-
环境持久性自由基(environmental persistent free radicals,EPFRs)最早被发现于香烟焦油中[1-3]. 近些年随着EPFRs相关研究的不断深入,土壤[4]、飞灰及颗粒物(particulate matter,PM)中也被发现有EPFRs的存在. 目前,国内关于大气中EPFRs的研究多数局限于少数城市[5]及煤燃烧排放EPFRs的相关研究[6-8]. 如,煤燃烧[9],机动车尾气、二次过程和生物质燃烧[10]均是PM中EPFRs的潜在贡献源.
当贡献源之一的生物质生物质不完全燃烧时,会形成表面稳定的金属自由基络合物,比如由α-烷基芳醚和β-烷基芳醚中C—C和C—O键裂解形成自由基[11],此外,木质素、纤维素和血红蛋白等前体物质均可驱动EPFRs的生成. 生物质如松针在300℃下热解初期可产生的EPFRs浓度较低,量级约为1018 spins·g−1,在热解中期、后期均伴有大量EPFRs的产生,热解温度为500℃,热解3 h后排放的EPFRs的浓度最高,量级约为1019 spins·g−1[12]. 其中,300℃以上的高温下生物质热解过程中增加的自由基浓度和结焦量高于煤焦油近百倍[13-14].
另外,生物质燃烧排放的EPFRs可以激活过氧化氢(H2O2)或氧气(O2)生成羟基自由基(·OH)或超氧自由基(·O2–),从而提高有机污染物的降解效率[15]. 我国生物质资源丰富,每年有6亿吨农作物秸秆产生,目前生物质燃烧主要集中在芦苇、树枝、秸秆等[16-18] ,陕西关中地区盛产小麦,每年生产的大量小麦秸秆采用取暖和烹饪燃烧等传统利用方式,是一种潜在的污染[19]. 随着我国农村生活能源的结构变化,小麦秸秆的焚烧日趋严重,对环境带来的污染应受到重视[20]. 因此,了解小麦秸秆燃烧排放的EPFRs污染特征具有重要意义[21].
本研究以分布较广的小麦秸秆和煤粉为试验材料,在不同燃烧温度、燃烧气氛、样品含水率的燃烧条件下燃烧小麦秸秆和煤粉,旨在通过溶剂萃取法分离样品的EPFRs组分并利用电子顺磁共振波谱仪测定其排放烟气颗粒中EPFRs的自旋浓度、种类、线宽(ΔHP-P),对比论证小麦秸秆和煤粉在不同温度下燃烧排放EPFRs的污染特征和衰变特性. 本研究有利于认识典型固体燃料燃烧过程中污染物的转化,了解EPFRs对人体健康的潜在风险,对进一步研究大气污染物的生消机理和控制措施具有重要借鉴意义.
典型固体燃料燃烧排放环境持久性自由基的特征
Characteristics of environmental persistent free radicals emitted by typical solid fuel combustion
-
摘要: 为研究典型固体燃料燃烧排放环境持久性自由基(EPFRs)的污染特征,本文以小麦秸秆和煤粉为研究对象,利用自制的燃料燃烧和颗粒物样品收集装置获得小麦秸秆和煤粉在不同燃烧条件下排放的烟气颗粒样品,基于电子顺磁共振波谱技术(EPR)分别确定EPFRs在第0、1、3、7 天的自旋浓度、g因子、ΔHP-P,通过萃取实验确定EPFRs可被甲醇和二氯甲烷所萃取的量,以获得其污染、衰变特性. 结果表明,低温低氧或无氧条件下,小麦秸秆和煤粉燃烧以阴燃或热解为主,排放的EPFRs主要为氧中心自由基,属于非衰变型,有机溶剂可萃取部分可达67%;随着温度和空气通入量的增加,小麦秸秆和煤粉逐渐燃烧,排放的EPFRs浓度增加,由氧中心自由基逐步转化为含氧官能团的碳中心自由基,衰变缓慢,溶剂可萃取的EPFRs占比仅有2.14%;当温度和空气量足够,小麦秸秆和煤粉完全燃烧,半衰期分别为56 d和43 d,为快速衰变型,溶剂不可萃取的EPFRs部分高达97.01%. 温度和空气量对小麦秸秆和煤粉燃烧排放的EPFRs的种类、结构及衰减影响大,而样品含水率无显著影响.Abstract: To explore the characteristics of environmental persistent free radicals (EPFRs) emitted by the combustion of typical solid fuels (i.e., the wheat straw and pulverized coal), a self-made device for fuel combustion and particle sample collection was used to obtain the flue gas samples under different combustion conditions. Based on electron paramagnetic resonance spectroscopy (EPR), the spin concentration, g factor and ΔHP-P of EPFRs on the 0th, 1st, 3rd, and 7th day were determined respectively, while the percentage of EPFRs extracted by the methanol (MeOH) and methylene chloride (DCM) were measured to obtain their pollution and attenuation characteristics. Results showed that under low temperature, hypoxia or anaerobic conditions, the combustion of wheat straw and pulverized coal was mainly smoldering or pyrolysis, and the emitted EPFRs were mainly non-decaying oxygen-centered radicals, about 67% of which were extractable. With the increase of temperature and air intake, wheat straw and