwater in tu-ha basin, Xinjiang [J]. Geoscience, 2016, 30(4): 825-833(in Chinese).
[22] 张路遥, 马祖陆, 覃星铭. 岩溶水水化学特征的主成分分析和因子分析 [J]. 广西科学院学报, 2018, 34(4): 309-316. ZHANG L Y, MA Z L, QIN X M. Principal component analysis and factor analysis of chemical characteristics of Karst water [J]. Journal of Guangxi Academy of Sciences, 2018, 34(4): 309-316(in Chinese).
[23] 杨平恒, 卢丙清, 贺秋芳, 等. 重庆典型岩溶地下水系统水文地球化学特征研究 [J]. 环境科学, 2014, 35(4): 1290-1296. YANG P H, LU B Q, HE Q F, et al. Hydrogeochemical characteristics of a typical Karst groundwater system in Chongqing [J]. Environmental Science, 2014, 35(4): 1290-1296(in Chinese).
[24] 李培月. 人类活动影响下地下水环境研究: 以宁夏卫宁平原为例[D]. 西安: 长安大学, 2014. LI P Y. Research on groundwater environment under human interferences—A case study from Weining plain, northwest China[D]. Xi'an: Changan University, 2014(in Chinese).
[25] 王珺瑜, 王家乐, 靳孟贵. 济南泉域岩溶水水化学特征及其成因 [J]. 地球科学, 2017, 42(5): 821-831. WANG J Y, WANG J L, JIN M G. Hydrochemical characteristics and formation causes of Karst water in Jinan spring catchment [J]. Earth Science, 2017, 42(5): 821-831(in Chinese).
[26] MA R, WANG Y X, SUN Z Y, et al. Geochemical evolution of groundwater in carbonate aquifers in Taiyuan, Northern China [J]. Applied Geochemistry, 2011, 26(5): 884-897. doi: 10.1016/j.apgeochem.2011.02.008 [27] 张超, 张保祥, 张吉圣, 等. 肥城市岩溶水水化学特征及形成机制 [J]. 中国岩溶, 2018, 37(5): 698-707. ZHANG C, ZHANG B X, ZHANG J S, et al. Analysis of hydrochemical characteristics and formation mechanism of Karst water in Feicheng City [J]. Carsologica Sinica, 2018, 37(5): 698-707(in Chinese).
[28] 彭聪, 何江涛, 廖磊, 等. 应用水化学方法识别人类活动对地下水水质影响程度: 以柳江盆地为例 [J]. 地学前缘, 2017, 24(1): 321-331. PENG C, HE J T, LIAO L, et al. Research on the influence degree of human activities on groundwater quality by the method of geochemistry: A case study from Liujiang Basin [J]. Earth Science Frontiers, 2017, 24(1): 321-331(in Chinese).
[29] FARID I, TRABELSI R, ZOUARI K, et al. Hydrogeochemical processes affecting groundwater in an irrigated land in Central Tunisia [J]. Environmental Earth Sciences, 2013, 68(5): 1215-1231. doi: 10.1007/s12665-012-1788-7 [30] 尹子悦, 林青, 徐绍辉. 青岛市大沽河流域地下水水化学时空演化及影响因素分析 [J]. 地质论评, 2018, 64(4): 1030-1043. YIN Z Y, LIN Q, XU S H. Spatial—temporal variations and controlling factors of groundwater hydrochemical characteristics in the dagu river basin [J]. Geological Review, 2018, 64(4): 1030-1043(in Chinese).
[31] TOUHARI F, MEDDI M, MEHAIGUENE M, et al. Hydrogeochemical assessment of the Upper Cheliff groundwater (North West Algeria) [J]. Environmental Earth Sciences, 2015, 73(7): 3043-3061. doi: 10.1007/s12665-014-3598-6 [32] 叶慧君, 张瑞雪, 吴攀, 等. 基于主成分分析的岩溶水水化学组成及影响因素研究: 以贵州水城盆地为例 [J]. 中国岩溶, 2017, 36(2): 215-225. YE H J, ZHANG R X, WU P, et al. Hydrogeochemical characterization of groundwater and surface water and their influencing factors based on principal component analysis: An example in the Shuicheng Basin of Guizhou [J]. Carsologica Sinica, 2017, 36(2): 215-225(in Chinese).