-
精神活性物质是指在摄入后能够影响思维、情感和意志行为的物质[1]. 这些物质经人体代谢后,随污水管网系统进入污水处理厂,由于现有污水处理工艺并不能完全将其去除,导致残留的药物最终被排入地表水中[2]. 随着使用量的增加,精神活性物质正逐渐成为水环境中一类新兴污染物[3].
暴露于精神活性物质会对水生生物,特别是鱼类产生不利影响[4]. 精神活性物质最主要的功能在于调节神经递质等神经化学物质,从而影响生物体的行为,因此有大量研究关注了精神活性物质对鱼类的神经毒性. 例如,安非他酮增加了杂交条纹鲈鱼的大脑内多巴胺(dopamine,DA)水平[5];而文拉法辛暴露则导致杂交条纹鲈鱼大脑内5-羟色胺(serotonin,5-HT)含量降低[6];此外,卡马西平会抑制斑马鱼体内谷氨酸(L-Glutamic acid,Glu)水平[7],安非他明会诱导斑马鱼体内DA信号蛋白表达[8]. 但现有的研究所关注的神经化学物质的种类相对较少,对于其它神经化学物质的影响还甚少涉及,因此关于精神活性物质对鱼类的神经毒性,我们还缺乏全面认识.
根据组成的化学物质不同,神经化学物质可分为肾上腺素能神经传递系统、谷氨酸能神经传递系统、羟色胺能神经传递系统、儿茶酚胺能神经传递系统、胆碱能神经传递系统以及其它神经传递系统. 这些系统对生物体具有重要的调节作用,肾上腺素能神经传递系统主要参与生物压力应对、应激反应、焦虑、抑郁等[9] ,同时也在生物体内对新信号识别和记忆起着至关重要的作用[10];谷氨酸能神经传递系统参与许多重要的生命活动的调节,如记忆和学习、性行为、攻击行为等[11],也参与一些疾病的调节,如强迫症、抑郁症、情感障碍和阿尔茨海默病、帕金森病、焦虑和精神分裂症等[12];动物体内的羟色胺能神经传递系统与各种行为和疾病有关,包括帕金森症、亨廷顿舞蹈病、肌张力障碍和家族性震颤等[13],其中5-HT在动物的运动活动、昼夜节律、进食、社会互动和攻击性、焦虑、情绪、学习和记忆等行为中都扮演着重要的角色,它能增强或减轻对大多数行为进行微调所必需的神经元反应[14]. 儿茶酚胺能神经传递系统主要在应激诱导中起着重要的作用,在紧急情况下会导致其释放增加[15]. 胆碱能神经传递系统中的乙酰胆碱也可能通过烟碱或毒蕈碱受体在恐惧和焦虑相关行为中发挥作用[16]. 在神经毒性研究中,尽可能地覆盖更多的神经化学物质,有助于准确和全面地评估污染物的神经毒性效应及其机制.
可待因是一种常见的阿片类药物,常用作基础镇咳药 [17]和急性镇痛剂[18]. 在临床上,可待因还具有抗应激和止泻的作用[19]. 可待因可与大脑中的阿片受体结合,增强大脑和身体其它部位的信号传递过程[20]. 此外,在人体内,少量的可待因在代谢过程中可转化为吗啡[20]. 直到现在,可待因的确切作用机制尚不完全清楚. 随着使用量的增加,可待因在地表水中的被广泛检出. 现阶段,在地表水中检测到的可待因浓度可高达μg·L−1的水平[21]. 可待因在欧洲地表水中检出较多,如意大利波河和兰布罗河的检出水平分别为1.8 ng·L−1和12 ng·L-1[22],西班牙地表水则检出8.9、14、26.8、231.8 ng·L−1不等[23],荷兰地表水中检出7 ng·L−1[24]. 在中国境内也频繁在地表水中检测到可待因,在台湾各河流中检测到可待因浓度在12—341 ng·L−1不等[25-26],而在北京、昆明地表水中可待因浓度分别在5.6、2.3 ng·L−1左右[27-28],在黄河和珠江中可待因浓度范围为0.5—2.1 ng·L−1[29]. 然而,目前有关可待因对鱼类的神经毒性的研究还鲜有报道.
