-
毛细管液相色谱是一种微型化的液相色谱分离技术[1],毛细管直径范围从几微米至几百微米. 由于其具有柱内体积小(0.01—30 μL)、节约试剂(0.1—10 L·a−1)、所需样品量少以及易与当前使用较为广泛的检测器(如质谱、光学和电化学检测器等)在线联用等诸多优势[2],在痕量样本检测方面具有独特优势[3-4].
毛细管柱的填充方法包括多种:有湿法填充[5](包括上行法和下行法)、干法填充[6]和电泳填充法[7]. 在上世纪70年代,Ishii[8]和Novotny[9]等就开展了一系列的研究工作,致力于填充出高效毛细管柱. 他们填充的毛细管柱内径较大,约为几百微米. 之后Jorgenson和Kennedy等研发了多种填充方法,极大地提高了柱效,并且能够填充超低内径的毛细管柱(低至12 μm)[2,9-14]. 但是上行法装填毛细管柱的过程中,为了防止填料的自然沉降,采用磁子对匀浆持续地搅拌[15]. 这种填充方式带来的弊端就是会使填料破碎,这样会导致填料的硅羟基暴露于色谱环境中,不断地吸附样品,例如碱性物质、大分子蛋白质、核酸等分子等[16],进而影响色谱柱的柱效、分离度下降、色谱柱寿命降低等情况. 因此,毛细管柱的装填过程应格外注意保护填料,避免破碎. 与上行法相比较,下行法无需磁力搅拌装置,可降低破碎率. 但是下行法为了抵抗由于重力引起的填料聚沉,多采用快速填充方式,利用低粘度的有机溶剂进行快速填充[17]. 填料在快速下行过程中,仍然会与管口碰撞而导致破碎.
为解决此类难题,关亚风研发了干法填充技术[6],用于填充大内径色谱柱(例如200—500 μm),填料尺寸为5—10 μm的球形填料. 在过程采用低压填充(低于1 MPa),因此完全避免了填料的破碎,色谱柱的柱效高且性能稳定、惰性好. 但是干法填充技术不适合采用尺寸≤ 3 μm的填料和填充内径低于50 μm的毛细管柱,而匀浆法没有这个限制.
针对以上问题,本文拟解决细内径毛细管填充所面临的填料易破碎、柱效不稳定等问题. 首先,自主设计一款填充装置,装置内部为一款自制的尼龙漏斗,为进一步减小填料碰撞,尼龙的出料口直径与柱内径相同;本文也研制出一款下行式填充方法,采用体积比为9:1丙酮/甲醇作为匀浆溶剂进行缓慢填充,确保在填充过程中填料可均匀分散,提高柱效. 本实验填充的毛细管柱内径为25—250 μm, 有效长度为100 mm和150 mm.
下行式匀浆法填充细内径毛细管液相色谱柱
Preparation of small-diameter capillary liquid chromatography columns using downward packing method
-
摘要: 本文采用下行式匀浆法填充内径为25—250 μm,有效长度为100 mm和150 mm的毛细管液相色谱柱,填料为3 μm C18修饰的多孔硅球. 经实验条件优化,匀浆溶剂是体积比为9 : 1丙酮/甲醇,匀浆浓度的变化范围为5—30 mg·mL−1. 在此条件下,色谱柱的柱效随柱内径减小而提高. 通过比较Van Deemter方程中A、B和C项系数与毛细管内径之间的关系发现,随着柱内径减小,A项的系数呈线性减小的趋势,B和C项的系数与内径无明显关系. 在最佳流速下,内径为25 μm毛细管柱的折合塔板高度低至2.25,接近理论塔板高度.
-
关键词:
- 下行法 /
- 毛细管柱 /
- 柱效 /
- Van Deemter方程.
Abstract: We developed a downward packing method for preparing the efficient capillary column with inner diameters (i.d.) from 25—250 µm in the effective length of 100—150 mm. The columns were packed by 3 μm of C18 modified silica particles with 5—30 mg·mL−1 slurries in acetone/methanol (9:1, V/V). In this condition, the column efficiency was increased as the diameter of the column decreased. By comparing the coefficients of A, B and C term in the Van Deemter equation with the inner diameters of the capillary columns, we found the coefficient of A term decreased linearly with decreasing the i.d. of the column. However, there is no linear relationship between the coefficients of the B and C terms with the i.d. of the column. At the optimum reduced velocity, the hmin (the minimum plate height) of the 25 μm i.d. column was as low as 2.25, which is very close to the theoretical plate (HETP).-
Key words:
- downward packing method /
- capillary columns /
- column efficiency /
- Van Deemter equation.
