-
土地资源是地球圈层中生命活动的空间载体,是人类社会可持续发展的重要基础资源,因此土壤资源的保护是环境领域重点关注的对象。由于受到人类活动的广泛影响,全球范围内绝大多数的土壤均受到不同程度的重金属元素污染,涉及耕地、建设用地、海底沉积物等,这些有害重金属元素通过土壤-植物-人体或者土壤-水-人体方式进入人体,危害人体健康,土壤生态环境问题越来越受到政府部门和科研工作者的关注[1-8]。
目前军事地质在生态环境保护方面的研究包括两个方面,一是过去战争对战区环境的遗留影响评估。二是在军事基地内开展的军事训练及武器装备测试对周围生态环境的影响评价[9-10]。近年来对军事活动区的生态环境研究较为广泛,得到了很多学者的关注。国外很早就开展了射击场土壤重金属的环境化学行为、健康风险分析和污染治理与修复技术等方面的研究[11-14]。近些年来,国内学者也相继发表了有关军事环境的研究成果,如含砷高危废旧弹药销毁中易造成水质污染[15],轻武器射击(步枪或手枪)靶场表层土壤存在重金属元素Pb、Cu、Hg、Sb污染,并且Pb、Cu、Sb具有较高的迁移性和生物利用性,对周围环境和人体健康具有潜在的毒理[16-17]。报废弹药烧毁作业环境废气污染治理研究[18]。由此可见,战场环境弹药的使用和弹药的销毁对所在环境产生了严重的破坏,特别是重金属在土壤中受进一步的风化作用后,在垂向和侧向迁移,会危害到周边土壤、地下水、地表河流水质和农田耕地土壤等,甚至危害人体和家畜健康。因此重金属对土壤的污染越来越引起人们的高度重视。
前人的研究多集中在轻武器射击靶场(步枪或手枪)和报废弹药销毁场地的重金属污染研究方面,对类似高寒山区重武器(火炮、榴弹炮、坦克炮)射击靶场的研究还尚未涉及。由于重武器与轻武器在弹壳材质、火药容量和类型、弹药爆破对土壤的破坏程度等方面截然不同,同时,对于该军事训练场的环境研究仅限于有害生物监测与喷雾器械的应用方面[19],并未涉及到重武器射击对土壤重金属污染方面。因此,本文通过在西藏某军事训练场炮弹靶场与背景区系统采集土壤样品,并通过试验分析测试其重金属元素含量,利用统计分析原理,对炮弹靶场土壤重金属元素富集特征、污染来源、生态风险等级进行深入研究,从而为军事训练场地土壤环境质量评价和生态修复提供理论支撑。
军事训练场炮弹靶场土壤重金属污染特征及生态风险评价——以西藏某训练场为例
Study on characteristics and ecological risks of heavy metal pollution in soil of projectile range in military training ground ——A case of a training ground in Tibet
-
摘要: 为了调查军事训练场地重武器炮弹靶场表层土壤重金属污染特征及其潜在生态风险状况,本文以西藏某军事训练场重武器炮弹着落靶区的表层土壤为研究对象,测试分析了(0—20 cm)30件土壤样品中的As、Cd、Hg、Pb、Ni、Cu、Zn等重金属元素。通过空白对照研究和相关数理统计分析,开展炮弹靶场土壤重金属含量、污染风险等级评价、污染源分析和生态风险评价研究。结果表明,该重武器炮弹靶场土壤的重金属元素As和Cu含量显著高于地区土壤背景值。靶场重金属As和Cu达到中度-显著污染,其余重金属元素为无-弱污染,部分样品重金属As、Cd、Cu超过风险值。结合区内土壤重金属背景含量和人为长期的军事活动分析,判断土壤Cd污染主要源于较高的土壤自然背景,As和Cu污染源于靶场炮弹射击人为源。区内土壤重金属生态风险等级以轻微潜在生态风险为主,仅Hg、As、Cd部分样品存在中等风险。Abstract: The article has investigated the characteristics and potential ecological risks of heavy metal pollution in the surface soil of the artillery projectile range in the heavy weapons military training field by analyzing heavy metal(As, Cd, Hg, Pb, Ni, Cu and Zn)content in 30 surface soil samples ( 0 – 20 cm ) collected from a heavy weapons training field in Tibet. By the blank control study and related mathematical statistics analysis, the content of heavy metals in the soil and the corresponding crisis grade were evaluated. The results showed that the content of As and Cu in the soil of the artillery heavy weapons projectile range was Indigenous higher than that of the original soil background. As and Cu in the shooting range reached moderate to obvious indigenous pollution, and the heavy metals were non-weak pollution. As, Cd and Cu in some samples exceeded the risk value. Combined with the soil background and human activities in the area, it was judged that the soil Cd pollution was mainly due to the high natural background, and As and Cu pollution sources were from the shooting source of the projectile in the shooting range.
