-
在我国常见的慢性肾脏病中,糖尿病肾病(diabetic nephropathy,DN)位居第一,有研究报告指出,由DN导致的尿毒症高峰或将在20年内来临[1]. 糖尿病作为以高血糖为主要特点的慢性代谢性疾病,机体异常血糖环境可通过炎症反应、氧化应激、促凝血以及内皮功能障碍等引起一系列并发症[2],而DN作为糖尿病的严重微血管并发症之一[3],因其发病机制复杂、特异性药物较少和早期诊断缺乏,给我国带来了严重的经济负担和社会压力[4],据流行病学调查显示,随着我国糖尿病患病人数的增加和患病人群逐渐低龄化,约30%—40%的糖尿病患者合并DN[5]. 并且与无并发症糖尿病患者的平均222美元的治疗费用相比,DN患者的平均治疗费用高达603美元[6],DN已经成为值得关注的公共卫生问题. 相关研究表明,DN的发生发展是遗传因素和环境因素相互作用的结果[7],因此,从环境病因学入手探讨环境污染物暴露与DN的关联对DN发病机制研究和不同人群精准预防十分必要.
环境污染物是指进入环境后使环境的正常组成和性质发生直接或间接变化并对人体健康有害的物质,包括重金属、持久性有机污染物、农药和微塑料等一系列污染物[8]. 随着世界城市化进程的加快,日常生活环境中接触的空气、食物、水中均有污染物的存在,无疑增加了人们与环境暴露污染物的接触率. 环境污染物可通过各种方式影响生物进程,并损伤人体健康. Huang等[9]研究表示,随着机体内血清铅浓度的上升,其肾小球滤过率逐渐下降,揭示铅负荷对Ⅱ型糖尿病患者的进行性DN有长期影响. 一项嵌套病例对照研究显示[10],有机污染物与糖尿病具有相关性,但与其发生率并无明显关系,并且还指出多氯联苯等会增加DN死亡风险. Everett等[11]评估了1999—2004年全国健康和营养检查调查中血液中6种氯化二苯并二噁英、9种氯化二苯并呋喃和8种多氯联苯与DN的相关性,结果显示暴露于二噁英、呋喃和多氯联苯会导致DN的发生和(或)恶化. 虽然这些研究证明了环境污染物与DN发生发展甚至DN患者死亡率之间都存在关系,但是都通过DN的病理生理状态改变如肾小球滤过率下降、尿白蛋白水平增高和肾组织纤维化等最终指标进行评价,对于更微观的环境污染物如何干预DN的分子机制并没有解释[12]. 另外,现有的实验研究还存在样本缺乏[13]、环境污染物单一、多种环境污染物研究无法确认主次之分[10]和无法排除混杂因素[14]如基因变异、其他污染物影响以及药物使用等问题,而从基因层面入手对环境污染物进行分析,可以降低样本缺乏对结果的影响,以及解决研究环境污染物单一和无法确定多种环境污染物研究主次之分的缺陷,同时也不用担忧无法排除的混杂因素对结果的影响,从而更好的探明环境污染物与DN发生发展的关系.
生物信息学作为一门新兴交叉学科,其衍生出的包括基因组学、转录组学、蛋白组学等在内的一系列组学研究贯穿于疾病发生机制、药物研发、分子诊断以及疾病预防领域[15]. Van等[16]则通过蛋白质组学结合生物信息学探究了可以预测DN不同发展阶段的生物标志物,还有研究[17]则在生物信息学的基础上联合meta分析,确定了DN的易感基因及其富集的信号通路. 随后,环境污染物相关的生物信息学逐渐兴起. Verga等[18]通过生物信息学方法全基因组测序并分析了暴露于内分泌干扰物对动物及人的不良影响和分子途径. 还有研究[19]通过生物信息学方法构建了包含27个人体组织中检测到的380种环境污染物的人体组织特异性暴露体图谱,并进一步研究了污染物暴露与疾病的关系,揭示了疾病合并症的可能. 以上既往研究都表明了生物信息学方法用于研究多种环境污染物与疾病的相互关系及其分子作用机制的可行性,从而为通过生物信息学方法研究环境污染物暴露与DN的关联性提供了一定参考. 但是,以往研究并没有对多种环境污染物暴露影响疾病的轻重程度进行主次之分,得到的都是基于多种环境污染物的统一结果,并没有进行分类和下一步处理,这将无法区分哪种或者哪几种环境污染物对某疾病影响最严重,造成精准预防的失措. 另外,还有研究提出了通过生物信息学预测生物标志物以及在研究疾病环境病因学时提出环境污染物暴露引起原发疾病合并症的可能,但对于环境污染物暴露是否真的在原发疾病基础上诱发合并症的产生并没有深入的研究,甚至是原发病的生物标志物能否用于合并症的评估也不曾说明. 那么,如何在对不同来源的大数据样本进行挖掘获取其共同特征的同时,构建出需优先回避或干预的环境污染物清单及将其与DN和合并症联合起来共同研究是非常必要的.
