-
纳米金属氧化物(MeONPs)因具有良好的光学、磁性和电子性能,广泛应用于催化剂、传感器、光学材料、电气材料和磁性存储器等行业[1-4]. MeONPs可以长期漂浮在空气中,容易通过肺部吸入进入人体,并沉积在肺部深处,即肺泡区域[5-8]. 在肺泡区域,MeONPs可以直接与肺部表面活性物质(PS)接触[8-9]. PS由脂质(90%)和蛋白质(10%)组成,在哺乳动物中含量最多的是二棕榈酰磷脂酰胆碱(DPPC),约占PS总质量的40%[10-11]. PS在与MeONPs接触后,会吸附在MeONPs表面形成脂质冠. 已有研究表明,对于聚苯乙烯纳米粒子,随着其表面吸附PS的增加,扁平型肺泡Ⅱ型上皮细胞对纳米粒子的细胞摄取量也呈现增加趋势[12]. 此外也有研究表明,由于金红石型 TiO2( TiO2-R) 比锐钛矿型 TiO2 (TiO2-A)对脂质的吸附能力更强,使TiO2-R更易破坏小鼠巨噬细胞的溶酶体膜进而导致细胞调亡[13]. 因此,MeONPs对脂质的吸附量将会影响MeONPs的细胞摄取和毒性[5,12].
近年来,有关纳米粒子对脂质吸附能力影响因素的研究备受关注. Konduru等[14]的研究表明,由于CeO2纳米粒子的疏水性高于Si-CeO2、ZnO和BaSO4纳米粒子,使得其对小鼠PS吸附量高于其他3种纳米粒子. Luo等[15]通过分子动力学研究发现,随着石墨烯纳米片长度的增加,其对PS的吸附量呈线性增加. 此外,Luo等[16]还发现与立方体和球形碳纳米粒子相比,长方体和四面体碳纳米粒子吸附PS量显著增加,并导致PS层破裂. 因此,MeONPs的疏水性、尺寸、形状等理化性质都是影响脂质吸附能力的重要因素.
目前关于MeONPs对脂质吸附的定量研究十分匮乏,前人研究涉及的MeONPs种类非常有限,仅包括:TiO2-R 、TiO2-A 、CeO2、Si-CeO2、ZnO、Fe2O3[13-14,17-18]. 但由于合成MeONPs种类(化学组成、晶体构型和尺寸上具有差异)不断增多,逐一进行吸附实验测定成本高且耗时. 因此,需要建立一种定量预测MeONPs对脂质吸附量的模型,阐明MeONPs与脂质吸附的相互作用机制.
本研究将利用超声分散法制备的DPPC囊泡与25种不同晶型和粒径的MeONPs孵育,达到吸附平衡后,通过高效液相色谱串联质谱联用仪(LC-MS/MS)定量测定了DPPC的吸附量,分析了影响DPPC吸附的关键因素. 引入MeONPs对磷酸盐的吸附量作为描述符,并结合MeONPs实验测定理化性质及元素周期表描述符,构建了MeONPs对脂质吸附量的定量预测模型,揭示了影响MeONPs对脂质吸附量的关键因素.