鲫鱼是一种在亚洲地区广泛分布的物种,对水生态系统具有重要的功能和意义,也常被用于水体污染物的毒性测试[30]. 本研究利用鲫鱼幼鱼作为受试生物,探究了环境浓度暴露下可待因在鲫鱼体内的蓄积和对不同神经递质系统中24种神经化学物质的影响,以此表征可待因对鱼类的神经毒性效应,为评估其水生态风险提供依据.
可待因对鲫鱼体内神经化学物质的影响
Effects of codeine on neurochemicals in crucian carp
-
摘要: 随着使用量的增加,可待因在水环境中被频繁检出. 然而,可待因对水生生物,尤其是鱼类的不利影响尚不清楚. 本文研究了环境浓度暴露下可待因对鲫鱼幼鱼体内神经化学物质的影响. 结果表明,可待因(5 ng·L−1和500 ng·L−1)暴露7 d后,导致可待因在鲫鱼体内的蓄积,并在7 d的恢复期内表现出持久性. 神经化学物质分析显示,鲫鱼体内去甲肾上腺素(NE)、左旋多巴(L-DOPA)、多巴胺 (DA)、5-羟色胺(5-HT)、5-羟色氨酸(5-HTP)、蛋氨酸(Met)、天冬氨酸(Asp)和脯氨酸(Prol)水平在暴露后升高,而去甲变肾上腺素(MNE)、谷氨酰胺(Gln)、谷氨酸(Glu)、5-羟基吲哚乙酸 (5-HIAA)和甜菜碱(Bet)水平则降低,并且可待因对大多数神经化学物质的影响在7 d的恢复期内具有不可逆性或持续性. 环境浓度的可待因暴露能够导致其在鲫鱼体内的蓄积和神经化学物质的变化,由此而产生的神经毒性及其后果值得进一步关注.Abstract: With the increasing application of codeine (COD), the psychoactive substance has been frequently detected in aquatic environment. However, the adverse effects of COD on aquatic organisms remain unclear, especially on fish. In this study, the effects of COD on neurochemicals were investigated in larve crucian carp at environmentally relevant concentrations. The results revealed that exposure to COD (5 and 500 ng·L−1) for 7 days resulted in a persistent accumulation in fish. Analysis on neurochemicals showed that the levels of norepinephrine (NE), 3,4-L- dihydroxyphenylalanine (L-DOPA), dopamine (DA), 5-hydroxy-L-tryptophan (5-HTP), serotonin (5-HT), L-methionine (Met), L-aspartic acid (Asp) and L-proline (Prol) increased while the levels of norepinephrine (MNE), L-glutamine (Gln), L-glutamic acid (Glu), 5-hydroxyindoleacetic acid (5-HIAA) and betaine (Bet) decreased in the fish. Most of such changes of neurochemicals were irreversible or persistent in a 7-day recovery period. The bioaccumulation of COD and alterations of neurochemcials in crucian carp exposed to COD at environmentally relevant concentrations suggest that the neurotoxicity of COD and related adverse outcomes should receive more attentions.
-
Key words:
- codeine /
- neurochemical /
- neurtoxicity /
- bioaccumulation /
- environmentally relevant concentration /
- crucian carp.
-
表 1 24种神经化学物及其11种同位素内标详细信息
Table 1. The detailed information of 24 neurochemicals and 11 isotope internal standards
分类
Category化合物
Compound英文全称
English name简称
Abbreviation纯度/%
Purity肾上腺素能神经传递系统 去甲肾上腺素 Norepinephrine NE 98 肾上腺素 Epinephrine E 100 去甲变肾上腺素 Normetanephrine MNE 99 谷氨酸能神经传递系统 L-谷氨酰胺 L-Glutamine Gln 99 L-谷氨酸 L-Glutamic acid Glu 99 L-缬氨酸 L-Valine Val 99 羟色胺能神经传递系统 色氨酸 Tryptophan Trp 99 5-羟基色氨酸 5-Hydroxy-L-tryptophan 5-HTP 98 5-羟色胺 Serotonin 5-HT 99 5-羟基吲哚-3-乙酸 5-Hydroxyindoleacetic acid 5-HIAA 99 儿茶酚胺能神经传递系统 酪氨酸 Tyrosine Tyrs 99 左旋多巴 3,4-L-dihydroxyphenylalanine L-DOPA 99 多巴胺 Dopamine DA 98 3-甲氧基酪胺 3-Methoxytyramine 3-MT 99 酪胺 Tyramine Tyrm 97 胆碱能神经传递系统 胆碱 Choline Cho 98 磷酸胆碱 Phosphocholine CHOP 99 乙酰胆碱 Acetylcholine ACh 98 甜菜碱 Betaine Bet 98 甘油磷酰胆碱 Glycerophosphocholine GPC 99 其他神经传递系统相关物质 L-蛋氨酸 L-Methionine Met 99 L-脯氨酸 L-Proline Prol 99 L-天冬氨酸 L-Aspartic acid Asp 98 组织胺 Histamine HSM 97 神经化学物质同位素内标 去甲变肾上腺素-d3 Normetanephrine-d3 MNE-d3 99 L-缬氨酸-13C L-Valine-13C Val-13C 99 5-羟色胺-d4 Serotonin-d4 5-HT-d4 99 5-羟基吲哚-3-乙酸-d5 5-Hydroxyindoleacetic acid-d5 5-HIAA-d5 99 酪氨酸-13C Tyrosine -13C Tyrs-13C 99 左旋多巴-d3 3,4-L-dihydroxyphenylalanine-d3 L-DOPA-d3 99 多巴胺-d4 Dopamine-d5 DA-d4 99 胆碱-d4 Choline-d4 Cho-d4 99 乙酰胆碱-d4 Acetylcholine-d4 Ach-d4 99 甜菜碱-d3 Betaine-d3 Bet-d3 99 脯氨酸-13C5,15N L-Proline-13C5,15N Prol-13C5,15N 99 -