故此,本研究将利用生物信息学方法在挖掘影响DN的全氟辛烷磺酸盐、双酚类、有机磷农药、有机氯农药等主要环境污染物的同时还对环境污染物影响DN的主要基因进行评估,预测其表达水平对DN合并肾癌的预后关系,这对环境污染物暴露影响DN研究及预防和早期筛查DN合并肾癌具有一定意义.
基于生物信息学分析研究环境污染物对糖尿病肾病的影响及其分子机制
Bioinformatics analysis of effects and molecular mechanism of environmental pollutants on diabetic nephropathy
-
摘要: 环境污染物是包括重金属、持久性有机污染物等在内一系列物质的总称,其可通过各种途径影响代谢类疾病及并发症的发生发展. 糖尿病肾病(DN)作为糖尿病最严重的微血管并发症之一,现已成为我国终末期肾病的主要病因. 本研究旨在探讨可作用于DN疾病变化进程的环境污染物及其调控机制,从而为糖尿病及DN患者精准预防和临床治疗提供一定理论依据. 通过Gene Expression Omnibus(GEO)和Comparative Toxicogenomics Database(CTD)数据库获取环境污染物影响DN的相关基因,其中经GEO数据库挖掘得到9个与DN相关联的数据集,标准化后筛选去重得到差异基因1326个,CTD数据库获得环境污染物影响DN的相关基因19557个,二者取交集得到共同基因1176个,利用DAVID数据库进行GO和KEGG富集分析,再将共同基因导入String数据库和Cytoscape软件获取关键基因,利用Metascape在线平台进行Mcode模块化分析,分析得出内分泌干扰物雌二醇、双酚A是影响DN的主要环境污染物,分子对接表明主要环境污染物与关键基因翻译后的蛋白结构结合活性良好,且主要通过LEU、LYS等氨基酸残基位点直接作用于关键基因蛋白. 最后,利用GEPIA在线平台验证Top20关键基因在肾透明细胞癌(KIRC)样本中的表达,并进行了Kaplan-Meier生存分析,其中8个显著表达基因与KIRC患者预后关系紧密,进一步探讨了环境污染物暴露介导的DN与肾癌关系. 综上,环境污染物可通过以中性粒细胞为核心的炎症反应诱发和促进DN,在影响DN病理生理进程的同时还对其合并肾癌存在诱发效应.Abstract: Environmental pollutants include heavy metals,persistent organic pollutants and so on,which can affect the occurrence and development of metabolic diseases and complications through various ways. Diabetic nephropathy (DN) is one of the most serious microvascular complications of diabetes,which has become the main cause of end-stage renal disease in China. This study aim to explore the environmental pollutants which play important role on the process of DN disease and its regulatory mechanisms its regulatory mechanisms,thus providing theoretical basis for the precise prevention and future clinical treatment of diabetes and DN patients. The related genes of environmental pollutants affecting DN were obtained through Gene Expression Omnibus(GEO)and Comparative Toxicogenomics Database(CTD)databases. Then,9 datasets associated with DN were obtained from the GEO database. After standardization,1326 differential genes were obtained by screening and deduplication. 19557 genes related to environmental pollutants affecting DN were obtained from the CTD database,and 1176 common genes were obtained between GEO and CTD database. Next,GO and KEGG enrichment analyses were conducted through DAVID database,and then the common genes were imported into String database and Cytoscope software to obtain key genes. Mcode modular analysis were performed using the Metascape online platform. The analysis showed that the endocrine disruptors estradiol and bisphenol A were the main environmental pollutants affecting DN. Molecular docking showed that the main environmental pollutants had strong binding activity with proteins structure of key genes,and they mainly acted directly through amino acid residues such as LEU and LYS. Finally,the expression of these Top20 key genes in kidney renal clear cell carcinoma (KIRC) sample was further verified using GEPIA online platform and Kaplan-Meier survival curves were constructed.The results showed that 7 significantly expressed genes were closely related to the prognosis of KIRC patients,and further explored the relationship between DN and renal cancer mediated by environmental pollutants exposure. In conclusion, environmental pollutants can induce and promote DN through the inflammatory response and neutrophils play an extremely important role in these process. Further,it also has an inducing effect on its concomitant kidney cancer while affecting the pathophysiological process of DN.