pulverized coal were gradually burned, leading to a increase of the spin concentration of the emitted EPFRs. Meanwhile, the oxygen-centered radicals gradually converted into slow-decaying carbon-centered free radicals with oxygen-containing functional groups, only 2.14% of which were extractable. When the temperature and air volume were sufficient, wheat straw and pulverized coal were completely burned with half-lives of 56 d and 43 d, respectively, which were fast decay types, and the fraction of EPFRs that could not be extracted by both MeOH and DCM could reach 97.01%. As a conclusion, the characteristics (i.e. type, structure, attenuation) of EPFRs emitted from wheat straw and pulverized coal combustion were significantly influenced by temperature and air supply, while the moisture content of the samples had no significant influence.
-
图 2 (a)不同燃烧温度原始小麦秸秆样品、(b)不同燃烧温度原始煤粉样品、(c)不同燃烧气氛原始小麦秸秆样品、(d)不同样品含水率原始小麦秸秆样品排放EPFRs的电子顺磁共振谱图
Figure 2. Electron Paramagnetic Resonance spectroscopy of EPFRs emissions from (a) original wheat straw samples with different combustion temperatures, (b) original pulverized coal samples with different combustion temperatures, (c) original wheat straw samples with different combustion atmospheres, (d) original wheat straw samples with different sample moisture contents
图 3 (a)不同燃烧温度小麦秸秆样品、(b)不同燃烧温度煤粉样品、(c)不同燃烧气氛小麦秸秆样品、(d)不同样品含水率小麦秸秆样品衰减过程中样品排放EPFRs浓度变化及半衰期
Figure 3. Variation of EPFRs concentration and half-life of samples during attenuation of (a) wheat straw samples with different combustion temperatures, (b) pulverized coal samples with different combustion temperatures, (c) wheat straw samples with different combustion atmospheres, (d) wheat straw samples with different sample moisture content
表 1 工业分析和元素分析
Table 1. Industrial Analysis and Element Analysis
样品
Sample工业分析 /%
Industrial analysis元素分析 /%
Element analysisMad Aad Vad FCad wC wH wO wN wS 小麦秸秆 8.2 8.6 66.8 16.4 21.19 3.48 57.72 0.81 0.27 煤粉 7.7 11.8 34.2 46.3 58.93 4.09 34.86 1.14 0.98 表 2 不同燃烧条件下烟气颗粒的取样
Table 2. Sampling of flue gas particles under different combustion conditions
样品编号
ID样品量/ g
Mass燃烧温度/ ℃
Comb temp样品含水率/ %
Moisture供气速度/ (L·min−1)
Air supply烟气稀释空气通入量/ (m3·h−1)
Dilution air supply烟气稀释比
Flue gas dilution ratioWS01 2 300 0 空气 2 2 16.7 WS02 2 500 0 空气 2 2 16.7 WS03 2 700 0 空气 2 2 16.7 WS04 2 500 0 空气 4 2 8.3 WS05 2 500 0 氮气 4 2 8.3 WS06 2 500 8 空气 2 2 16.7 WS07 2 500 27 空气 2 2 16.7 PC01 2 300 0 空气 4 4 16.7 PC02 2 500 0 空气 4 4 16.7 PC03 2 700 0 空气 4 4 16.7 注:WS指小麦秸秆;PC指煤粉,烟气稀释比是烟气稀释系统空气通入量与供气系统空气通入量之比,即两个流量计流量之比,Comb temp代表燃烧温度. Note: WS refers to wheat straw; PC refers to pulverized coal, and the flue gas dilution ratio is the ratio of the air inlet volume of the flue gas dilution system to the air inlet volume of the gas supply system, that is, the ratio of the flow of the two flow meters. Comb temp refers to Combustion temperature. 表 3 不同燃烧条件下衰减样品中EPFRs的参数