[1] WANG Z Y, GAO S Y, DAI Q Y, et al. Occurrence and risk assessment of psychoactive substances in tap water from China [J]. Environmental Pollution, 2020, 261: 114163. doi: 10.1016/j.envpol.2020.114163 [2] YADAV M K, SHORT M D, GERBER C, et al. Removal of emerging drugs of addiction by wastewater treatment and water recycling processes and impacts on effluent-associated environmental risk [J]. Science of the Total Environment, 2019, 680: 13-22. doi: 10.1016/j.scitotenv.2019.05.068 [3] BURKINA V, ZLABEK V, ZAMARATSKAIA G. Effects of pharmaceuticals present in aquatic environment on Phase I metabolism in fish [J]. Environmental Toxicology and Pharmacology, 2015, 40(2): 430-444. doi: 10.1016/j.etap.2015.07.016 [4] PAROLINI M, PEDRIALI A, RIVA C, et al. Sub-lethal effects caused by the cocaine metabolite benzoylecgonine to the freshwater mussel Dreissena polymorpha [J]. Science of the Total Environment, 2013, 444: 43-50. doi: 10.1016/j.scitotenv.2012.11.076 [5] SWEET L E, BISESI JR J H, LEI E N Y, et al. The effects of bupropion on hybrid striped bass brain chemistry and predatory behavior [J]. Environmental Toxicology and Chemistry, 2016, 35(8): 2058-2065. doi: 10.1002/etc.3350 [6] BISESI J H Jr, BRIDGES W, KLAINE S J. Reprint of: Effects of the antidepressant venlafaxine on fish brain serotonin and predation behavior [J]. Aquatic Toxicology, 2014, 151: 88-96. doi: 10.1016/j.aquatox.2014.02.015 [7] CHEN H H, YANG H T, ZHAO Y Y, et al. Development and molecular investigation into the effects of carbamazepine exposure in the zebrafish (Danio rerio) [J]. International Journal of Environmental Research and Public Health, 2020, 17(23): 8882. doi: 10.3390/ijerph17238882 [8] SERPA B J, BULLARD J D, MENDIOLA V C, et al. D-amphetamine exposure differentially disrupts signaling across ontogeny in the zebrafish [J]. Bioelectricity, 2019, 1(2): 85-104. doi: 10.1089/bioe.2019.0006 [9] FRIEDMAN J I, ADLER D N, DAVIS K L. The role of norepinephrine in the pathophysiology of cognitive disorders: Potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer's disease [J]. Biological Psychiatry, 1999, 46(9): 1243-1252. doi: 10.1016/S0006-3223(99)00232-2 [10] TITULAER J, BJÖRKHOLM C, FELTMANN K, et al. The importance of ventral hippocampal dopamine and norepinephrine in recognition memory [J]. Frontiers in Behavioral Neuroscience, 2021, 15: 667244. doi: 10.3389/fnbeh.2021.667244 [11] FRANCIS P T. Glutamatergic approaches to the treatment of cognitive and behavioural symptoms of Alzheimer's disease [J]. Neuro-Degenerative Diseases, 2008, 5(3/4): 241-243. [12] SANACORA G, ZARATE C A , KRYSTAL J H, et al. