-
磷在生物圈地球化学循环中具有重要作用,其对水生态系统的初级生产力具有重要作用,磷的增加是造成水体富营养化的重要指标[1-3]. 现有研究表明,磷是我国地表水环境中最常见的污染指标,也是造成水体特别是湖库富营养化的主要限制性因子[4-5]. 水体中的磷营养盐来源包括外源和内源,外源性输入和内源性释放是磷迁移转化重要方式[6]. 磷的外源性输入主要分为工业源、农业源和生活源,一般通过区域降雨降尘,排污和地表径流,船舶航行和旅游,湖区养殖投饵等方式进入水体,其中径流输入是外源性输入的最大负荷;内源性输入主要来源沉积物释放和生物死亡分解. 磷元素进入水体中后,主要在沉积物和水体之间进行迁移转化[7-9]. 与湖泊相比,河流具有流动特性,所以磷在表层水—孔隙水—沉积物中迁移转化更加复杂[10-12]. 因此,研究浅水河流不同介质中磷的分布特征及其迁移转化规律,对于河道水生态环境整治具有重要意义[13-15]. 从近年监测结果来看,典农河作为黄河宁夏段排水量最大、流域最长、水质最复杂的入黄河流,其水质整体有所改善,但极不稳定,沟渠关系复杂,水质时空差异较大,夏秋季节农业退水时段水质较好,春冬季节基流小水质差,上游污染物排放量大,下游污染物削减量小,区域性污染特征明显,特别是磷污染一直未彻底解决[16-17].
本研究通过相关性分析、聚类分析、多元回归分析等多元统计方法,基于“十二五”和“十三五”(2011—2020 年)10年典农河流域磷在水—泥不同介质中变化特征,试图探究典农河水质磷污染现状及变化特征,识别水体污染驱动因子,探究水质差异及影响因素,以期为典农河水质稳定改善及流域监管提供参考,同时也为西北干旱地区排水沟污染研究提供技术方案.
宁夏典农河磷污染特征探究
Study on phosphorus pollution characteristics of Dianong River in Ningxia
-
摘要: 在西北高寒、高旱、高碱水体不同介质中,磷元素的迁移转化和污染释放对流域水生态环境质量影响较大. 为揭示典农河流域磷污染水平和迁移转化规律,本次研究对典农河重点区域的表层水、孔隙水和沉积物中TP 开展监测分析,同时调查流域历史磷变化. 结果表明,2011—2020年,典农河流域10个监测点位水质监测磷浓度变化范围为0.09—1.91 mg·L−1,标准偏差达到0.03—1.00 mg·L−1. 2020年典农河水体总磷 ρ(TP)呈明显的季节性变化,从平均值来看,夏季(0.29 mg·L−1)>冬季(0.19 mg·L−1)>秋季(0.18 mg·L−1)=春季(0.18 mg·L−1),总磷环境质量月度污染水平Ⅰ—Ⅲ 类比例为70%,劣V类比例为10%,而本次研究的沉积物表层水整体为Ⅳ类水质,ρ(TP)浓度范围为0.091—0.528 mg·L−1,标准偏差达到0.135 mg·L−1,其中 Ⅰ—Ⅲ类比例为50%,劣V类比例为10%,沉积物孔隙水整体为劣V类水质,ρ(TP)浓度范围为0.246—0.981 mg·L−1,劣V类比例达到80%. 表层水和沉积物孔隙水 Y表层水=0.622X孔隙水–0.1097 (r=0.8541),与国内现有研究结果相比,典农河表层沉积物中不同形态的磷OP和NAIP相对偏低,AP和IP相对较高,ω(AP)与ω(NAIP)、ω(IP)与ω(NAIP)、ω(IP)与ω(AP)、ω(TP)与ω(NAIP)、ω(TP)与ω(AP)、ω(TP)与ω(IP)均存在较强的正相关性. 无论是基于磷吸附指数(PSI)和磷吸附饱和度(DPS)的磷释放风险评估,还是基于最大吸附量和沉积物中磷饱和度(SPS)的磷释放风险评估,均显示该区已处于磷污染风险区域,后期需要加强源头管控,减少磷污染物排放.Abstract: In the high-cold, high-drought and high-alkali water bodies in northwest China, the migration and transformation of phosphorus and the release of pollutants both had a special impact on the quality of water ecological environment. To reveal the migration and transformation of phosphorus, the historical phosphorus changes were analyzed and the TP concentrations in the overlying water, interstitial water, and sediments of the entire lake in the Diannong River were studied. Results showed that the concentrations of phosphorus of the 10 monitoring points ranged from 0.09 mg·L−1 to 1.91 mg·L−1 from 2011 to 2020, with the standard deviation of 0.03—1.00 mg·L−1. In 2020, the average total phosphorus ρ (TP) showed obvious seasonal changes of “summer (0.29 mg·L−1)> winter (0.19 mg·L−1)> autumn (0.18 mg·L−1)=spring (0.18 mg·L−1)”. Compared