-
Key words:
- military training ground /
- heavy metal pollution /
- ecological risks
-
表 1 土壤样品分析方法、检出限、分析质量
Table 1. analysis method, detection limit, analysis quality of Soil sample
指标
Index检测方法
Detect method检出限/(mg·kg−1)
Detection limit标准物质合格率/%
Qualified rate of standard substance重复样合格率/%
Qualified rate of repeated samplesCd ICP-MS 0.03 100 100 Hg AFS 0.0005 100 100 As AFS 0.5 100 100 Pb ICP-MS 2 100 100 Cr XRF 2.5 100 100 Cu ICP-MS 1 100 100 Ni ICP-MS 2 100 100 Zn XRF 4 100 100 表 2 研究区表层土壤重金属元素含量(mg·kg−1)统计参数
Table 2. Statistical parameters of heavy metal elements in surface soil of the study area(mg·kg−1)
指标
Index炮弹靶场(25件)Artillery projectile range 背景区(4件)Background area 最小值Minimum 最大值Maximum 平均值Average 变异系数Variable coefficient 平均值Average Cd 0.1 0.62 0.20 0.59 0.35 Hg 0.015 0.029 0.021 0.21 0.025 As 25.2 122 50.39 0.46 23.88 Pb 37.2 66.9 46.38 0.15 63.73 Cr 29.1 56.4 43.89 0.14 51.25 Cu 20.6 116 39.76 0.45 24.03 Ni 18.8 28.8 23.6 0.12 23.70 Zn 71.1 142 93.92 0.21 145.55 Co 7.99 12.5 10.60 0.10 11.18 Mn 497 696 594.96 0.09 792.00 F 455 616 518.60 0.08 521.75 S 88.3 264 158.02 0.31 231.00 TFe2O3 3.8 5.25 4.41 0.08 5.03 pH 6.56 7.4 7.01 0.03 6.47 表 3 炮弹靶场土壤重金属元素富集程度统计表
Table 3. Statistical table of enrichment degree of heavy metal elements in artillery range soil
EF<2 2<EF<5 5<EF<20 20<EF<40 EF>40 Cd 100% 0 0 0 0 Hg 100% 0 0 0 0 As 53.3% 43.3% 3.4% 0 0 Pb 100% 0 0 0 0 Cr 100% 0 0 0 0 Cu 76.6% 20% 3.4% 0 0 Ni 100% 0 0 0 0 Zn 100% 0 0 0 0 表 4 潜在生态风险评价指标
Table 4. Index of Potential ecological risk evaluation
指数
Index生态危害 Ecological hazard 轻微 Slight 中等 Medium 强 Strong 很强 Very strong 极强 Great $ {\mathit{E}}_{\mathit{r}}^{\mathit{i}} $ <40 40—80 80—160 160—320 >320 $ \mathrm{R}\mathrm{I} $ <150 150—300 300—600 600—1200 >1200 表 5 土壤重金属潜在生态风险指数分级统计表
Table 5. Classification Statistics of Potential Ecological Risk Index of Heavy Metals in Soil
生态危害指数
Ecological Risk Index统计值
Statistic各级样品数
Number of samples at all levels最小值
Minimum最大值
Maximum平均值
Average轻微
Mild中等
Medium强
Strong很强
Very strong极强
GreatEi Cd 8.63 53.53 19.11 23 2 0 0 0 Hg 23.53 47.06 34.24 16 9 0 0 0 As 9.30 51.10 19.65 23 2 0 0 0 Pb 2.92 6.73 3.83 25 0 0 0 0 Cr 1.14 2.20 1.75 25 0 0 0 0 Cu 4.29 24.14 7.82 25 0 0 0 0 Ni 3.39 7.17 4.34 25 0 0 0 0 Zn 0.49 1.31 0.69 25 0 0 0 0 RI 66.05 142.73 91.43 25 0 0 0 0 -
[1] 郭海全, 郝俊杰, 李天刚, 等. 河北平原土壤重金属人为污染的富集因子分析 [J]. 生态环境学报, 2010, 19(4): 786-791. doi: 10.3969/j.issn.1674-5906.2010.04.007 GUO H Q, HAO J J, LI T G, et al. Application of an enrichment factor in determining anthropogenic pollution of heavy metal in topsoil in Hebei plain [J]. Ecology and Environmental Sciences, 2010, 19(4): 786-791(in Chinese). doi: 10.3969/j.issn.1674-5906.2010.04.007
[2] 倪晓坤, 封雪, 于勇, 等. 典型固废处理处置场周边土壤重金属污染特征和成因分析 [J]. 农业环境科学学报, 2019, 38(9): 2146-2156. doi: 10.11654/jaes.2019-0504 NI X K, FENG X, YU Y, et al. Pollution characteristics and source analysis of heavy metals in soils surrounding a typical solid waste disposal plant [J]. Journal of Agro-Environment Science, 2019, 38(9): 2146-2156(in Chinese). doi: 10.11654/jaes.2019-0504
[3] 钟晓兰, 周生路, 李江涛, 等. 长江三角洲地区土壤重金属污染的空间变异特征: 以江苏省太仓市为例 [J]. 土壤学报, 2007, 44(1): 33-40. doi: 10.3321/j.issn:0564-3929.2007.01.006 ZHONG X L, ZHOU S L, LI J T, et al. Spatial variability of soil heavy metals contamination in the Yangtze River Delta—a case study of Taicang City in Jiangsu Province [J]. Acta Pedologica Sinica, 2007, 44(1): 33-40(in Chinese). doi: 10.3321/j.issn:0564-3929.2007.01.006
