-
铅作为一种重金属,对人体和环境有着巨大的危害[1],可进入人体的中枢神经系统和重要器官,通过一系列生理反应造成不良影响甚至致死[2]. 去除含铅废水中的铅离子对于人类的生存发展具有重要的现实意义. 对于溶液中重金属离子的去除,常用方法有离子交换法[3]、化学沉淀法[4]、电化学法[5]和吸附法等. 吸附法相对于其他方法而言,不需要向体系中引入其他化学试剂,不会造成二次污染.
我国作为茶叶的主要生产国和消费国,每年产生大量废弃的工业茶渣[6],这些茶渣很少得到有效利用. 茶渣具有多孔性结构和大量活性基团,结合壳聚糖富有氨基和羟基可以与重金属离子螯合的特点[7],可制备出高效的重金属离子吸附剂,对废弃茶渣进行改性处理,以实现其效用价值最大化. 使用生物材料和壳聚糖制备复合吸附材料吸附重金属离子的研究一直以来受到国内外许多学者的重视. 如王威振等[8]探究了以梧桐树产生的不同废弃物制备出的生物质炭对Cd2+的吸附效果,并通过多种表征手段结合实验结果提出吸附剂的吸附机理为化学沉淀及物理吸附. 刘爽等[9]利用茶渣制备生物炭并用不同浓度的磷酸进行活化处理. 结果表明,在磷酸浓度为50%时,吸附剂对铅离子的吸附效果最佳,吸附机理为表面络合和沉淀. 此外,壳聚糖这种来源广泛的天然多糖,可由自然界大量存在的甲壳素制备而成,具有可降解性、抑菌及无毒等优点[10],近年来也被应用于重金属吸附材料的制备中. 如刘珊等[11]以壳聚糖、纳米铁和聚乙二醇为原料,采用包埋法制备出用于吸附铜离子的凝胶球,该吸附材料具有较好的吸附效果,饱和吸附量可达133.4 mg·g−1. Prerana等[12]利用戊二醛交联壳聚糖和氨基丙基硅烷氧化石墨烯,制备出可在Cu2+、Ni2+、Pb2+和Cr3+等多种混合重金属离子中选择性吸附Pb2+的吸附剂,探究了温度、pH、吸附质浓度等因素对吸附效果的影响,并通过拟合吸附过程符合Langmuir和Freundlich等温吸附模型. 有研究表明[13],壳聚糖中加入聚乙烯醇可以增强混合物中的氢键数量和强度,可作为提高吸附剂机械强度和化学性能的一种方法.
本研究以茶渣、壳聚糖、聚乙烯醇等为原料,通过改变原料配比,制备出4种铅离子吸附膜,探究了溶液pH、Pb2+初始浓度、温度和吸附时间对吸附效果的影响,并对吸附膜进行扫描电子显微镜测试(SEM)、能量色散X射线光谱测试(EDAX)、红外光谱测试(IR). 本实验所制备的膜型吸附剂吸附效果良好、耐酸性和机械强度强、比表面积大、材料利用率高,且制备时不需要冷冻干燥,操作更为简便,可应用于对含铅废水的处理.
壳聚糖功能化的茶基水凝胶膜材料的制备及其在Pb2+吸附中的应用
Preparation of chitosan-functionalized tea-based hydrogel membrane materials and their application in Pb2+ adsorption
-
摘要: 为充分发挥茶渣的利用价值,以茶渣为原料,制备了4种不同性能的铅离子吸附剂. 通过改变溶液pH、Pb2+初始浓度、温度和吸附时间等因素探究其最佳吸附条件,并对吸附过程进行吸附热力学和吸附动力学研究. 结果表明,Chitosan/Tea 膜(CT膜)、PVA/Chitosan/Tea 膜(PCT膜)、Chitosan/Modified tea 膜(CM膜)和PVA/Chitosan/Modified tea 膜(PCM膜)的最佳pH值分别为6.0、6.0、5.0和5.0;Pb2+初始浓度为400 mg·L−1时吸附量最大,分别为185.8、160.7、197.0、153.9 mg·g−1. Pb2+初始浓度为20 mg·L−1时吸附率最大,分别为90.1%、90.9%、91.1%和83.8%. 在360 min内,吸附均可达到平衡. 吸附热力学结果显示,CT膜、PCT膜和PCM膜的吸附过程符合Langmuir吸附等温线模型,属于单层吸附;CM膜的吸附过程符合Freundlich吸附等温线模型,属于多层吸附,4种膜的吸附过程均为吸热、熵增、有利的自发过程. 四者的饱和吸附量分别为202.8、173.3、223.7、172.4 mg·g-1. 吸附动力学结果显示,CT膜和PCM膜吸附速率主要受扩散过程控制,符合准一级吸附动力学模型;PCT膜和CM膜吸附速率主要受化学吸附控制,符合准二级吸附动力学模型. 4种吸附膜对Pb2+均具有良好的吸附能力,并且适用的酸度范围较广,使用时操作简单,回收时处理方便,具有重要的参考作用和应用价值.Abstract: This study aimed at preparing four different performance adsorbents for removal of Pb2+ from water in order to give full play to the utilization value of tea waste. And their optimal adsorption conditions were explored by changing the pH of the solution, the initial concentration of Pb2+, the temperature and the time of adsorption. The adsorption thermodynamics and adsorption kinetics of the adsorption process were also investigated. The results show that the optimal pH values of Chitosan/Tea (CT), PVA/Chitosan/Tea (PCT), Chitosan/Modified tea (CM) and PVA/Chitosan/Modified tea (PCM) adsorption films are 6.0, 6.0, 5.0 and 5.0, respectively. The adsorption capacities were the largest at the initial concentration of 400 mg·L−1, which were 185.8, 160.7, 197.0 and 153.9 mg·g−1. And the adsorption rates were the largest at the