-
Key words:
- environmental pollutants /
- diabetic nephropathy /
- bioinformatics /
- estradiol /
- bisphenol A.
-
表 1 DN相关基因芯片数据集信息
Table 1. DN related gene chip datasets information
GSE登记号
Accession国家
Country取材组织
Sampling tissue年龄范围
Age性别及例数
Gebder and numberDN样本
DN sample非DN样本
Non-DN sampleGSE1009 荷兰 肾小球 29—70 4男 2 2 GSE142153 美国 外周血 26—71 19男/14女 23 10 GSE4117 日本 外周血 56—71 5男/2女 3 4 GSE47185 美国 GSE47183 GPL14663 肾组织 — — 7 61 GSE47184 GPL14663 肾组织 — — 11 53 GSE30122 美国 GSE30528 肾小球 39—78 12男/10女 9 13 GSE30529 肾小管 40—80 8男/14女 10 12 GSE46900 美国 GSE46899 足细胞 33—58 6男 2 4 GSE46897 足细胞 33—58 6男 2 4 表 2 影响Mcode模块的环境污染物
Table 2. Environmental pollutants affecting the Mcode module
模块
Mcode关键基因
Key genes污染物
PollutantsMcode1 CCR2、IFITM2、IFITM3、IFITM1、ITGA8、CXCR4、VWF、VCAM1、CXCL12、CXCL6、CCL20、CCL19、CCL5、PSMB8、MX1、CXCL9、KNG1、ITGB8、ITGB5、ITGB3、ITGB1、ITGAV、ITGA4、ITGA3、ISG20、IRF1、CXCL8、IFIT1、IRF8、ICAM1、HLA-F、HLA-E、HLA-DRB5、HLA-DRB1、HLA-DRA、HLA-DQB1、HLA-DPB1、HLA-DPA1、HLA-C、HLA-B、HLA-A、CXCL3、CXCL2、CXCL1、GBP2、IFI6、FN1、CX3CR1、COL6A3、COL5A2、COL4A6、COL4A5、COL4A3、COL4A2、COL4A1、COL3A1、COL1A2、CD44、C3、BST2、ANXA1 雌二醇、镉、双酚A、 四氯二苯并二噁英、 砷、颗粒物、铜、钴、镍、2,4,5,2',4',5'-六氯联苯、2,5,2',5'-四氯联苯、苯并芘、过氧化氢、石棉、车辆排放物、锌 Mcode2 VEGFA、CCL2、KDR、JAK1、IL10、IGF1、FYN、FLT1、EGF、VCAN、CSF2RB、CAV1 雌二醇、双酚A、镉、四氯二苯并二噁英、 砷、3,4,5,3',4'-五氯联苯、2,4,5,2',4',5'-六氯联苯、颗粒物、对苯二酚、尼古丁、苯并芘、锌 、石棉、钠 Mcode3 THBS2、THBS1、TGFBI、PTPRC、MMP9、LYN、LCP2、LCK、ITGB2、ITGAM、CD3D 雌二醇、双酚A、四氯二苯并二噁英、镉、钴、铁、尼古丁、砷、邻苯二甲酸二乙基己酯、3,4,5,3',4'-五氯联苯 Mcode4 SYK、MYCIKBKB、FAS、ANXA5、ANXA2、ACTB 雌二醇、氯化钴、尼古丁、钴、铁、过氧化氢、棕榈油 表 3 分子对接结合情况
Table 3. Molecular docking binding
污染物
Pollutants关键靶点
Key targets结合能/(kcal·mol−1)
Binding energy污染物
Pollutants关键靶点
Key targets结合能/(kcal·mol−1)
Binding energyEstradiol ACTB −6.19 Bisphenol A ACTB −5.22 VEGFA −6.65 VEGFA −6.08 CXCL8 −8.13 CXCL8 −7.41 CCL2 −6.72 CCL2 −5.47 FN1 −6.5 FN1 −4.59 EGF −6.99 EGF −6.69 MMP9 −7.62 MMP9 −7.5 IGF1 −6.54 IGF1 −5.17 PECAM1 −6.12 PECAM1 −5.21 CD44 −10.08 CD44 −6.86 CXCL12 −5.18 CXCL12 −4.59 ICAM1 −6.55 ICAM1 −5.9 HGF −7.82 HGF −5.36 SPP1 −7.14 SPP1 −6.54 CXCR4 −6.31 CXCR4 −5.06 CASP3 −6.96 CASP3 −6.17 IL1B −6.93 IL1B −5.21 TIMP1 −6.69 TIMP1 −4.52 IL10 −7.18 IL10 −5.45 PTPRC −5.69 PTPRC −5.02 -
[1] WANG F, YANG C, LONG J Y, et al. Executive summary for the 2015 annual data report of the China kidney disease network (CK-NET) [J]. Kidney International, 2019, 95(3): 501-505. doi: 10.1016/j.kint.2018.11.011 [2] DOMINGUETI C P, DUSSE L M S, CARVALHO M D G, et al. Diabetes mellitus: The linkage between oxidative stress, inflammation, hypercoagulability and vascular complications [J]. Journal of Diabetes and Its Complications, 2016, 30(4): 738-745. doi: 10.1016/j.jdiacomp.2015.12.018 [3] SAGOO M K, GNUDI L. Diabetic nephropathy: An overview [J]. Methods in Molecular Biology, 2020, 2067: 3-7. [4] LIU D W, LI Z Y, LIU Z S. Treatment of diabetic kidney disease: Research development, current