-
表 1 不同浓度下色谱填料在溶剂中的沉降时间
Table 1. Sedimentation time of chromatography packing materials in solvents at different concentrations
匀浆溶剂
Slurry solvents沉降时间/ min
Sedimentation time甲醇 (30 mg·mL−1) 2.5 丙酮 (30 mg·mL−1) 12 己烷 (30 mg·mL−1) 14 丙酮/甲醇(9:1,V/V)(30 mg·mL−1) 8 水/Triton X-100(99:1,V/V)(30 mg·mL−1) 67 甲醇 (10 mg·mL−1) 3 丙酮 (10 mg·mL−1) 14 己烷 (10 mg·mL−1) 16 丙酮/甲醇(9:1,V/V)(10 mg·mL−1) 10 水/Triton X-100(99:1,V/V)(10 mg·mL−1) 70 甲醇 (5 mg·mL−1) 5 丙酮 (5 mg·mL−1) 16 己烷 (5 mg·mL−1) 18 丙酮/甲醇(9:1,V/V)(5 mg·mL−1) 12 水/Triton X-100(99:1,V/V)(5 mg·mL−1) 75 表 2 不同匀浆溶剂填充下毛细管柱的柱效及柱压比较(50 μm i.d.)
Table 2. Comparison of the column efficiency of capillary column packed by different slurry solvents (50 μm i.d.)
匀浆溶剂
Solvents理论塔板数/m
N折合塔板高度
Reduced h min压力* / MPa
Pressure水/Triton X-100(99:1,V/V) 98340 2.76 2.6 丙酮/甲醇(9:1,V/V) 131970 2.06 4.8 己烷 114380 2.38 4.7 *压力为最佳流速下的柱压(MPa)(The column pressure is detected at the optimal flow rate) 表 3 不同内径毛细管柱的柱效比较
Table 3. Comparison of column efficiency of different inner diameter capillary columns
柱内径/μm
Column inner diameter匀浆浓度/(mg·mL−1)
Slurry concentration柱效N/ m−1 折合塔板高度
Reduce h min25 5 148200 1.83 50 10 134000 2.03 75 15 132700 2.05 100 20 119600 2.27 200 25 109500 2.48 250 30 98300 2.76 -
[1] JORGENSON J W. Capillary liquid chromatography at ultrahigh pressures [J]. Annual Review of Analytical Chemistry (Palo Alto, Calif. ), 2010, 3: 129-150. doi: 10.1146/annurev.anchem.1.031207.113014 [2] MACNAIR J E, LEWIS K C, JORGENSON J W. Ultrahigh-pressure reversed-phase liquid chromatography in packed capillary columns [J]. Analytical Chemistry, 1997, 69(6): 983-989. doi: 10.1021/ac961094r [3] NOVOTNY M V. Development of capillary liquid chromatography: A personal perspective [J]. Journal of Chromatography A, 2017, 1523: 3-16. doi: 10.1016/j.chroma.2017.06.042 [4] WILSON S R, VEHUS T, BERG H S, et al. Nano-LC in proteomics: Recent advances and approaches [J]. Bioanalysis, 2015, 7(14): 1799-1815. doi: 10.4155/bio.15.92 [5] BORRA C, HAN S M, NOVOTNY M. Quantitative analytical aspects of reversed-phase liquid chromatography with slurry-packed capillary columns [J]. Journal of Chromatography A, 1987, 385: 75-85. doi: 10.1016/S0021-9673(01)94623-0 [6] GUAN Y F, ZHOU L M, SHANG Z H. Dry-packed capillary columns for micro HPLC [J]. Journal of High Resolution Chromatography, 1992, 15(7): 434-436. doi: 10.1002/jhrc.1240150706 [7] JORGENSON J W, LUKACS K D. High-resolution separations based on electrophoresis and electroosmosis [J]. Journal of Chromatography A, 1981, 218: 209-216. doi: 10.1016/S0021-9673(00)82057-9 [8] ISHII D, ASAI K, HIBI K, et al. A study of micro-high-performance liquid chromatography [J]. Journal of Chromatography A, 1977, 144(2): 157-168. doi: 10.1016/S0021-9673(00)99351-8 [9] GLUCKMAN J C, HIROSE A, MCGUFFIN V L, et al. Performance evaluation of slurry-packed capillary columns for liquid chromatography [J]. Chromatographia, 1983, 17(6): 303-309. doi: 10.1007/BF02270662 [10] GODINHO J M, REISING A E, TALLAREK U, et al. Implementation of high slurry concentration and sonication to pack high-efficiency, meter-long capillary ultrahigh pressure liquid chromatography columns [J]. Journal of Chromatography A, 2016, 1462: 165-169. doi: 