Table 3. Parameters of EPFRs in attenuation samples under different combustion conditions
样品
IDD0 D1 D3 D7 浓度/(spins·m−3)
Conc.g因子
g-factor线宽
/G
ΔHP-P浓度/(spins·m−3)
Conc.g因子
g-factor线宽
/G
ΔHP-P浓度/(spins·m−3)
Conc.g因子
g-factor线宽
/G
ΔHP-P浓度/(spins·m−3)
Conc.g因子
g-factor线宽
/G
ΔHP-PWS01 1.33×1014 2.0042 2.4553 2.73×1014 2.0037 4.3641 4.64×1014 2.0038 4.3392 4.65×1014 2.0040 4.2649 WS02 1.45×1016 2.0034 4.1008 1.20×1016 2.0034 4.0904 9.10×1015 2.0034 4.0803 1.03×1016 2.0033 4.1353 WS03 2.49×1016 2.0034 3.7513 1.98×1016 2.0033 3.6642 2.10×1016 2.0035 3.6222 2.36×1016 2.0034 3.6336 WS04 2.70×1016 2.0033 4.1138 2.55×1016 2.0033 4.1359 1.40×1016 2.0034 3.8896 2.19×1016 2.0032 4.0876 WS05 3.84×1015 2.0041 7.1445 3.44×1015 2.0037 5.7628 1.90×1015 2.0037 5.6273 3.82×1015 2.0037 7.1039 WS06 2.05×1016 2.0035 4.3675 1.94×1016 2.0035 4.3652 1.89×1016 2.0035 4.4192 1.93×1016 2.0034 4.4295 WS07 2.04×1016 2.0035 4.2646 1.42×1016 2.0035 4.1652 1.28×1016 2.0035 4.1624 1.19×1016 2.0035 4.1855 PC01 3.46×1014 2.0040 3.6869 1.79×1014 2.0034 3.6135 2.08×1014 2.0041 3.4149 8.59×1014 2.0044 5.7394 PC02 1.04×1015 2.0041 4.6834 1.18×1015 2.0039 4.5787 1.34×1015 2.0038 5.2362 6.22×1014 2.0037 4.6011 PC03 4.74×1016 2.0032 4.2081 5.32×1016 2.0033 4.2081 4.55×1016 2.0032 4.1600 4.55×1016 2.0032 4.1610 注:D0指衰变实验开始的当天,D1指衰变实验开始的当天,Conc. 指EPFRs的体积自旋浓度. Note: D0 refers to the day when the attenuation experiment begins, D1 refers to the first day of attenuation experiment. Conc. refers to the volume spin concentration of EPFRs. -
[1] WANG P, PAN B, LI H, et al. The overlooked occurrence of environmentally persistent free radicals in an area with low-rank coal burning, Xuanwei, China [J]. Environmental Science & Technology, 2018, 52(3): 1054-1061. [2] PRÜSS-USTÜN A, BONJOUR S, CORVALÁN C. The impact of the environment on health by country: A meta-synthesis [J]. Environmental Health:a Global Access Science Source, 2008, 7: 7. [3] INGRAM D J E, TAPLEY J G, JACKSON R, et al. Paramagnetic resonance in carbonaceous solids [J]. Nature, 1954, 174(4434): 797-798. doi: 10.1038/174797a0 [4] FELD-COOK E E, BOVENKAMP-LANGLOIS L, LOMNICKI S M. Effect of particulate matter mineral composition on environmentally persistent free radical (EPFR) formation [J]. Environmental Science & Technology, 2017, 51(18): 10396-10402. [5] CHEN Q C, SUN H Y, MU Z, et al. Characteristics of environmentally persistent free radicals in PM2.5: Concentrations, species and sources in Xi'an, Northwestern China [J]. Environmental Pollution, 2019, 247: 18-26. doi: 10.1016/j.envpol.2019.01.015 [6] GEHLING W, DELLINGER B. Environmentally persistent free radicals and their lifetimes in PM2.5 [J]. Environmental Science & Technology, 2013, 47(15): 8172-8178. [7] PARK J, PARK E H, SCHAUER J J, et al. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea [J]. Environment International, 2018, 117: 276-283. doi: 10.1016/j.envint.2018.05.018 [8] YANG L L, LIU G R, ZHENG M H, et al. Highly elevated levels and particle-size distributions of environmentally persistent free radicals in haze-associated atmosphere [J]. Environmental Science & Technology, 2017, 51(14): 7936-7944. [9] LYONS M J, SPENCE J B. Environmental free radicals [J]. British Journal of Cancer, 1960, 14(4): 703-708. doi: 10.1038/bjc.1960.79 [10] ARANGIO A M, TONG H J, SOCORRO J, et al. Quantification of environmentally persistent free radicals and reactive oxygen species in atmospheric aerosol particles [J]. Atmospheric Chemistry and Physics, 2016, 16(20): 13105-13119. doi: 10.5194/acp-16-13105-2016 [11] CHEN Q C, WANG M M, WANG Y Q, et al. Rapid determination of environmentally persistent free radicals (EPFRs) in atmospheric particles with a quartz sheet-based approach using electron paramagnetic resonance (EPR) spectroscopy [J]. Atmospheric Environment, 2018, 184: 140-145. doi: 10.1016/j.atmosenv.2018.04.046 [12] 曹迪. 含环境持久性自由基生物炭的制备及其对斜生栅藻的毒性研究[D]. 大连: 大连理工大学, 2017. CAO D. Study on the preparation of environmental persistent free radicals (EPFRs) containing biochar and its toxicity on Scenedesmus obliquus[D]. Dalian: Dalian University of Technology, 2017(in Chinese).
[13] TRUONG H, LOMNICKI S, DELLINGER B. Potential for misidentification of environmentally persistent free radicals as molecular pollutants in particulate matter [J]. Environmental Science & Technology, 2010, 44(6): 1933-1939. [14] 何文静. 煤和生物质热解及煤溶剂抽提过程中自由基反应行为研究[D]. 北京: 北京化工大学, 2015. HE W J. Behaviors of radicals in the processes of pvrolvsis of coals and biomass and solvent extraction of coals[D]. Beijing: Beijing University of Chemical Technology, 2015(in Chinese).
[15] DELA CRUZ A L, GEHLING W, LOMNICKI S, et al. Detection of environmentally persistent free radicals at a superfund wood treating site [J]. Environmental Science & Technology, 2011, 45(15): 6356-6365. [16] 袁静. 农作物秸秆燃烧排放PM2.5中有机物的研究[D]. 南京: 南京信息工程大学, 2011. YUAN J. The research of particulate organic matters emitted from cereal straws combustion[D]. Nanjing: Nanjing University of Information Science & Technology, 2011(in Chinese).