with GB 3838—2002, 70% of the concentration of total phosphorus showed Class Ⅰ—Ⅲ, and 10% of the concentration of total phosphorus showed inferior Class Ⅴ. In addition, the overall surface water showed Class Ⅳ, and the ρ(TP) concentration ranged from 0.091 mg·L−1 to 0.528 mg·L−1 with the standard deviation of 0.135 mg·L−1. Among them, the proportion of ρ (TP) of the overlying water showing class Ⅰ—Ⅲ and inferior class Ⅴ reached 50% and 10%, respectively. The ρ(TP) of the overall sediment pore was 0.246—0.981 mg·L−1, showing a proportion of 80% of inferior class Ⅴ water quality. Further, the relationship between the surface water and sediment pore water showed high with YSurface water=0.622Xpore water–0.1097 (r=0.8541). Compared with the morphological phosphorus in the surface sediments of some domestic rivers and lakes, the OP and NAIP are relatively low and AP and IP are relatively high. There are strong positive correlations between ω(AP) and ω(NAIP), ω(IP) and ω(NAIP), ω(IP) and ω (AP), ω (TP) ω(NAIP), ω(TP) and ω(AP), and ω(TP) and ω(IP), respectively. Weather based on the PSI and DPS or the maximum adsorption capacity and SPS, the phosphorus release risk assessment statistics all showed the phosphorus pollution posing a risk to the water quality of Diannong River. To reduce the emission of phosphorus pollutants, the source control is urgently needed.
-
Key words:
- phosphorus /
- sediments /
- morphological analysis /
- risk assessment /
- Ningxia
-
表 1 典农河流域历年磷污染水平统计表(mg·L−1)
Table 1. Statistics of phosphorus pollution levels in the Diannong River Basin over the years (mg·L−1)
Site-1 Site-2 Site-3 Site-4 Site-5 Site-6 Site-7 Site-8 Site-9 Site-10 2011年 0.21 — — 0.22 0.27 — 0.91 0.83 0.32 0.53 2012年 0.19 — — 0.34 0.19 — 0.38 0.45 0.26 0.19 2013年 0.51 — — 0.67 0.40 — 1.26 0.96 0.44 0.56 2014年 0.47 — — 0.44 0.31 — 1.91 1.27 0.25 0.17 2015年 0.24 — — 0.25 0.17 — 0.57 0.50 0.27 0.40 2016年 0.70 — — 0.44 0.50 — 1.00 0.59 0.09 0.43 2017年 0.28 — — 0.48 0.40 — 0.70 0.60 0.19 0.45 2018年 0.42 — — 0.81 0.32 — 0.71 0.74 0.16 0.38 2019年 0.11 0.09 0.19 0.19 0.32 0.37 0.39 0.30 0.09 0.17 2020年 0.17 0.15 0.14 0.18 0.39 0.26 0.25 0.30 0.09 0.17 最小值 0.11 0.09 0.14 0.18 0.17 0.26 0.25 0.3 0.09 0.17 最大值 0.7 0.15 0.19 0.81 0.5 0.37 1.91 1.27 0.44 0.56 标准偏差 0.18 0.03 0.03 0.20 0.10 0.06 1.00 0.29 0.11 0.15 年均值 0.33 0.12 0.17 0.40 0.33 0.32 0.81 0.65 0.22 0.35 备注:Site-2、Site-3、Site-6为新增监测点位,自2019年开始监测.