hotspots and future directions [J]. Zhonghua Yi Xue Za Zhi, 2021, 101(10): 683-686. [5] BONNER R, ALBAJRAMI O, HUDSPETH J, et al. Diabetic kidney disease [J]. Primary Care:Clinics in Office Practice, 2020, 47(4): 645-659. doi: 10.1016/j.pop.2020.08.004 [6] GÜLÜMSEK E, KEŞKEK Ş Ö. Direct medical cost of nephropathy in patients with type 2 diabetes [J]. International Urology and Nephrology, 2022, 54(6): 1383-1389. doi: 10.1007/s11255-021-03012-4 [7] HOU Y, GAO Y, ZHANG Y, et al. Interaction between ELMO1 gene polymorphisms and environment factors on susceptibility to diabetic nephropathy in Chinese Han population [J]. Diabetology & Metabolic Syndrome, 2019, 11: 97. [8] LIU L, WU Q C, MIAO X Y, et al. Study on toxicity effects of environmental pollutants based on metabolomics: A review [J]. Chemosphere, 2022, 286: 131815. doi: 10.1016/j.chemosphere.2021.131815 [9] HUANG W H, LIN J L, LIN-TAN D T, et al. Environmental lead exposure accelerates progressive diabetic nephropathy in type II diabetic patients [J]. BioMed Research International, 2013, 2013: 742545. [10] GRICE B A, NELSON R G, WILLIAMS D E, et al. Associations between persistent organic pollutants, type 2 diabetes, diabetic nephropathy and mortality [J]. Occupational and Environmental Medicine, 2017, 74(7): 521-527. doi: 10.1136/oemed-2016-103948 [11] EVERETT C J, THOMPSON O M. Dioxins, furans and dioxin-like PCBs in human blood: Causes or consequences of diabetic nephropathy? [J]. Environmental Research, 2014, 132: 126-131. doi: 10.1016/j.envres.2014.03.043 [12] GONG P, WANG P P, PI S H, et al. Proanthocyanidins protect against cadmium-induced diabetic nephropathy through p38 MAPK and Keap1/Nrf2 signaling pathways [J]. Frontiers in Pharmacology, 2022, 12: 801048. doi: 10.3389/fphar.2021.801048 [13] LAWRENCE S M, CORRIDEN R, NIZET V. The ontogeny of a neutrophil: Mechanisms of granulopoiesis and homeostasis [J]. Microbiology and Molecular Biology Reviews:MMBR, 2018, 82(1): e00057-e00017. [14] TSAI H J, HUNG C H, WANG C W, et al. Associations among heavy metals and proteinuria and chronic kidney disease [J]. Diagnostics (Basel, Switzerland), 2021, 11(2): 282. [15] RAMHARACK P, SOLIMAN M E S. Bioinformatics-based tools in drug discovery: The cartography from single gene to integrative biological networks [J]. Drug Discovery Today, 2018, 23(9): 1658-1665. doi: 10.1016/j.drudis.2018.05.041 [16] VAN J A D, SCHOLEY J W, KONVALINKA A. Insights into diabetic kidney disease using urinary proteomics and bioinformatics [J]. Journal of the American Society of Nephrology:JASN, 2017, 28(4): 1050-1061. doi: 10.1681/ASN.2016091018 [17] TZIASTOUDI M, CHOLEVAS C, THEOHARIDES T C, et al. Meta-analysis and bioinformatics detection of susceptibility genes in diabetic nephropathy [J]. International Journal of Molecular Sciences, 2021, 23(1): 20. doi: 10.3390/ijms23010020 [18] VERGA J