[17] TIAN L W, KOSHLAND C P, YANO J, et al. Carbon-centered free radicals in particulate matter emissions from wood and coal combustion [J]. Energy & Fuels:an American Chemical Society Journal, 2009, 23(5): 2523-2526. [18] QIAN R Z, ZHANG S M, PENG C, et al. Characteristics and potential exposure risks of environmentally persistent free radicals in PM2.5 in the Three Gorges Reservoir area, Southwestern China [J]. Chemosphere, 2020, 252: 126425. doi: 10.1016/j.chemosphere.2020.126425 [19] 胡炳涛. 陕西关中麦草秸秆热解特性及其动力学研究[D]. 西安: 陕西科技大学, 2016. HU B T. Study on the pyrolytic characteristics and kinetics of wheat straw from Guanzhong plain of Shaanxi[D]. Xi'an: Shaanxi University of Science & Technology, 2016(in Chinese).
[20] LIEKE T, ZHANG X C, STEINBERG C E W, et al. Overlooked risks of biochars: Persistent free radicals trigger neurotoxicity in Caenorhabditis elegans [J]. Environmental Science & Technology, 2018, 52(14): 7981-7987. [21] 贺开来, 李娅绮, 徐红梅, 等. 家用燃料燃烧排放PM2.5的特征及其对肺功能的影响: 以陕西蓝田县为例 [J]. 环境化学, 2020, 39(2): 552-565. doi: 10.7524/j.issn.0254-6108.2019032301 HE K L, LI Y Q, XU H M, et al. Characteristics of PM2.5 emitted from domestic fuel combustion and its effect on lung function: A case study in Lantian County, Shaanxi, China [J]. Environmental Chemistry, 2020, 39(2): 552-565(in Chinese). doi: 10.7524/j.issn.0254-6108.2019032301
[22] WITWICKI M, JERZYKIEWICZ M, OZAROWSKI A. Understanding natural semiquinone radicals - Multifrequency EPR and relativistic DFT studies of the structure of Hg(II) complexes [J]. Chemosphere, 2015, 119: 479-484. doi: 10.1016/j.chemosphere.2014.07.047 [23] DELA CRUZ A L, COOK R L, LOMNICKI S M, et al. Effect of low temperature thermal treatment on soils contaminated with pentachlorophenol and environmentally persistent free radicals [J]. Environmental Science & Technology, 2012, 46(11): 5971-5978. [24] 钱若芷. 三峡库区典型城区PM2.5化学组成及持久性自由基的健康影响研究[D]. 重庆: 重庆三峡学院, 2020. QIAN R Z. Study on the chemical composition of PM2.5 and the health effects of persistent free radicals in typical urban areas of the Three Gorges Reservoir Area[D]. Chongqing: Chongqing Three Gorges University, 2020(in Chinese).
[25] KHACHATRYAN L, VEJERANO E, LOMNICKI S, et al. Environmentally persistent free radicals (EPFRs). 1. generation of reactive oxygen species in aqueous solutions [J]. Environmental Science & Technology, 2011, 45(19): 8559-8566. [26] CHEN Q C, WANG M M, SUN H Y, et al. Enhanced health risks from exposure to environmentally persistent free radicals and the oxidative stress of PM2.5 from Asian dust storms in Erenhot, Zhangbei and Jinan, China [J]. Environment International, 2018, 121: 260-268. doi: 10.1016/j.envint.2018.09.012 [27] 刘程成. 环境健康风险评估中土壤摄入、呼吸和皮肤暴露参数研究[D]. 常州: 常州大学, 2021. LIU C C. Soil intake, respiration, and skin exposure parameters in environmental health risk assessment[D]. Changzhou: Changzhou University, 2021(in Chinese).