Remarks: Site-2, Site-3, and Site-6 are newly added monitoring points, which have been monitored since 2019.表 2 典农河流域水体总磷统计表(mg·L−1)
Table 2. Statistical table of total phosphorus in the water body of Diannong River Basin (mg·L−1)
Site-1 Site-2 Site-3 Site-4 Site-5 Site-6 Site-7 Site-8 Site-9 Site-10 最小值
Min最大值
Max年均值
Average1月 0.09 0.08 0.1 0.3 0.14 0.12 0.19 0.2 0.05 0.24 0.05 0.3 0.15 2月 0.09 0.11 0.14 0.16 0.14 0.12 0.26 0.24 0.08 0.20 0.08 0.26 0.15 3月 0.18 0.13 0.11 0.08 0.73 0.28 0.24 0.17 0.12 0.23 0.08 0.73 0.23 春季 0.12 0.11 0.12 0.18 0.34 0.17 0.23 0.20 0.08 0.22 0.07 0.43 0.18 4月 0.23 0.08 0.07 0.45 0.65 0.88 0.29 0.36 0.21 0.29 0.07 0.88 0.35 5月 0.09 0.3 0.12 0.24 0.28 0.39 0.35 0.37 0.09 0.13 0.09 0.39 0.24 6月 0.13 0.27 0.26 0.08 0.56 0.23 0.27 0.56 0.07 0.3 0.07 0.56 0.27 夏季 0.15 0.22 0.15 0.26 0.50 0.50 0.30 0.43 0.12 0.24 0.08 0.61 0.29 7月 0.13 0.25 0.29 0.07 0.48 0.17 0.29 0.24 0.08 0.12 0.07 0.48 0.21 8月 0.10 0.06 0.12 0.12 0.56 0.23 0.23 0.39 0.11 0.09 0.06 0.56 0.20 9月 0.10 0.08 0.1 0.11 0.16 0.27 0.17 0.2 0.06 0.07 0.06 0.27 0.13 秋季 0.11 0.13 0.17 0.10 0.40 0.22 0.23 0.28 0.08 0.09 0.06 0.44 0.18 10月 0.26 0.11 0.14 0.16 0.38 0.14 0.19 0.22 0.06 0.07 0.06 0.38 0.17 11月 0.56 0.13 0.11 0.19 0.47 0.12 0.29 0.54 0.09 0.14 0.09 0.56 0.26 12月 0.07 0.08 0.07 0.19 0.12 0.13 0.2 0.14 0.05 0.2 0.05 0.2 0.13 冬季 0.30 0.11 0.11 0.18 0.32 0.13 0.23 0.30 0.07 0.14 0.07 0.38 0.19 超标率/% 8.3 8.3 0 8.3 58 17 8.3 42 0 0 — — — 最小值 0.07 0.06 0.07 0.07 0.12 0.12 0.17 0.14 0.05 0.07 0.05 0.2 0.13 最大值 0.56 0.3 0.29 0.45 0.73 0.88 0.35 0.56 0.21 0.3 0.09 0.88 0.35 标准偏差 0.13 0.08 0.07 0.11 0.21 0.40 0.05 0.13 0.04 0.08 0.01 0.20 0.06 年均值 0.17 0.14 0.14 0.18 0.39 0.25 0.25 0.30 0.09 0.17 0.07 0.46 0.21 表 3 典农河流域水体和沉积物中不同形态磷的相关性分析
Table 3. Correlation analysis of different forms of phosphorus in water and sediments in the Diannong River Basin
表层水
Site孔隙水
Surface waterNAIP AP IP OP TP 表层水 1 0.924** 0.606 0.435 0.531 0.155 0.532 孔隙水 0.924** 1 0.405 0.203 0.290 0.250 0.336 NAIP 0.606 0.405 1 0.658* 0.875** −0.077 0.862** AP 0.435 0.203 0.658* 1 0.907** −0.297 0.791** IP 0.531 0.290 0.875** 0.907** 1 −0.256 0.901** OP 0.155 0.250 −0.077 −0.297 −0.256 1 0.127 TP 0.532 0.336 0.862** 0.791** 0.901** 0.127 1 注:**相关显著水平为0.01(双尾),*相关显著水平为0.05(双尾). Note: ** Significant level of correlation 0.01 (double tail); * Significant level of correlation 0.05 (double tail). 表 4 主成分特征向量及累计贡献
Table 4. Principal component eigenvectors and cumulative contributions
表层水
Surface water孔隙水
Pore waterNAIP AP IP OP TP 贡献率/%
Contribution累计贡献率/%
Cumulative contribution主成分1 0.766 0.574 0.906 0.836 0.939 –0.057 0.913 59.356 59.356 主成分2 0.542 0.718 –0.083 –0.398 –0.321 0.735 –0.084 23.22 82.576 表 5 基于PSI和DPS的磷释放风险评价
Table 5. Risk assessment of phosphorus release based on PSI and DPS
采样点位
Sampling sitePSI DPS/% ERI/% Site-1 15 15 103 Site-2 11 29 38 Site-3 6 13 45 Site-4 6 21 29 Site-5 18 48 38 Site-6 32 65 50 Site-7 11 26 42 Site-8 17 38 44 Site-9 13 57 23 Site-10 11 33 34 平均值 14 35 45 表 6 不同水体表层沉积物中TP、最大吸附量和SPS比较