10.1016/j.chroma.2016.08.002 [11] MELLORS J S, JORGENSON J W. Use of 1.5-microm porous ethyl-bridged hybrid particles as a stationary-phase support for reversed-phase ultrahigh-pressure liquid chromatography [J]. Analytical Chemistry, 2004, 76(18): 5441-5450. doi: 10.1021/ac049643d [12] REISING A E, GODINHO J M, JORGENSON J W, et al. Bed morphological features associated with an optimal slurry concentration for reproducible preparation of efficient capillary ultrahigh pressure liquid chromatography columns [J]. Journal of Chromatography A, 2017, 1504: 71-82. doi: 10.1016/j.chroma.2017.05.007 [13] BLUE L E, JORGENSON J W. 1.1 μm Superficially porous particles for liquid chromatography [J]. Journal of Chromatography A, 2015, 1380: 71-80. doi: 10.1016/j.chroma.2014.12.055 [14] REISING A E, GODINHO J M, BERNZEN J, et al. Axial heterogeneities in capillary ultrahigh pressure liquid chromatography columns: Chromatographic and bed morphological characterization [J]. Journal of Chromatography A, 2018, 1569: 44-52. doi: 10.1016/j.chroma.2018.07.037 [15] TREADWAY J W, WYNDHAM K D, JORGENSON J W. Highly efficient capillary columns packed with superficially porous particles via sequential column packing [J]. Journal of Chromatography A, 2015, 1422: 345-349. doi: 10.1016/j.chroma.2015.10.013 [16] QI Y X, WU D P, WEI J Y, et al. Selective extraction of low molecular weight proteins by mesoporous silica particles with modified internal and external surfaces [J]. Analytical and Bioanalytical Chemistry, 2010, 398(4): 1715-1722. doi: 10.1007/s00216-010-4081-1 [17] 唐意红, 朱道乾, 关亚风. 不锈钢宽口径填充毛细管液相色谱柱的制备及评价 [J]. 分析化学, 2001, 29(10): 1228-1232. doi: 10.3321/j.issn:0253-3820.2001.10.030 TANG Y H, ZHU D Q, GUAN Y F. Preparation and evaluation of stainless-steel wide-bore packed capillary high performance liquid chromatographic columns [J]. Chinese Journal of Analytieal Chemistry, 2001, 29(10): 1228-1232(in Chinese). doi: 10.3321/j.issn:0253-3820.2001.10.030
[18] DENG N, HE Y Z, WANG L, et al. Reversed-phase electrochromatography with a monolithic microcolumn prepared in a 2.2-mm-inner diameter fused-silica tube [J]. Analytical Chemistry, 2005, 77(17): 5622-5627. doi: 10.1021/ac050589q [19] BRUNS S, FRANKLIN E G, GRINIAS J P, et al. Slurry concentration effects on the bed morphology and separation efficiency of capillaries packed with sub-2 μm particles [J]. Journal of Chromatography A, 2013, 1318: 189-197. doi: 10.1016/j.chroma.2013.10.017 [20] KARLSSON K E, NOVOTNY M. Separation efficiency of slurry-packed liquid chromatography microcolumns with very small inner diameters [J]. Analytical Chemistry, 1988, 60(17): 1662-1665. doi: 10.1021/ac00168a006 [21] VISSERS J P C. Recent developments in microcolumn liquid chromatography [J]. Journal of Chromatography A, 1999, 856(1/2): 117-143. [22] HSIEH S, JORGENSON J W. Preparation and evaluation of slurry-packed liquid chromatography microcolumns with inner diameters from 12 to 33 microns [J]. Analytical Chemistry, 1996, 68(7): 1212-1217. doi: 10.1021/ac950682m [23] KNOX J H, PARCHER J F. Effect of the column to particle diameter ratio on the dispersion of unsorbed solutes in chromatography [J]. Analytical Chemistry, 1969, 41(12): 1599-1606. doi: 10.1021/ac60281a009