U, HUFF M, OWENS D, et al. Integrated genomic and bioinformatics approaches to identify molecular links between endocrine disruptors and adverse outcomes [J]. International Journal of Environmental Research and Public Health, 2022, 19(1): 574. doi: 10.3390/ijerph19010574 [19] RAVICHANDRAN J, KARTHIKEYAN B S, APARNA S R, et al. Network biology approach to human tissue-specific chemical exposome [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2021, 214: 105998. doi: 10.1016/j.jsbmb.2021.105998 [20] FILIPPI M D. Neutrophil transendothelial migration: Updates and new perspectives [J]. Blood, 2019, 133(20): 2149-2158. doi: 10.1182/blood-2018-12-844605 [21] ZHU Y Y, HUANG Y M, JI Q, et al. Interplay between extracellular matrix and neutrophils in diseases [J]. Journal of Immunology Research, 2021, 2021: 8243378. [22] POTO R, CRISTINZIANO L, MODESTINO L, et al. Neutrophil extracellular traps, angiogenesis and cancer [J]. Biomedicines, 2022, 10(2): 431. doi: 10.3390/biomedicines10020431 [23] MASUCCI M T, MINOPOLI M, del VECCHIO S, et al. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis [J]. Frontiers in Immunology, 2020, 11: 1749. doi: 10.3389/fimmu.2020.01749 [24] FEIGERLOVÁ E, BATTAGLIA-HSU S F. IL-6 signaling in diabetic nephropathy: From pathophysiology to therapeutic perspectives [J]. Cytokine & Growth Factor Reviews, 2017, 37: 57-65. [25] GEWIN L S. TGF-β and diabetic nephropathy: Lessons learned over the past 20 years [J]. The American Journal of the Medical Sciences, 2020, 359(2): 70-72. doi: 10.1016/j.amjms.2019.11.010 [26] CHEN Y L, QIAO Y C, XU Y, et al. Serum TNF-α concentrations in type 2 diabetes mellitus patients and diabetic nephropathy patients: A systematic review and meta-analysis [J]. Immunology Letters, 2017, 186: 52-58. doi: 10.1016/j.imlet.2017.04.003 [27] WINTER L, WONG L A, JERUMS G, et al. Use of readily accessible inflammatory markers to predict diabetic kidney disease [J]. Frontiers in Endocrinology, 2018, 9: 225. doi: 10.3389/fendo.2018.00225 [28] PLIYEV B K, KALINTSEVA M V, ABDULAEVA S V, et al. Neutrophil microparticles modulate cytokine production by natural killer cells [J]. Cytokine, 2014, 65(2): 126-129. doi: 10.1016/j.cyto.2013.11.010 [29] HORIKOSHI S, FUKUDA N, TSUNEMI A, et al. Contribution of TGF-β1 and effects of gene silencer pyrrole-imidazole polyamides targeting TGF-β1 in diabetic nephropathy [J]. Molecules, 2020, 25(4): 950. doi: 10.3390/molecules25040950 [30] NJEIM R, AZAR W S, FARES A H, et al. NETosis contributes to the pathogenesis of diabetes and its complications [J]. Journal of Molecular Endocrinology, 2020, 65(4): R65-R76. doi: 10.1530/JME-20-0128 [31] PATHOMTHONGTAWEECHAI N, CHUTIPONGTANATE S. AGE/RAGE signaling-mediated endoplasmic reticulum stress and future prospects in non-coding RNA therapeutics for diabetic nephropathy [J]. Biomedicine & Pharmacotherapy, 2020, 131: 