initial concentration of 20 mg·L−1, which were 90.1%, 90.9%, 91.1% and 83.8%, respectively. The adsorption can reach equilibrium within 360 min. The adsorption thermodynamic results show that the adsorption processes of CT, PCT and PCM adsorption films are in accordance with the Langmuir adsorption isotherm model and belong to monolayer adsorption; while the adsorption processes of CM adsorption film is in accordance with the Freundlich adsorption isotherm model and belongs to multilayer adsorption, the adsorption processes of all four adsorption films are heat-absorbing, entropy-increasing and favorable spontaneous processes. The saturation adsorption capacities of 202.8, 173.3, 223.7 and 172.4 mg·g-1 were obtained for the four adsorption films. Besides, the adsorption kinetic results show that the adsorption rates of CT and PCM adsorption films are mainly controlled by the diffusion process and are consistent with the pseudo-first order kinetic model; the adsorption rates of PCT and CM adsorption films are mainly controlled by chemisorption and are consistent with the pseudo-second order kinetic model. All four adsorption films have good adsorption capacity for Pb2+, and have a wide range of applicable acidity, simple operation in use, easy handling in recovery, large reference role and high application value.
-
Key words:
- tea waste /
- chitosan /
- polyvinyl alcohol /
- Pb2+ /
- adsorption
-
表 1 吸附膜的EDAX测试结果
Table 1. EDAX test results of adsorption films
膜的类型
Types of adsorption films元素
Element质量百分比/%
Weight原子百分比/%
AtomicCT膜 C 44.1 56.9 O 44.3 42.6 Mo 0.5 0.1 Pb 11.1 0.8 PCT膜 C 50.9 60.3 O 44.2 39.3 Mo 0.1 0.0 Pb 4.9 0.3 CM膜 C 35.0 56.4 O 33.6 40.6 Mo 0.4 0.1 Pb 30.9 2.9 PCM膜 C 31.2 55.2 O 30.8 40.9 Mo 0.1 0.0 Pb 37.9 3.9 表 2 吸附膜在最佳pH条件下的吸附量和吸附率
Table 2. Adsorption capacity and adsorption rate of adsorption films at optimal pH conditions
膜的类型
Types of adsorption films最佳pH条件
Optimal pH conditionsq/(mg·g−1) r/% CT膜 6.0 92.0 70.1 PCT膜 6.0 83.2 78.5 CM膜 5.0 84.8 71.4 PCM膜 5.0 74.0 74.0 表 3 吸附膜在不同pH条件下的溶解情况
Table 3. Dissolution of adsorption films under different pH conditions
膜的类型
Types of adsorption films在不同酸性条件下的溶解情况
Dissolution under different acidic conditionsCT膜 pH>1.75时不溶解 PCT膜 pH在0—14范围内不溶解 CM膜 pH=1.5时较快溶解,pH>2时不溶解 PCM膜 pH>1.75时不溶解 表 4 吸附膜的热力学参数
Table 4. Thermodynamic parameters of adsorption films
膜的类型
Types of adsorption filmsT/K ΔG/(kJ·mol−1) ΔH/(kJ·mol−1) ΔS/(J·mol−1·K−1) CT膜 303.15 −2.8 9.2 39.7 308.15 −3.1 313.15 −3.2 PCT膜 303.15 −3.4 13.5 55.9 308.15 −3.7 313.15 −4.0 CM膜 303.15 −2.7 7.7 34.3 308.15 −2.9 313.15 −3.1 PCM膜 303.15 −1.8 7.6 30.9 308.15 −2.0 313.15 −2.1 表 5 吸附膜的吸附等温线模型参数
Table 5. Adsorption isotherm model parameters of adsorption films
膜的类型
Types of
adsorption filmsLangmuir吸附等温线模型
