-
药品与个人护理用品(PPCPs)、内分泌干扰物质、除草剂等这些新污染物在水环境中的频繁检出,已经引起了世界范围的广泛关注[1-4]. 我国在《中共中央关于制定国民经济和社会发展第十四个五年规划和二〇三五年远景目标的建议》、生态环境部编制的《新污染物治理行动方案(征求意见稿)》以及2022年政府工作报告中均强调提出,要重视和加强新污染物治理,这也成为“十四五”生态环境保护工作重点.
传统的污水处理工艺、自来水处理工艺对这些难降解、高毒性、持久性新污染物的去除效能有限,自来水、饮用水中也时有检出抗生素等新污染物的报道,检出浓度甚至可达一百多ng·L−1[5]. 这就亟需发展新的水处理技术,降解水中新污染物,保障饮用水及水环境安全.
藻类作为天然水体中光合作用主体,其藻类有机物中的生色基团被发现是水中重要的天然光敏物质,能够在紫外光、太阳光的辐射下,吸收光子光敏化生成一系列活性物质,包括三重激发态、羟基自由基(·OH)、单线态氧(1O2)、超氧自由基(O2·−)等. 通过藻类有机物的这种光敏化效应,可以促进对水中残留抗生素、内分泌干扰物等新污染物的降解[6-12],因此微藻光敏化是一种清洁、低碳、有前景的新污染物降解技术. 但当前人们对藻类有机物光敏化效应及其应用方面尚未建立起较为全面的认识,也尚缺乏全面系统的相关综述报道. 本文在总结藻类有机物光敏结构特征的基础上,系统综述了藻类有机物光敏化效能及其光降解污染物的机理,总结了影响藻类有机物间接光降解效率的因素,对研究藻类光敏化高级氧化具有一定的参考价值.
藻类有机物光敏化效应及其降解水中新污染物的研究进展
Photosensitization of Algal organic matters(AOM) to degrade emerging contaminants:A review
-
摘要: 新污染物(又称新兴污染物)在水环境中频繁检出,引起全世界的广泛关注,如何去除水域中广泛分布的痕量水平新污染物,成为当前亟需解决的问题. 藻类分泌的有机物被光照激发后能产生活性物质降解水中的污染物,同时藻类具有固碳减排作用,因此微藻光敏化被认为是一种前景广阔的技术. 本文针对藻类有机物光敏化效应着重综述了藻类有机物的光敏结构特征、光敏化效能及藻类有机物光降解污染物的机制,并总结了影响藻类光敏化的因素,对后续发展藻光敏化技术提供借鉴参考.Abstract: New contaminants (also known as emerging contaminants) are frequently detected in water, which has aroused the concern of researchers worldwide. How to remove the trace levels of new pollutants widely distributed in water has become an urgent problem to be solved. The organic matter secreted by algae can be stimulated by light to produce the reactive species which can degrade pollutants in water. Meanwhile, algae have the role of carbon fixation and emission reduction. Therefore, microalgal photosensitization is considered to be a promising technology. In this paper, the photosensitive structural characteristics, the photosensitization efficiency of algal organic matter, and the photodegradation mechanism of pollutants were reviewed in view of the photosensitization effects of algal organic matter. In addition, the factors affecting algal photosensitization were also summarized, in order to provide references for the subsequent development of algal photosensitization technology.
-
Key words:
- algal organic matter /
- photosensitization /
- photodegradation /
- emerging contaminants.
-
表 1 藻类有机物光敏物质降解效能差异
Table 1. The different degradation efficiency of emerging contaminants by photosensitizer in algal organic matter
藻种
Algae目标污染物
Contaminants光源
Light sources光敏物质
Photosensitizer光敏物质浓度
Concentration去除效率
Removal efficiency速率常数
Rate constant活性物种
Reactive species贡献
Contribution参考文献
Reference铜绿微囊藻 敌草隆 紫外光 EOM 6 mg·L−1 98.7% (1.48±0.08)×
10−1 s−1— — [17] IOM 99.13% (1.58±0.05)×
10−1 s−1— — 可见光 EOM 39.75% (1.40±0.15)×
10−3 s−13EOM* 63.57% ·OH 50% IOM 34.06% (1.10±0.10)×
10−3 s−13IOM* 81.82% ·OH 27.27% 小球藻 金霉素 可见光
(310—780 nm)EOM 4 mg·L−1 95% 0.0317 min−1 3EOM* 93% [6, 21] 1O2 <7% 铜绿微囊藻 73.8% 0.0246 min−1 — — 栅藻 87% 0.0290 min−1 — — 小球藻 雌激素
(E2、EE2)可见光
(蓝色和红色LEDs)EOM — 100% 7.8 d−1 — — [18] 羊角月牙藻 100% 0.5 d−1 四尾栅藻 50% 0.09 d−1 小球藻 对乙酰氨基酚 模拟太阳光
(290—800 nm)EOM 5 mg·L−1
20 mg·L−1— 0.019 h−1
0.059 h−13EOM* 85% [35] ·OH 10.19% 1O2 4.81% IOM 5 mg·L−1
20 mg·L−1— 0.026 h−1
0.083 h−13IOM* 93.52% ·OH 5.60% 1O2 0.88% 铜绿微囊藻 藻毒素
(MC-LR)紫外光
(350 nm)藻蓝蛋白 340 mg·L−1 >80% (22.4±0.2)×
10−3 min−1三重态藻蓝蛋白 — [30] 羊角月牙藻 苯并芘 白光
(310—750 nm)叶绿素 1.1 μg·mL−1 98.2% 9.63×
10−6 s−11O2 — [8] -