[28] PRYOR W A. Oxy-radicals and related species: Their formation, lifetimes, and reactions [J]. Annual Review of Physiology, 1986, 48(1): 657-667. doi: 10.1146/annurev.ph.48.030186.003301 [29] VEJERANO E P, RAO G Y, KHACHATRYAN L, et al. Environmentally persistent free radicals: Insights on a new class of pollutants [J]. Environmental Science & Technology, 2018, 52(5): 2468-2481. [30] GEHLING W, KHACHATRYAN L, DELLINGER B. Hydroxyl radical generation from environmentally persistent free radicals (EPFRs) in PM2.5 [J]. Environmental Science & Technology, 2014, 48(8): 4266-4272. [31] BAUM S L, ANDERSON I G M, BAKER R R, et al. Electron spin resonance and spin trap investigation of free radicals in cigarette smoke: Development of a quantification procedure [J]. Analytica Chimica Acta, 2003, 481(1): 1-13. doi: 10.1016/S0003-2670(03)00078-3 [32] US EPA. Recommendations for and documentation of biological values for use in risk assessment[R]. EPA/600/6-87/008, 1988. [33] 阮光辉. 香烟和燃香燃烧排放系颗粒物中离子和碳组分特征研究[D]. 上海: 华东理工大学, 2020. RUAN G H. Study on the characteristics of ionic and carbonaceous components in fine particles emitted from cigarettes and incense burning[D]. Shanghai: East China University of Science and Technology, 2020(in Chinese).
[34] BLAKLEY R L, HENRY D D, SMITH C J. Lack of correlation between cigarette mainstream smoke particulate phase radicals and hydroquinone yield [J]. Food and Chemical Toxicology, 2001, 39(4): 401-406. doi: 10.1016/S0278-6915(00)00144-7 [35] VALAVANIDIS A, HARALAMBOUS E. A comparative study by electron paramagnetic resonance of free radical species in the mainstream and sidestream smoke of cigarettes with conventional acetate filters and ‘bio-filters’ [J]. Redox Report, 2001, 6(3): 161-171. doi: 10.1179/135100001101536274 [36] SARAVIA J, LEE G I, LOMNICKI S, et al. Particulate matter containing environmentally persistent free radicals and adverse infant respiratory health effects: A review [J]. Journal of Biochemical and Molecular Toxicology, 2013, 27(1): 56-68. doi: 10.1002/jbt.21465 [37] 李豪, 陈庆彩, 孙浩堯. 西安市PM2.5中环境持久性自由基污染特征 [J]. 中国环境科学, 2020, 40(3): 967-974. doi: 10.3969/j.issn.1000-6923.2020.03.005 LI H, CHEN Q C, SUN H Y. Study on pollution characteristics of environmentally persistent free radicals of PM2.5 in Xi'an [J]. China Environmental Science, 2020, 40(3): 967-974(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.03.005
[38] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响 [J]. 环境科学学报, 2016, 36(5): 1757-1765. doi: 10.13671/j.hjkxxb.2015.0657 JIAN M F, GAO K F, YU H P. Effects of different pyrolysis temperatures on the preparation and characteristics of bio-char from rice straw [J]. Acta Scientiae Circumstantiae, 2016, 36(5): 1757-1765(in Chinese). doi: 10.13671/j.hjkxxb.2015.0657
[39] QIN Y X, LI G Y, GAO Y P, et al. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review [J]. Water Research, 2018, 137: 130-143. doi: 10.1016/j.watres.2018.03.012 [40] 花建丽, 宋才生, 王光辉, 等. ESR自旋稳定化技术在漆酶化学中的应用 [J]. 物理化学学报, 1999, 15(2): 173-177. doi: 10.3866/PKU.WHXB19990215 HUA J L, SONG C S, WANG G H, et al. The application of ESR-spin stable technique in laccase chemical system [J]. Acta Physico-Chimica Sinica, 1999, 15(2): 173-177(in Chinese). doi: 10.3866/PKU.WHXB19990215
[41] CHEN Q C, SUN H Y, WANG J, et al. Long-life type—The dominant fraction of EPFRs in combustion sources and ambient fine particles in Xi'an [J]. Atmospheric Environment, 2019, 219: 117059. doi: 10.1016/j.atmosenv.2019.117059 [42] CHEN Q C, SUN H Y, WANG M M, et al. Dominant fraction of EPFRs from nonsolvent-extractable organic matter in fine particulates over Xi’an, China [J]. Environmental Science & Technology, 2018, 52(17): 9646-9655.