Langmuir adsorption isotherm modelFreundlich吸附等温线模型
Freundlich adsorption isotherm model符合的模型
Compliant modelsqm/(mg·g−1) b/(L·mg−1) R2 n KF/(mg·L−1) R2 CT膜 202.8 0.0390 0.993 2.34 20.65 0.969 Langmuir吸附等温线模型 PCT膜 173.3 0.0311 0.964 2.35 16.35 0.936 Langmuir吸附等温线模型 CM膜 223.7 0.0256 0.973 2.18 16.89 0.995 Freundlich吸附等温线模型 PCM膜 172.4 0.0267 0.987 2.09 12.55 0.960 Langmuir吸附等温线模型 表 6 吸附膜的吸附动力学模型参数
Table 6. Adsorption kinetics model parameters of adsorption films
膜的类型
Types of
adsorption filmsqe,实验/
(mg·g−1)准一级吸附动力学模型拟合
Fitting of Pseudo-first order model准二级吸附动力学模型拟合
Fitting of Pseudo-second order model符合的模型
Compliant modelsqe/(mg·g−1) k1/(min−1) R2 qe/(mg·g−1) k2/[g·(mg·min)−1] R2 CT膜 92.0 134.2 0.0143 0.986 119.3 5.60×10−5 0.920 准一级吸附动力学方程 PCT膜 83.2 96.7 0.0163 0.987 90.3 2.41×10−4 0.996 准二级吸附动力学方程 CM膜 79.8 102.9 0.0131 0.993 98.0 1.21×10−4 0.989 准二级吸附动力学方程 PCM膜 69.2 78.9 0.0136 0.993 78.3 1.83×10−4 0.992 准一级吸附动力学方程 -
[1] MANNA K, DEBNATH B, SINGH W. Sources and toxicological effects of lead on human health [J]. Indian Journal of Medical Specialities, 2019, 10(2): 66. doi: 10.4103/INJMS.INJMS_30_18 [2] 连灵君, 徐立红. 氧化损伤与铅毒性研究进展 [J]. 环境与职业医学, 2007, 24(4): 435-439. doi: 10.3969/j.issn.1006-3617.2007.04.023 LIAN L J, XU L H. A review of studies on oxidative damage and lead toxicity [J]. Journal of Environmental & Occupational Medicine, 2007, 24(4): 435-439(in Chinese). doi: 10.3969/j.issn.1006-3617.2007.04.023
[3] DHARMAPRIYA T N, LI D Y, CHUNG Y C, et al. Green synthesis of reusable adsorbents for the removal of heavy metal ions [J]. ACS Omega, 2021, 6(45): 30478-30487. doi: 10.1021/acsomega.1c03879 [4] TEH C Y, BUDIMAN P M, SHAK K P Y, et al. Recent advancement of coagulation-flocculation and its application in wastewater treatment [J]. Industrial & Engineering Chemistry Research, 2016, 55(16): 4363-4389. [5] LIU C, WU T, HSU P C, et al. Direct/alternating current electrochemical method for removing and recovering heavy metal from water using graphene oxide electrode [J]. ACS Nano, 2019, 13(6): 6431-6437. doi: 10.1021/acsnano.8b09301 [6] 黄峥, 黄泽界, 杨莹. 茶叶机械化生产加工现状与思考 [J]. 农业工程与装备, 2021, 48(5): 10-12,26. doi: 10.3969/j.issn.1007-8320.2021.05.003 HUANG Z, HUANG Z J, YANG Y. Current situation and consideration of tea mechanization production and processing [J]. Agricultural Engineering and Equipment, 2021, 48(5): 10-12,26(in Chinese). doi: 10.3969/j.issn.1007-8320.2021.05.003
[7] PERUMAL S, ATCHUDAN R, YOON D H, et al. Spherical chitosan/gelatin hydrogel particles for removal of multiple heavy metal ions from wastewater [J]. Industrial & Engineering Chemistry Research, 2019, 58(23): 9900-9907. [8] 王威振, 陈颢明, 闵芳芳, 等. 不同部位梧桐生物质炭对水溶液中镉吸附的机理 [J]. 环境化学, 2022, 41(1): 327-339. doi: 10.7524/j.issn.0254-6108.2020082701 WANG W Z, CHEN H M, MIN F F, et al. Mechanism of cadmium adsorption by biochar from different parts of platanus acerifolia in aqueous solution [J]. Environmental Chemistry, 2022, 41(1): 327-339(in Chinese). doi: 10.7524/j.issn.0254-6108.2020082701