[1] CHAVES M, BARBOSA S C, MALINOWSKI M M, et al. Pharmaceuticals and personal care products in a Brazilian wetland of international importance: Occurrence and environmental risk assessment [J]. The Science of the Total Environment, 2020, 734: 139374. doi: 10.1016/j.scitotenv.2020.139374 [2] FISCH K, ZHANG R F, ZHOU M, et al. PPCPs - A human and veterinary fingerprint in the Pearl River Delta and northern South China Sea [J]. Emerging Contaminants, 2021, 7: 10-21. doi: 10.1016/j.emcon.2020.11.006 [3] PAPAGEORGIOU M, ZIORIS I, DANIS T, et al. Comprehensive investigation of a wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece [J]. Science of the Total Environment, 2019, 694: 133565. doi: 10.1016/j.scitotenv.2019.07.371 [4] LIU S, WANG C, WANG P F, et al. Anthropogenic disturbances on distribution and sources of pharmaceuticals and personal care products throughout the Jinsha River Basin, China [J]. Environmental Research, 2021, 198: 110449. doi: 10.1016/j.envres.2020.110449 [5] LIU M, YIN H W, WU Q. Occurrence and health risk assessment of pharmaceutical and personal care products (PPCPs) in tap water of Shanghai [J]. Ecotoxicology and Environmental Safety, 2019, 183: 109497. doi: 10.1016/j.ecoenv.2019.109497 [6] TIAN Y J, ZOU J R, FENG L, et al. Chlorella vulgaris enhance the photodegradation of chlortetracycline in aqueous solution via extracellular organic matters (EOMs): Role of triplet state EOMs [J]. Water Research, 2019, 149: 35-41. doi: 10.1016/j.watres.2018.10.076 [7] ZHANG J W, FU D F, WU J L. Photodegradation of Norfloxacin in aqueous solution containing algae [J]. Journal of Environmental Sciences, 2012, 24(4): 743-749. doi: 10.1016/S1001-0742(11)60814-0 [8] LUO L J, LAI X Y, CHEN B W, et al. Chlorophyll catalyse the photo-transformation of carcinogenic benzo[a]Pyrene in water [J]. Scientific Reports, 2015, 5: 12776. doi: 10.1038/srep12776 [9] GE L Y, DENG H H, WU F, et al. Microalgae-promoted photodegradation of two endocrine disrupters in aqueous solutions [J]. Journal of Chemical Technology & Biotechnology, 2009, 84(3): 331-336. [10] DU Y X, WANG J, ZHU F Y, et al. Comprehensive assessment of three typical antibiotics on cyanobacteria (Microcystis aeruginosa): The impact and recovery capability [J]. Ecotoxicology and Environmental Safety, 2018, 160: 84-93. doi: 10.1016/j.ecoenv.2018.05.035 [11] 彭章娥, 冯劲梅, 何淑英, 等. 含藻水中壬基酚的光降解转化研究 [J]. 环境科学, 2012, 33(10): 3466-3472. doi: 10.13227/j.hjkx.2012.10.013 PENG Z G, FENG J M, HE S Y, et al. Study on the degradation and transformation of nonylphenol in water containing algae [J]. Environmental Science, 2012, 33(10): 3466-3472(in Chinese). doi: 10.13227/j.hjkx.2012.10.013
[12] ZEPP R G, SCHLOTZHAUER P F. Influence of algae on photolysis rates of chemicals in water [J]. Environmental Science & Technology, 1983, 17(8): 462-468. [13] QU F S, LIANG H, HE J G, et al. Characterization of dissolved extracellular organic matter (dEOM) and bound extracellular organic matter (bEOM) of Microcystis aeruginosa and their impacts on UF membrane fouling [J]. Water Research, 2012, 46(9): 2881-2890. doi: 10.1016/j.watres.2012.02.045 [14] HUANG Y R, LI H Z, WEI X M, et al. The effect of low frequency ultrasonic treatment on the release of extracellular organic matter of Microcystis aeruginosa [J]. Chemical Engineering Journal, 2020, 383: 123141. doi: 10.1016/j.cej.2019.123141 [15] MYKLESTAD S M. Release of extracellular products by phytoplankton with special emphasis on polysaccharides [J]. Science of the Total Environment, 1995, 165(1/2/3): 155-164. [16] HENDERSON R K, BAKER A, PARSONS S A, et al. Characterisation of algogenic organic matter extracted from cyanobacteria, green algae and diatoms [J]. Water Research, 2008, 42(13): 3435-3445. doi: 10.1016/j.watres.2007.10.032 [17] LI L, GUO H C, SHAO C, et al. Effect of algal organic matter (AOM) extracted from Microcystis aeruginosa on photo-degradation of Diuron [J]. Chemical Engineering Journal, 2015, 281: 265-271. doi: 10.1016/j.cej.2015.06.091 [18] WU P H, YEH H Y, CHOU P H, et al. Algal extracellular organic matter mediated photocatalytic degradation of estrogens [J]. Ecotoxicology