[4] 李秋燕, 魏明辉, 戴慧敏, 等. 锦州市土壤重金属污染特征及生态风险评价 [J]. 地质与资源, 2021, 30(4): 465-472. LI Q Y, WEI M H, DAI H M, et al. Characteristics of soil heavy metal pollution and ecological risk assessment of Jinzhou City [J]. Geology and Resources, 2021, 30(4): 465-472(in Chinese).
[5] 张倩, 陈宗娟, 彭昌盛, 等. 大港工业区土壤重金属污染及生态风险评价 [J]. 环境科学, 2015, 36(11): 4232-4240. ZHANG Q, CHEN Z J, PENG C S, et al. Heavy metals pollution in topsoil from dagang industry area and its ecological risk assessment [J]. Environmental Science, 2015, 36(11): 4232-4240(in Chinese).
[6] CAI P J, CAI G Q, CHEN X, et al. The concentration distribution and biohazard assessment of heavy metal elements in surface sediments from the continental shelf of Hainan Island [J]. Marine Pollution Bulletin, 2021, 166: 112254. doi: 10.1016/j.marpolbul.2021.112254 [7] SUN J X, ZHAO M L, HUANG J L, et al. Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment[J]. Journal of Hazardous Materials, 2022, 423(Pt A): 127116. [8] 尹伊梦, 赵委托, 黄庭, 等. 电子垃圾拆解区土壤-水稻系统重金属分布特征及健康风险评价 [J]. 环境科学, 2018, 39(2): 916-926. YIN Y M, ZHAO W T, HUANG T, et al. Distribution characteristics and health risk assessment of heavy metals in a soil-rice system in an E-waste dismantling area [J]. Environmental Science, 2018, 39(2): 916-926(in Chinese).
[9] 李万伦, 吕鹏, 孟庆奎, 等. 国外军事地质学热点问题 [J]. 地质论评, 2020, 66(1): 189-197. LI W L, LÜ P, MENG Q K, et al. New progress in application of military geology abroad [J]. Geological Review, 2020, 66(1): 189-197(in Chinese).
[10] 刘玉通, 方振东, 杨琴, 等. 某军事区域土壤重金属污染状况及其评价 [J]. 后勤工程学院学报, 2010, 26(1): 62-65. doi: 10.3969/j.issn.1672-7843.2010.01.014 LIU Y T, FANG Z D, YANG Q, et al. State and evaluation of heavy metal pollution of soil from a military area [J]. Journal of Logistical Engineering University, 2010, 26(1): 62-65(in Chinese). doi: 10.3969/j.issn.1672-7843.2010.01.014
[11] KLITZKE S, LANG F. Mobilization of soluble and dispersible lead, arsenic, and antimony in a polluted, organic-rich soil - effects of pH increase and counterion valency [J]. Journal of Environmental Quality, 2009, 38(3): 933-939. doi: 10.2134/jeq2008.0239 [12] RANTALAINEN M L, TORKKELI M, STRÖMMER R, et al. Lead contamination of an old shooting range affecting the local ecosystem—A case study with a holistic approach [J]. Science of the Total Environment, 2006, 369(1/2/3): 99-108. [13] MOZAFAR A, RUH R, KLINGEL P, et al. Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek [J]. Environmental Monitoring and Assessment, 2002, 79(2): 177-191. doi: 10.1023/A:1020202801163 [14] LEVONMÄKI M, HARTIKAINEN H, KAIRESALO T. Effect of organic amendment and plant roots on the solubility and mobilization of lead in soils at a shooting range [J]. Journal of Environmental Quality, 2006, 35(4): 1026-1031. doi: 10.2134/jeq2005.0354 [15] 周廷, 周黎明, 王宁, 等. 销毁高危化学品造成土壤污染的解析及评价: 以南京某地销毁含砷高危废旧弹药污染水泄漏为例 [J]. 土壤, 2015, 47(1): 113-120. ZHOU T, ZHOU L M, WANG N, et al. Analysis and evaluation of heavy metals in soil polluted by water leakage during high-risk arsenical chemicals destruction—A case study of high-risk bombs destruction in Nanjing, China [J]. Soils, 2015, 47(1): 113-120(in Chinese).