110655. [32] NOWAK K, JABŁOŃSKA E, RATAJCZAK-WRONA W. Immunomodulatory effects of synthetic endocrine disrupting chemicals on the development and functions of human immune cells [J]. Environment International, 2019, 125: 350-364. doi: 10.1016/j.envint.2019.01.078 [33] BEZDECNY S A, ROTH R A, GANEY P E. Effects of 2, 2', 4, 4'-tetrachlorobiphenyl on granulocytic HL-60 cell function and expression of cyclooxygenase-2 [J]. Toxicological Sciences, 2005, 84(2): 328-334. doi: 10.1093/toxsci/kfi093 [34] FOWLER J, TSUI M T K, CHAVEZ J, et al. Methyl mercury triggers endothelial leukocyte adhesion and increases expression of cell adhesion molecules and chemokines [J]. Experimental Biology and Medicine , 2021, 246(23): 2522-2532. doi: 10.1177/15353702211033812 [35] KLEI L R, BARCHOWSKY A. Positive signaling interactions between arsenic and ethanol for angiogenic gene induction in human microvascular endothelial cells [J]. Toxicological Sciences, 2008, 102(2): 319-327. doi: 10.1093/toxsci/kfn003 [36] SHEARER J J, CALLAHAN C L, CALAFAT A M, et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma [J]. JNCI:Journal of the National Cancer Institute, 2020, 113(5): 580-587. [37] 李秀婷, 王军, 赵亮亮, 等. 环境内分泌干扰物与糖尿病发病关联的研究进展 [J]. 环境与健康杂志, 2018, 35(5): 465-469. doi: 10.16241/j.cnki.1001-5914.2018.05.024 LI X T, WANG J, ZHAO L L, et al. Environmental endocrine disruptors and diabetes: A review of recent studies [J]. Journal of Environment and Health, 2018, 35(5): 465-469(in Chinese). doi: 10.16241/j.cnki.1001-5914.2018.05.024
[38] 王航, 张李一, 张蕴晖. 主要环境内分泌干扰物疾病负担的研究进展 [J]. 环境与职业医学, 2021, 38(9): 1033-1043. doi: 10.13213/j.cnki.jeom.2021.20565 WANG H, ZHANG L Y, ZHANG Y H. Research progress on disease burdens of major environmental endocrine disruptors [J]. Journal of Environmental and Occupational Medicine, 2021, 38(9): 1033-1043(in Chinese). doi: 10.13213/j.cnki.jeom.2021.20565
[39] KOVÁCS T, SZABÓ-MELEG E, ÁBRAHÁM I M. Estradiol-induced epigenetically mediated mechanisms and regulation of gene expression [J]. International Journal of Molecular Sciences, 2020, 21(9): 3177. doi: 10.3390/ijms21093177 [40] YANG C, LIU X W, LI J, et al. Association of serum vitamin D and estradiol levels with metabolic syndrome in rural women of northwest China: A cross-sectional study [J]. Metabolic Syndrome and Related Disorders, 2022, 20(3): 182-189. doi: 10.1089/met.2021.0120 [41] CIMMINO I, FIORY F, PERRUOLO G, et al. Potential mechanisms of bisphenol A (BPA) contributing to human disease [J]. International Journal of Molecular Sciences, 2020, 21(16): 5761. doi: 10.3390/ijms21165761 [42] SINGH S, LI S S L. Epigenetic effects of environmental chemicals bisphenol A and phthalates [J]. International Journal of Molecular Sciences, 2012, 13(8): 10143-10153. doi: 10.3390/ijms130810143 [43] HU J B, YANG S M, WANG Y, et al. Serum bisphenol A and progression of type 2 diabetic nephropathy: A 6-year prospective study [J]. Acta Diabetologica, 2015, 52(6): 1135-1141. doi: 10.1007/s00592-015-0801-5 [44] MORENO-GÓMEZ-TOLEDANO R, ARENAS M I, MUÑOZ-MORENO C, et al. Comparison of the renal effects of bisphenol A in mice with and without experimental diabetes. Role of sexual dimorphism [J]. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease, 2022, 1868(1): 166296. doi: 10.1016/j.bbadis.2021.166296 [45] EDWARDS J R, PROZIALECK W C. Cadmium, diabetes and chronic kidney disease [J]. Toxicology and Applied Pharmacology, 2009, 238(3): 289-293. doi: 10.1016/j.taap.2009.03.007 [46] GOODMAN M, NARAYAN K M V, FLANDERS D, et al. Dose-response relationship between serum 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin and diabetes mellitus: A Meta-analysis [J]. American Journal of Epidemiology, 2015, 181(6): 374-384. doi: 10.1093/aje/kwu307 [47] FARKHONDEH T, SAMARGHANDIAN S, AZIMI-NEZHAD M. The role of arsenic in obesity and diabetes [J]. Journal of Cellular Physiology, 2019, 234(8): 12516-12529. doi: 10.1002/jcp.28112 [48] YAN L J, ALLEN D C. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism [J]. Biomolecules, 2021, 11(11): 1575. doi: 10.3390/biom11111575 [49] LI M Y, LIU X X, ZHANG Z L. Hyperglycemia exacerbates cadmium-induced glomerular nephrosis[J]. Toxicology and Industrial Health, 2021, 37(4): 074823372110378. . [50] JAIMES E A, ZHOU M S, SIDDIQUI M, et al. Nicotine, smoking, podocytes, and diabetic nephropathy [J]. American Journal of Physiology. Renal Physiology, 2021, 320(3): F442-F453. doi: 10.1152/ajprenal.00194.2020 [51] RASKING L, VANBRABANT K, BOVÉ H, et al. Adverse Effects of fine particulate matter on human kidney functioning: A systematic review [J]. Environmental Health:a Global Access Science Source, 2022, 21(1): 24. [52] LAN X Q, WEN H X, ASLAM R, et al. Nicotine enhances mesangial cell proliferation and fibronectin production in high glucose milieu via activation of Wnt/β-catenin pathway [J]. Bioscience Reports, 2018, 38(3): BSR20180100. doi: 10.1042/BSR20180100 [53] HUA P, FENG W G, JI S N, et al. Nicotine worsens the severity of nephropathy in diabetic mice: Implications for the progression of kidney disease in smokers [J]. American Journal of Physiology. Renal Physiology, 2010, 299(4): F732-F739. doi: 10.1152/ajprenal.00293.2010 [54] CHIN W S, CHANG Y K, HUANG L F, et al. Effects of long-term exposure to CO and PM2.5 on microalbuminuria in type 2 diabetes [J]. International Journal of Hygiene and Environmental Health, 2018, 221(4): 602-608. doi: 10.1016/j.ijheh.2018.04.009 [55] BAO C P, YANG X L, XU W L, et al. Diabetes mellitus and incidence and mortality of kidney cancer: A meta-analysis [J]. Journal of Diabetes and Its Complications, 2013, 27(4): 357-364. doi: 10.1016/j.jdiacomp.2013.01.004 [56] TSENG C H. Type 2 diabetes mellitus and kidney cancer risk: A retrospective