[9] 刘爽, 汪东风, 徐莹. 磷酸活化茶渣生物炭对铅的吸附性能影响和吸附机理研究 [J]. 中国海洋大学学报(自然科学版), 2022, 52(1): 56-64. doi: 10.16441/j.cnki.hdxb.20210070 LIU S, WANG D F, XU Y. Studies on lead adsorption performance of phosphoric acid activated tea residue biochar and associating mechanism [J]. Periodical of Ocean University of China, 2022, 52(1): 56-64(in Chinese). doi: 10.16441/j.cnki.hdxb.20210070
[10] 焦天宇, 王宇宁, 向巧灵, 等. 左氧氟沙星/壳聚糖/聚乙烯醇纳米纤维膜的制备与抑菌性能研究 [J]. 化学与粘合, 2022, 44(1): 32-38. doi: 10.3969/j.issn.1001-0017.2022.01.009 JIAO T Y, WANG Y N, XIANG Q L, et al. Preparation and antibacterial properties of levofloxacin/chitosan/polyvinyl alcohol nanofibrous membrane [J]. Chemistry and Adhesion, 2022, 44(1): 32-38(in Chinese). doi: 10.3969/j.issn.1001-0017.2022.01.009
[11] 刘珊, 赵春朋, 李涛, 等. 改性壳聚糖凝胶球对Cu(Ⅱ)的吸附 [J]. 环境化学, 2020, 39(7): 2013-2021. doi: 10.7524/j.issn.0254-6108.2019051303 LIU S, ZHAO C P, LI T, et al. Adsorption of Cu(Ⅱ) by modified chitosan gel ball [J]. Environmental Chemistry, 2020, 39(7): 2013-2021(in Chinese). doi: 10.7524/j.issn.0254-6108.2019051303
[12] SHARMA P, SINGH A K, SHAHI V K. Selective adsorption of Pb(II) from aqueous medium by cross-linked chitosan-functionalized graphene oxide adsorbent [J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1427-1436. [13] JIN L, BAI R B. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads [J]. Langmuir, 2002, 18(25): 9765-9770. doi: 10.1021/la025917l [14] 何春晓. 分光光度法测定水中铅的含量 [J]. 山东化工, 2018, 47(18): 62-63,67. doi: 10.3969/j.issn.1008-021X.2018.18.027 HE C X. Determination of lead in water by spectrophotometry [J]. Shandong Chemical Industry, 2018, 47(18): 62-63,67(in Chinese). doi: 10.3969/j.issn.1008-021X.2018.18.027
[15] 刘晶. 金属离子在典型铁氧化物表面的吸附、氧化/还原及结晶生长研究[D]. 广州: 中国科学院大学(中国科学院广州地球化学研究所), 2019. LIU J. The ad/desorption, redox, and crystallization of metals on typical iron (oxyhydr) oxides[D]. Guangzhou: Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 2019 (in Chinese).
[16] 李婷婷. 壳聚糖衍生材料制备及其对水中铅和酸性橙7的吸附机理研究[D]. 长沙: 湖南大学, 2016. LI T T. Synthesis of chitosan derived materials and their adsorption mechanisms for Pb(Ⅱ) and acid orange 7 from aqueous solutions[D]. Changsha: Hunan University, 2016 (in Chinese).
[17] 龚新怀, 李明春, 杨坤, 等. 纳米Fe3O4@茶渣/海藻酸钙磁性复合材料制备及其对亚甲基蓝的吸附性能与吸附机制 [J]. 复合材料学报, 2021, 38(2): 424-438. GONG X H, LI M C, YANG K, et al. Preparation of nano-Fe3O4@tea waste/calcium alginate magnetic composited bead and it’s adsorption characteristics and mechanisms for methylene blue from aqueous solution [J]. Acta Materiae Compositae Sinica, 2021, 38(2): 424-438(in Chinese).