[16] 李烨玲. 靶场土壤中铅的环境行为及生物有效性研究[D]. 合肥: 中国科学技术大学, 2018. LI Y L. The environmental fate and bioavailability of lead in shooting range soils[D]. Hefei: University of Science and Technology of China, 2018(in Chinese).
[17] 朱勇兵, 赵三平, 李瑞雪, 等. 射击场土壤重金属污染及其生物有效性 [J]. 环境科学学报, 2011, 31(3): 594-602. ZHU Y B, ZHAO S P, LI R X, et al. Heavy metal contamination and bioavailability in shooting range soil [J]. Acta Scientiae Circumstantiae, 2011, 31(3): 594-602(in Chinese).
[18] 张怀智, 刘鹏, 曹宏安, 等. 报废弹药烧毁作业环境废气污染治理研究 [J]. 工业安全与环保, 2011, 37(12): 32-34. doi: 10.3969/j.issn.1001-425X.2011.12.013 ZHANG H Z, LIU P, CAO H A, et al. Study on the treatment of waste gas environmental pollution in abandoned ammunition burining [J]. Industrial Safety and Environmental Protection, 2011, 37(12): 32-34(in Chinese). doi: 10.3969/j.issn.1001-425X.2011.12.013
[19] 黄清臻, 贾瑞忠, 卢国守, 等. 西藏羊八井某训练基地有害生物监测与喷雾器械的应用研究 [J]. 中华卫生杀虫药械, 2015, 21(4): 349-350,353. HUANG Q Z, JIA R Z, LU G S, et al. Research of pest monitoring and application of spraying equipment in a training base in Yambajan Tibet [J]. Chinese Journal of Hygienic Insecticides & Equipments, 2015, 21(4): 349-350,353(in Chinese).
[20] 国土资源部 DZ/T 0130-2006《地质矿产实验室测试质量管理规范》[S]. DZ/T 0130-2006 The specification of testing quality management for geological laboratories[S] (in Chinese).
[21] 张秀芝, 鲍征宇, 唐俊红. 富集因子在环境地球化学重金属污染评价中的应用 [J]. 地质科技情报, 2006, 25(1): 65-72. ZHANG X Z, BAO Z Y, TANG J H. Application of the enrichment factor in evaluating of heavy metals contamination in the environmental geochemistry [J]. Geological Science and Technology Information, 2006, 25(1): 65-72(in Chinese).
[22] 郭志娟, 周亚龙, 王乔林, 等. 雄安新区土壤重金属污染特征及健康风险 [J]. 中国环境科学, 2021, 41(1): 431-441. doi: 10.3969/j.issn.1000-6923.2021.01.049 GUO Z J, ZHOU Y L, WANG Q L, et al. Characteristics of soil heavy metal pollution and health risk in Xiongan New District [J]. China Environmental Science, 2021, 41(1): 431-441(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.01.049
[23] SUTHERLAND R A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii [J]. Environmental Geology, 2000, 39(6): 611-627. doi: 10.1007/s002540050473 [24] 席明杰, 马生明, 朱立新, 等. 西藏羊八井—宁中地区水系沉积物中分散元素地球化学特征及其对找矿的指示意义 [J]. 地球学报, 2013, 34(6): 702-712. doi: 10.3975/cagsb.2013.06.07 XI M J, MA S M, ZHU L X, et al. Geochemical characteristics of dispersed elements in stream sediments of yangbajain-nyingzhong area, Tibet and their significance in ore prospecting [J]. Acta Geoscientica Sinica, 2013, 34(6): 702-712(in Chinese). doi: 10.3975/cagsb.2013.06.07
[25] 生态环境部, 国家市场监督管理总局. 土壤环境质量 农用地土壤污染风险管控标准: GB 15618—2018[S]. 北京: 中国标准出版社, 2018. Ministry of Ecology and Environment, State Administration for Market Regulation. Soil environmental quality Risk control standard for soil contamination of agricultural land: GB 15618—2018[S]. Beijing: Standards Press of China, 2018(in Chinese).
[26] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8