cohort analysis of the national health insurance [J]. PLoS One, 2015, 10(11): e0142480. doi: 10.1371/journal.pone.0142480 [57] LUO Y M, LU Z Y, WAAGA-GASSER A M, et al. Modulation of calcium homeostasis may be associated with susceptibility to renal cell carcinoma in diabetic nephropathy rats [J]. Cancer Management and Research, 2020, 12: 9679-9689. doi: 10.2147/CMAR.S268402 [58] DONG Y Z, ZHAI W, XU Y F. Bioinformatic gene analysis for potential biomarkers and therapeutic targets of diabetic nephropathy associated renal cell carcinoma [J]. Translational Andrology and Urology, 2020, 9(6): 2555-2571. doi: 10.21037/tau-19-911 [59] YANG J F, SHI S N, XU W H, et al. Screening, identification and validation of CCND1 and PECAM1/CD31 for predicting prognosis in renal cell carcinoma patients [J]. Aging, 2019, 11(24): 12057-12079. doi: 10.18632/aging.102540 [60] KROEZE S G C, BIJENHOF A M, BOSCH J L H R, et al. Diagnostic and prognostic tissuemarkers in clear cell and papillary renal cell carcinoma [J]. Cancer Biomarkers:Section A of Disease Markers, 2010, 7(6): 261-268. [61] BERGLUND A, AMANKWAH E K, KIM Y C, et al. Influence of gene expression on survival of clear cell renal cell carcinoma [J]. Cancer Medicine, 2020, 9(22): 8662-8675. doi: 10.1002/cam4.3475 [62] WU F, WU S, GOU X. Identification of biomarkers and potential molecular mechanisms of clear cell renal cell carcinoma [J]. Neoplasma, 2018, 65(2): 242-252. doi: 10.4149/neo_2018_170511N342 [63] CHEN L, XIANG Z J, CHEN X R, et al. A seven-gene signature model predicts overall survival in kidney renal clear cell carcinoma [J]. Hereditas, 2020, 157(1): 38. doi: 10.1186/s41065-020-00152-y [64] YOUNG M J, CHEN Y C, WANG S A, et al. Estradiol-mediated inhibition of Sp1 decreases miR-3194-5p expression to enhance CD44 expression during lung cancer progression [J]. Journal of Biomedical Science, 2022, 29(1): 3. doi: 10.1186/s12929-022-00787-1 [65] WEI P, RU D Q, LI X Q, et al. Exposure to environmental bisphenol A inhibits HTR-8/SVneo cell migration and invasion [J]. Journal of Biomedical Research, 2020, 34(5): 369-378. doi: 10.7555/JBR.34.20200013 [66] SHI H F, SUN X, KONG A Q, et al. Cadmium induces epithelial-mesenchymal transition and migration of renal cancer cells by increasing PGE2 through a cAMP/PKA-COX2 dependent mechanism [J]. Ecotoxicology and Environmental Safety, 2021, 207: 111480. doi: 10.1016/j.ecoenv.2020.111480 [67] TOKAR E J, PERSON R J, SUN Y, et al. Chronic exposure of renal stem cells to inorganic arsenic induces a cancer phenotype [J]. Chemical Research in Toxicology, 2013, 26(1): 96-105. doi: 10.1021/tx3004054 [68] HUANG Y F, WANG Q Z, TANG Y, et al. Identification and validation of a cigarette smoke-related five-gene signature as a prognostic biomarker in kidney renal clear cell carcinoma [J]. Scientific Reports, 2022, 12: 2189. doi: 10.1038/s41598-022-06352-y