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders [J]. Nature Reviews Drug Discovery, 2008, 7(5): 426-437. [13] KAWASHIMA T. The role of the serotonergic system in motor control [J]. Neuroscience Research, 2018, 129: 32-39. doi: 10.1016/j.neures.2017.07.005 [14] BACQUÉ-CAZENAVE J, BHARATIYA R, BARRIÈRE G, et al. Serotonin in animal cognition and behavior [J]. International Journal of Molecular Sciences, 2020, 21(5): 1649. doi: 10.3390/ijms21051649 [15] QIN S Z, COUSIJN H, RIJPKEMA M, et al. The effect of moderate acute psychological stress on working memory-related neural activity is modulated by a genetic variation in catecholaminergic function in humans [J]. Frontiers in Integrative Neuroscience, 2012, 6: 16. [16] KUTLU M G, GOULD T J. Nicotine modulation of fear memories and anxiety: Implications for learning and anxiety disorders [J]. Biochemical Pharmacology, 2015, 97(4): 498-511. doi: 10.1016/j.bcp.2015.07.029 [17] KARTTUNEN P, SILVASTI M, SAANO V, et al. Effect of codeine on rat and Guinea pig tracheal ciliary beat frequency [J]. Arzneimittel-Forschung, 1991, 41(10): 1095-1097. [18] LIVINGSTONE M J, GROENEWALD C B, RABBITTS J A, et al. Codeine use among children in the United States: A nationally representative study from 1996 to 2013 [J]. Pediatric Anesthesia, 2017, 27(1): 19-27. doi: 10.1111/pan.13033 [19] TREMLETT M, ANDERSON B J, WOLF A. Pro-con debate: Is codeine a drug that still has a useful role in pediatric practice? [J]. Pediatric Anesthesia, 2010, 20(2): 183-194. doi: 10.1111/j.1460-9592.2009.03234.x [20] PRATIWI R, NOVIANA E, FAUZIATI R, et al. A review of analytical methods for codeine determination [J]. Molecules (Basel, Switzerland), 2021, 26(4): 800. doi: 10.3390/molecules26040800 [21] MUTIYAR P K, GUPTA S K, MITTAL A K. Fate of pharmaceutical active compounds (PhACs) from River Yamuna, India: An ecotoxicological risk assessment approach [J]. Ecotoxicology and Environmental Safety, 2018, 150: 297-304. doi: 10.1016/j.ecoenv.2017.12.041 [22] ZUCCATO E, CASTIGLIONI S, BAGNATI R, et al. Illicit drugs, a novel group of environmental contaminants [J]. Water Research, 2008, 42(4/5): 961-968. [23] BOLEDA M R, GALCERAN M T, VENTURA F. Monitoring of opiates, cannabinoids and their metabolites in wastewater, surface water and finished water in Catalonia, Spain [J]. Water Research, 2009, 43(4): 1126-1136. doi: 10.1016/j.watres.2008.11.056 [24] van der AA M, BIJLSMA L, EMKE E, et al. Risk assessment for drugs of abuse in the Dutch watercycle [J]. Water Research, 2013, 47(5): 1848-1857. doi: 10.1016/j.watres.2013.01.013 [25] JIANG J J, LEE C L, FANG M D, et al. Source apportionment and risk assessment of emerging contaminants: An approach of pharmaco-signature in water systems [J]. PLoS One, 2015, 10(4): e0122813. doi: 10.1371/journal.pone.0122813 [26] LIN A Y C, WANG X H, LIN C F. Impact of wastewaters and hospital effluents on the occurrence of controlled substances in surface waters [J]. Chemosphere, 2010, 81(5): 562-570. doi: 10.1016/j.chemosphere.2010.08.051 [27] HU P, GUO C S, ZHANG Y, et al. Occurrence, distribution and risk assessment of abused drugs and their metabolites in a typical urban river in North China [J]. Frontiers of Environmental Science & Engineering, 2019, 13(4): 1-11. [28] LI K Y, DU P, XU Z Q, et al. Occurrence of illicit drugs in surface waters in China [J]. Environmental Pollution, 2016, 213: 395-402. doi: 10.1016/j.envpol.2016.02.036 [29] KHAN U, van NUIJS A L N, LI J, et al. Application of a sewage-based approach to assess the use of ten illicit drugs in four Chinese megacities [J]. Science of the Total Environment, 2014, 487: 710-721. doi: 10.1016/j.scitotenv.2014.01.043 [30] SONG W T, LU G H, WANG C, et