Table 6. Comparison of TP, maximum adsorption capacity and SPS in surface sediments of different water bodies
表 7 基于最大吸附量和SPS的磷释放风险评估
Table 7. Risk assessment of phosphorus release based on maximum adsorption and SPS
采样点位
Sampling siteQm/(mg·kg−1) SPS/% ERI/% Site-1 124 70 56 Site-2 168 54 32 Site-3 113 67 59 Site-4 156 58 37 Site-5 265 52 20 Site-6 432 56 13 Site-7 87 76 87 Site-8 265 52 20 Site-9 285 51 18 Site-10 184 58 32 平均值 208 59 37 -
[1] SØNDERGAARD M, JENSEN J P, JEPPESEN E. Internal phosphorus loading in shallow Danish lakes//Shallow Lakes’98[M]. Dordrecht: Springer Netherlands, 1999: 145-152. [2] 黄清辉, 王东红, 王春霞, 等. 沉积物中磷形态与湖泊富营养化的关系 [J]. 中国环境科学, 2003, 23(6): 583-586. HUANG Q H, WANG D H, WANG C X, et al. Relation between phosphorus forms in the sediments and lake eutrophication [J]. China Environmental Science, 2003, 23(6): 583-586(in Chinese).
[3] 朱广伟, 高光, 秦伯强, 等. 浅水湖泊沉积物中磷的地球化学特征 [J]. 水科学进展, 2003, 14(6): 714-719. ZHU G W, GAO G, QIN B Q, et al. Geochemical characteristics of phosphorus in sediments of a large shallow lake [J]. Advances in Water Science, 2003, 14(6): 714-719(in Chinese).
[4] SCHINDLER D W. Evolution of phosphorus limitation in lakes [J]. Science, 1977, 195(4275): 260-262. doi: 10.1126/science.195.4275.260 [5] 刘辉, 胡林娜, 朱梦圆, 等. 沉积物有效态磷对湖库富营养化的指示及适用性 [J]. 环境科学, 2019, 40(9): 4023-4032. LIU H, HU L N, ZHU M Y, et al. Applicability of bioavailable phosphorus in sediments to indicating trophic levels of lakes and reservoirs [J]. Environmental Science, 2019, 40(9): 4023-4032(in Chinese).
[6] 王子为, 钱昶, 张成波, 等. 伊逊河流域总磷污染来源解析 [J]. 环境科学研究, 2020, 33(10): 2290-2297. WANG Z W, QIAN C, ZHANG C B, et al. Source apportionment of total phosphorus pollution in yixun river basin [J]. Research of Environmental Sciences, 2020, 33(10): 2290-2297(in Chinese).
[7] 吴丰昌, 万国江. 泸沽湖沉积物-水界面扩散作用对上覆水体基本化学组成的影响 [J]. 环境科学, 1996, 17(1): 10-12. WU F C, WAN G J. The influence of diffusive processes on overlying waters at the sediment-water interface of lake Lugu [J]. Environmental Science, 1996, 17(1): 10-12(in Chinese).
[8] 金晓丹, 吴昊, 陈志明, 等. 长江河口水库沉积物磷形态、吸附和释放特性 [J]. 环境科学, 2015, 36(2): 448-456. JIN X D, WU H, CHEN Z M, et al. Phosphorus fractions, sorption characteristics and its release in the sediments of Yangtze Estuary reservoir, China [J]. Environmental Science, 2015, 36(2): 448-456(in Chinese).
[9] 龚春生, 范成新. 不同溶解氧水平下湖泊底泥-水界面磷交换影响因素分析 [J]. 湖泊科学, 2010, 22(3): 430-436. GONG C S, FAN C X. Effect factors analysis of phosphorus exchange across lake sediment-water interface under different dissolved oxygen concentration [J]. Journal of Lake Sciences, 2010, 22(3): 430-436(in Chinese).
[10] 刘焱见, 李大鹏, 李鑫, 等. 京杭大运河(苏州段)内源磷形态分布及其对扰动的响应 [J]. 环境科学学报, 2018, 38(1): 125-132. LIU Y J, LI D P, LI X, et al. Distribution of internal phosphorus and its response to disturbance in the Beijing-Hangzhou Grand Canal(Suzhou section) [J]. Acta Scientiae Circumstantiae, 2018, 38(1): 125-132(in Chinese).