纳米金属氧化物对脂质吸附能力的定量预测模型
Prediction model of the adsorption capacity of metal oxide nanoparticles for lipids
-
摘要: 纳米金属氧化物(MeONPs)对肺部表面活性物质(PS)的主要成分脂质的吸附量,是影响呼吸暴露生物效应的重要因素. 目前关于MeONPs对脂质吸附的定量研究十分有限. MeONPs种类繁多,有必要构建MeONPs对脂质吸附量的预测模型. 本研究利用二棕榈酰磷脂酰胆碱(DPPC)囊泡模拟PS,测定25种MeONPs对DPPC的吸附量,建立了可预测MeONPs对DPPC吸附量的模型. 结果显示,预测模型具有良好的拟合度、稳健性和预测能力(
$ R^2_{\rm{adj}} $ = 0.79,$ Q^2_{\rm{cv}} $ = 0.74,$ Q^2_{\rm{ext}} $ = 0.86). 机理解释表明,DPPC头部的磷酸基团是稀土金属氧化物吸附DPPC的重要位点,且MeONPs的金属元素电负性和金属元素质量百分比共同影响DPPC的吸附. 本研究建立的预测模型不仅为MeONPs对脂质吸附能力评价提供了基础数据,还拓展了对脂质吸附机制的理解.Abstract: Adsorption capacity of metal oxide nanoparticles (MeONPs) for lipids that are the main components of pulmonary surfactant (PS), is an important factor affecting the biological effect of nanoparticles entering the human body through the respiratory tract. At present, studies on the adsorption capacity of MeONPs for lipids are very limited. Due to the increasing variety of synthetic MeONPs, it is necessary to establish a model to predict the adsorption capacity of MeONPs for lipids. In this study, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) vesicles were used to simulate PS, and 25 kinds of MeONPs were incubated with DPPC to determine the adsorption capacity of MeONPs for DPPC. The model for predicting the adsorption capacity of MeONPs for DPPC was established based on the experimental data. The results show that the prediction model exhibits satisfactory goodness of fit, robustness and predictive ability ($R^2_{\rm{adj}} $ = 0.79,$ Q^2_{\rm{cv}} $ = 0.74,$ Q^2_{\rm{ext}} $ = 0.86). The explanation of the mechanism suggests that the phosphoric groups in the head of DPPC are important adsorption sites of rare earth metal oxides for DPPC, and the electronegativity of metal elements and the mass percentage of metal elements jointly affect the adsorption capacity of MeONPs for DPPC. The prediction model established in this study not only provides basic data for the evaluation of the adsorption capacity of MeONPs for lipids, but also expands the understanding of the adsorption mechanism of MeONPs for lipids.-
Key words:
- metal oxide nanoparticles /
- lipids /
- pulmonary surfactant /
- adsorption /
- prediction model.
-
-
[1] BASANT N, GUPTA S. Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides [J]. Nanotoxicology, 2017, 11(3): 339-350. doi: 10.1080/17435390.2017.1302612 [2] KIM T, HYEON T. Applications of inorganic nanoparticles as therapeutic agents [J]. Nanotechnology, 2014, 25(1): 012001. doi: 10.1088/0957-4484/25/1/012001 [3] LI Y, YU S L, YUAN T Z, et al. Rational design of metal oxide nanocomposite anodes for advanced lithium ion batteries [J]. Journal of Power Sources, 2015, 282: 1-8. doi: 10.1016/j.jpowsour.2015.02.016 [4] ZHAO Z H, TIAN J, SANG Y H, et al. Structure, synthesis, and applications of TiO2 nanobelts [J]. Advanced Materials, 2015, 27(16): 2557-2582. doi: 10.1002/adma.201405589 [5] KAPRALOV A A, FENG W H, AMOSCATO A A, et al. Adsorption of surfactant lipids by single-walled carbon nanotubes in mouse lung upon pharyngeal aspiration [J]. ACS Nano, 2012, 6(5): 4147-4156. doi: 10.1021/nn300626q [6] ZHAO Q, LI Y J, CHAI X L, et al. Interaction of pulmonary surfactant with silica and polycyclic aromatic hydrocarbons: Implications for respiratory health [J]. Chemosphere, 2019, 222: 603-610. doi: 10.1016/j.chemosphere.2019.02.002 [7] KIM K H, KABIR E, KABIR S. A review on the human health impact of airborne particulate matter [J]. Environment International, 2015, 74: 136-143. doi: 10.1016/j.envint.2014.10.005 [8] RAESCH S S, TENZER S, STORCK W, et al. Proteomic and lipidomic analysis of nanoparticle Corona upon contact with lung surfactant reveals differences in protein, but not lipid composition [J]. ACS Nano, 2015, 9(12): 11872-11885. doi: 10.1021/acsnano.5b04215 [9] MONOPOLI M P, ÅBERG C, SALVATI A, et