al. Study on environmental estrogen pollution in Yangtze River (Nanjing section) by an in vivo bioassay [J]. Bulletin of Environmental Contamination and Toxicology, 2010, 84(4): 406-412. doi: 10.1007/s00128-010-9944-9 [31] OVERTURF C L, OVERTURF M D, HUGGETT D B. Bioconcentration and endocrine disruption effects of diazepam in channel catfish, Ictalurus punctatus [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2016, 183/184: 46-52. [32] NKOOM M, LU G H, LIU J C, et al. Biological uptake, depuration and biochemical effects of diclofenac and carbamazepine in Carassius carassius [J]. Ecotoxicology and Environmental Safety, 2020, 205: 111106. doi: 10.1016/j.ecoenv.2020.111106 [33] GAO S Y, YANG F X. Behavioral changes and neurochemical responses in Chinese rare minnow exposed to four psychoactive substances [J]. Science of the Total Environment, 2022, 808: 152100. doi: 10.1016/j.scitotenv.2021.152100 [34] VREE T B, WISSEN C P W G M V V. Pharmacokinetics and metabolism of codeine in humans [J]. Biopharmaceutics & Drug Disposition, 1992, 13(6): 445-460. [35] YIN X X, GUO C S, DENG Y H, et al. Tissue-specific accumulation, elimination, and toxicokinetics of illicit drugs in adult zebrafish (Danio rerio) [J]. Science of the Total Environment, 2021, 792: 148153. doi: 10.1016/j.scitotenv.2021.148153 [36] HARRIS D S, BOXENBAUM H, EVERHART E T, et al. The bioavailability of intranasal and smoked methamphetamine [J]. Clinical Pharmacology & Therapeutics, 2003, 74(5): 475-486. [37] VROEGOP M P, van DONGEN R T M, VANTROYEN B, et al. Ketamine as a party drug [J]. Nederlands Tijdschrift Voor Geneeskunde, 2007, 151(37): 2039-2042. [38] GONZALEZ-LOPEZ E, VRANA K E. Dopamine beta-hydroxylase and its genetic variants in human health and disease [J]. Journal of Neurochemistry, 2020, 152(2): 157-181. doi: 10.1111/jnc.14893 [39] TELLA S H, JHA A, TAÏEB D, et al. Comprehensive review of evaluation and management of cardiac paragangliomas [J]. Heart (British Cardiac Society), 2020, 106(16): 1202-1210. [40] XU M M, YANG F X. Integrated gender-related effects of profenofos and paclobutrazol on neurotransmitters in mouse [J]. Ecotoxicology and Environmental Safety, 2020, 190: 110085. doi: 10.1016/j.ecoenv.2019.110085 [41] CHEN L, CUI H M. Targeting glutamine induces apoptosis: A cancer therapy approach [J]. International Journal of Molecular Sciences, 2015, 16(9): 22830-22855. doi: 10.3390/ijms160922830 [42] DU C K, ZHAN D Y, AKIYAMA T, et al. Myocardial interstitial serotonin and its major metabolite, 5-hydroxyindole acetic acid levels determined by microdialysis technique in rat heart [J]. Life Sciences, 2014, 117(1): 33-39. doi: 10.1016/j.lfs.2014.09.019 [43] NAKAMURA K, HASEGAWA H. Production and peripheral roles of 5-HTP, a precursor of serotonin [J]. International Journal of Tryptophan Research:IJTR, 2009, 2: 37-43. [44] VOSSEN L E, CERVENY D, ÖSTERKRANS M, et al. Chronic exposure to oxazepam pollution produces tolerance to anxiolytic effects in zebrafish (Danio rerio) [J]. Environmental Science & Technology, 2020, 54(3): 1760-1769. [45] WINBERG S, NILSSON G E. Induction of social dominance by L-dopa treatment in Arctic charr [J]. Neuroreport, 1992, 3(3): 243-246. doi: 10.1097/00001756-199203000-00006