[11] 王晓蓉, 华兆哲, 徐菱, 等. 环境条件变化对太湖沉积物磷释放的影响 [J]. 环境化学, 1996, 15(1): 15-19. WANG X R, HUA Z Z, XU L, et al. The effects of the environmental conditions on phosphorus release in lake sediments [J]. Environmental Chemistry, 1996, 15(1): 15-19(in Chinese).
[12] XIE L Q, XIE P, TANG H J. Enhancement of dissolved phosphorus release from sediment to lake water by Microcystis blooms—an enclosure experiment in a hyper-eutrophic, subtropical Chinese lake [J]. Environmental Pollution, 2003, 122(3): 391-399. doi: 10.1016/S0269-7491(02)00305-6 [13] 张梦舟, 徐曾和, 梁冰. 三峡库区香溪河流域磷矿废石磷素释放特性研究 [J]. 中国环境科学, 2016, 36(3): 840-848. doi: 10.3969/j.issn.1000-6923.2016.03.029 ZHANG M Z, XU Z H, LIANG B. Phosphorus release from phosphate waste rocks deposited in Xiangxi River watershed of Three Gorges Reservoir [J]. China Environmental Science, 2016, 36(3): 840-848(in Chinese). doi: 10.3969/j.issn.1000-6923.2016.03.029
[14] 曹承进, 秦延文, 郑丙辉, 等. 三峡水库主要入库河流磷营养盐特征及其来源分析 [J]. 环境科学, 2008, 29(2): 2310-2315. doi: 10.3321/j.issn:0250-3301.2008.02.007 CAO C J, QIN Y W, ZHENG B H, et al. Analysis of phosphorus distribution characters and their sources of the major input rivers of Three Gorges reservoir [J]. Environmental Science, 2008, 29(2): 2310-2315(in Chinese). doi: 10.3321/j.issn:0250-3301.2008.02.007
[15] 孙丽梅, 裘钱玲琳, 杨磊, 等. 长三角城郊樟溪流域水体氮磷分布特征及其影响因素 [J]. 生态毒理学报, 2018, 13(4): 30-37. doi: 10.7524/AJE.1673-5897.20180502001 SUN L M, QIU Q, YANG L, et al. Distribution of nitrogen and phosphorus and its influencing factors in zhangxi watershed of a peri-urban area in the Yangtze River Delta [J]. Asian Journal of Ecotoxicology, 2018, 13(4): 30-37(in Chinese). doi: 10.7524/AJE.1673-5897.20180502001
[16] TIAN Y W, HUANG Z L, XIAO W F. Reductions in non-point source pollution through different management practices for an agricultural watershed in the Three Gorges Reservoir Area [J]. Journal of Environmental Sciences, 2010, 22(2): 184-191. doi: 10.1016/S1001-0742(09)60091-7 [17] 杨丽慧, 王少丽, 阮本清, 等. 基于排水沟的宁夏银北灌区农田退水污染演变研究 [J]. 中国生态农业学报, 2015, 23(12): 1580-1587. doi: 10.13930/j.cnki.cjea.150445 YANG L H, WANG S L, RUAN B Q, et al. Evolution of drain-based research of irrigation return flow pollution in Yinbei Irrigation Area [J]. Chinese Journal of Eco-Agriculture, 2015, 23(12): 1580-1587(in Chinese). doi: 10.13930/j.cnki.cjea.150445
[18] RUBAN V, LÓPEZ-SÁNCHEZ J F, PARDO P, et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments: A synthesis of recent works [J]. Fresenius' Journal of Analytical Chemistry, 2001, 370(2/3): 224-228. [19] 郭晨辉, 刘利军, 孙晓杰, 等. 黄河甘宁蒙段表层沉积物中磷的释放风险评估 [J]. 环境污染与防治, 2021, 43(4): 486-491. doi: 10.15985/j.cnki.1001-3865.2021.04.016 GUO C H, LIU L J, SUN X J, et al. Risk assessment of phosphorus release from surface sediments in the Gansu, Ningxia and Inner Mongolia sections of the Yellow River [J]. Environmental Pollution & Control, 2021, 43(4): 486-491(in Chinese). doi: 10.15985/j.cnki.1001-3865.2021.04.016