al. Biomolecular coronas provide the biological identity of nanosized materials [J]. Nature Nanotechnology, 2012, 7(12): 779-786. doi: 10.1038/nnano.2012.207 [10] PARRA E, PÉREZ-GIL J. Composition, structure and mechanical properties define performance of pulmonary surfactant membranes and films [J]. Chemistry and Physics of Lipids, 2015, 185: 153-175. doi: 10.1016/j.chemphyslip.2014.09.002 [11] GUAGLIARDO R, PÉREZ-GIL J, de SMEDT S, et al. Pulmonary surfactant and drug delivery: Focusing on the role of surfactant proteins [J]. Journal of Controlled Release, 2018, 291: 116-126. doi: 10.1016/j.jconrel.2018.10.012 [12] THORLEY A J, RUENRAROENGSAK P, POTTER T E, et al. Critical determinants of uptake and translocation of nanoparticles by the human pulmonary alveolar epithelium [J]. ACS Nano, 2014, 8(11): 11778-11789. doi: 10.1021/nn505399e [13] YU Q L, WANG H G, PENG Q, et al. Different toxicity of anatase and rutile TiO2 nanoparticles on macrophages: Involvement of difference in affinity to proteins and phospholipids [J]. Journal of Hazardous Materials, 2017, 335: 125-134. doi: 10.1016/j.jhazmat.2017.04.026 [14] KONDURU N V, DAMIANI F, STOILOVA-MCPHIE S, et al. Nanoparticle wettability influences nanoparticle-phospholipid interactions [J]. Langmuir, 2018, 34(22): 6454-6461. doi: 10.1021/acs.langmuir.7b03741 [15] LUO Z, LI S X, XU Y, et al. Extracting pulmonary surfactants to form inverse micelles on suspended graphene nanosheets [J]. Environmental Science:Nano, 2018, 5(1): 130-140. doi: 10.1039/C7EN00843K [16] LUO Z, LI S X, XU Y, et al. The role of nanoparticle shape in translocation across the pulmonary surfactant layer revealed by molecular dynamics simulations [J]. Environmental Science:Nano, 2018, 5(8): 1921-1932. doi: 10.1039/C8EN00521D [17] CHHODEN T, CLAUSEN P A, LARSEN S T, et al. Interactions between nanoparticles and lung surfactant investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2015, 29(11): 1080-1086. doi: 10.1002/rcm.7199 [18] WANG F, LIU J W. Liposome supported metal oxide nanoparticles: Interaction mechanism, light controlled content release, and intracellular delivery [J]. Small, 2014, 10(19): 3927-3931. doi: 10.1002/smll.201400850 [19] ZHANG X, PANDIAKUMAR A K, HAMERS R J, et al. Quantification of lipid Corona formation on colloidal nanoparticles from lipid vesicles [J]. Analytical Chemistry, 2018, 90(24): 14387-14394. doi: 10.1021/acs.analchem.8b03911 [20] BYLESJÖ M, RANTALAINEN M, CLOAREC O, et al. OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification [J]. Journal of Chemometrics, 2006, 20(8/9/10): 341-351. [21] SCHÜÜRMANN G, EBERT R U, CHEN J W, et al. External validation and prediction employing the predictive squared correlation coefficient test set activity mean vs training set activity mean [J]. Journal of Chemical Information and Modeling, 2008, 48(11): 2140-2145. doi: 10.1021/ci800253u [22] FATEMI M, GHORBANNEZHAD Z. Estimation of the volume of distribution of some pharmacologically important compounds from their structural descriptors [J]. Journal of the Serbian Chemical Society, 2011, 76(7): 1003-1014. doi: 10.2298/JSC101104091F [23] HUANG Y, LI X H, XU S J, et al. Quantitative structure-activity relationship models for predicting inflammatory potential of metal oxide nanoparticles [J]. Environmental Health Perspectives, 2020, 128(6): 67010. doi: 10.1289/EHP6508 [24] GRAMATICA P. Principles of QSAR models validation: Internal and external [J]. QSAR & Combinatorial Science, 2007, 26(5): 694-701. [25] 祁晓娟, 李雪花, 黄杨, 等. 预测农药植物角质层-水分配系数的LSER模型 [J]. 农药学学报, 2020, 22(2): 249-255. doi: 10.16801/j.issn.1008-7303.2020.0053 QI X J, LI X H, HUANG Y, et al. LSER model for predicting cuticle-water partition coefficients of pesticides [J]. Chinese Journal of Pesticide Science, 2020, 22(2): 249-255(in Chinese). doi: 10.16801/j.issn.1008-7303.2020.0053