[20] BACHE B W, WILLIAMS E G. A phosphate sorption index for soils [J]. Journal of Soil Science, 1971, 22(3): 289-301. doi: 10.1111/j.1365-2389.1971.tb01617.x [21] van der ZEE S E A T M, FOKKINK L G J, van RIEMSDIJK W H. A new technique for assessment of reversibly adsorbed phosphate [J]. Soil Science Society of America Journal, 1987, 51(3): 599-604. doi: 10.2136/sssaj1987.03615995005100030009x [22] 黄清辉, 王子健, 王东红, 等. 太湖表层沉积物磷的吸附容量及其释放风险评估 [J]. 湖泊科学, 2004, 16(2): 97-104. doi: 10.3321/j.issn:1003-5427.2004.02.001 HUANG Q H, WANG Z J, WANG D H, et al. Phosphorus sorption capacity of the surface sediment in the lake Taihu and risk assessment of phosphorus release [J]. Journal of Lake Science, 2004, 16(2): 97-104(in Chinese). doi: 10.3321/j.issn:1003-5427.2004.02.001
[23] ZHANG W Q, SHAN B Q, LI J, et al. Characteristics, distribution and ecological risk assessment of phosphorus in surface sediments from different ecosystems in Eastern China: A 31P-nuclear magnetic resonance study [J]. Ecological Engineering, 2015, 75: 264-271. doi: 10.1016/j.ecoleng.2014.11.055 [24] 王金南, 吴文俊, 蒋洪强, 等. 中国流域水污染控制分区方法与应用 [J]. 水科学进展, 2013, 24(4): 459-468. doi: 10.14042/j.cnki.32.1309.2013.04.008 WANG J N, WU W J, JIANG H Q, et al. Zoning methodology and application to China's watersheds for water pollution control [J]. Advances in Water Science, 2013, 24(4): 459-468(in Chinese). doi: 10.14042/j.cnki.32.1309.2013.04.008
[25] 生态环境部部长黄润秋在2021 年全国生态环境保护工作会议上的工作报告[EB/OL]. [2022-02-22] [26] 鲍林林, 李叙勇. 河流沉积物磷的吸附释放特征及其影响因素 [J]. 生态环境学报, 2017, 26(2): 350-356. doi: 10.16258/j.cnki.1674-5906.2017.02.023 BAO L L, LI X Y. Release and absorption characteristics of phosphorus in river sediment and their influential factors [J]. Ecology and Environmental Sciences, 2017, 26(2): 350-356(in Chinese). doi: 10.16258/j.cnki.1674-5906.2017.02.023
[27] 罗桂林, 田林锋. 基于WQI法的宁夏湖泊藻类爆发过程水环境质量变化及溯源探究 [J]. 环境化学, 2021, 40(7): 2073-2082. doi: 10.7524/j.issn.0254-6108.2020100301 LUO G L, TIAN L F. Study on water environmental quality change and source tracing of algae bloom in lakes of Ningxia based on WQI method [J]. Environmental Chemistry, 2021, 40(7): 2073-2082(in Chinese). doi: 10.7524/j.issn.0254-6108.2020100301
[28] 罗桂林, 田林锋, 陈月霞, 等. 基于多元统计的宁夏沙湖主要污染物季节性变化原因探究 [J]. 环境化学, 2018, 37(9): 2071-2080. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2017102602 LUO G L, TIAN L F, CHEN Y X, et al. Statistics based study on the seasonal variation of main pollutants in Shahu Lake, Ningxia [J]. Environmental Chemistry, 2018, 37(9): 2071-2080(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2017102602
[29] 付强, 尹澄清, 马允. 源头农业区不同类型水塘中水体沉积物磷吸附容量 [J]. 环境科学, 2005, 26(4): 70-76. doi: 10.13227/j.hjkx.2005.04.014 FU Q, YIN C Q, MA Y. Phosphorus sorption capacities of the pond sediments in a headstream agricultural watershed [J]. Environmental Science, 2005, 26(4): 70-76(in Chinese). doi: 10.13227/j.hjkx.2005.04.014
[30] LIU J Y, WANG H, YANG H J, et al. Detection of phosphorus species in sediments of artificial landscape lakes in China by fractionation and phosphorus-31 nuclear magnetic resonance spectroscopy [J]. Environmental Pollution, 2009, 157(1): 49-56. doi: 10.1016/j.envpol.2008.07.031 [31] WANG L L, YE M, LI Q S, et al. Phosphorus speciation in wetland sediments of Zhujiang (Pearl) river estuary, China [J]. Chinese Geographical Science, 2013, 23(5): 574-583. doi: 10.1007/s11769-013-0627-4