and Environmental Safety, 2021, 209: 111818. doi: 10.1016/j.ecoenv.2020.111818 [19] ZUO Y T, WU J, CHENG S, et al. Identification of pterins as characteristic humic-like fluorophores released from cyanobacteria and their behavior and fate in natural and engineered water systems [J]. Chemical Engineering Journal, 2022, 428: 131154. doi: 10.1016/j.cej.2021.131154 [20] HUA L C, LIN J L, CHEN P C, et al. Chemical structures of extra- and intra-cellular algogenic organic matters as precursors to the formation of carbonaceous disinfection byproducts [J]. Chemical Engineering Journal, 2017, 328: 1022-1030. doi: 10.1016/j.cej.2017.07.123 [21] TIAN Y J, WEI L X, YIN Z, et al. Photosensitization mechanism of algogenic extracellular organic matters (EOMs) in the photo-transformation of chlortetracycline: Role of chemical constituents and structure [J]. Water Research, 2019, 164: 114940. doi: 10.1016/j.watres.2019.114940 [22] FANG J Y, YANG X, MA J, et al. Characterization of algal organic matter and formation of DBPs from chlor(am)ination [J]. Water Research, 2010, 44(20): 5897-5906. doi: 10.1016/j.watres.2010.07.009 [23] PIVOKONSKY M, SAFARIKOVA J, BARESOVA M, et al. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga [J]. Water Research, 2014, 51: 37-46. doi: 10.1016/j.watres.2013.12.022 [24] LEE D, KWON M, AHN Y, et al. Characteristics of intracellular algogenic organic matter and its reactivity with hydroxyl radicals [J]. Water Research, 2018, 144: 13-25. doi: 10.1016/j.watres.2018.06.069 [25] LEE E, GLOVER C M, ROSARIO-ORTIZ F L. Photochemical formation of hydroxyl radical from effluent organic matter: Role of composition [J]. Environmental Science & Technology, 2013, 47(21): 12073-12080. [26] STRAVS M A, POMATI F, HOLLENDER J. Exploring micropollutant biotransformation in three freshwater phytoplankton species [J]. Environmental Science. Processes & Impacts, 2017, 19(6): 822-832. [27] WANG L, ZHANG C B, WU F, et al. Photodegradation of aniline in aqueous suspensions of microalgae [J]. Journal of Photochemistry and Photobiology B:Biology, 2007, 87(1): 49-57. doi: 10.1016/j.jphotobiol.2006.12.006 [28] LUO L J, WANG P, LIN L, et al. Removal and transformation of high molecular weight polycyclic aromatic hydrocarbons in water by live and dead microalgae [J]. Process Biochemistry, 2014, 49(10): 1723-1732. doi: 10.1016/j.procbio.2014.06.026 [29] Govindjee, SHEVELA D. Adventures with cyanobacteria: A personal perspective [J]. Frontiers in Plant Science, 2011, 2: 28. [30] SONG W H, BARDOWELL S, O'SHEA K E. Mechanistic study and the influence of oxygen on the photosensitized transformations of microcystins (cyanotoxins) [J]. Environmental Science & Technology, 2007, 41(15): 5336-5341. [31] ROBERTSON P J, LAWTON L A, CORNISH B J P A. The involvement of phycocyanin pigment in the photodecomposition of the cyanobacterial toxin, microcystin-LR [J]. Journal of Porphyrins and Phthalocyanines, 1999, 3(67): 544-551. doi: 10.1002/(SICI)1099-1409(199908/10)3:6/7<544::AID-JPP173>3.3.CO;2-Z [32] PENG Z E, WU F, DENG N S. Photodegradation of bisphenol A in simulated lake water containing algae, humic acid and ferric ions [J]. Environmental Pollution, 2006, 144(3): 840-846. doi: 10.1016/j.envpol.2006.02.006 [33] LIU X L, WU F, DENG N S. Photodegradation of 17α-ethynylestradiol in aqueous solution exposed to a high-pressure mercury lamp (250 W) [J]. Environmental Pollution, 2003, 126(3): 393-398. doi: 10.1016/S0269-7491(03)00229-X [34] ZHAO F, ZHANG D, XU C Y, et al. The enhanced degradation and detoxification of chlortetracycline by Chlamydomonas reinhardtii [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110552. doi: 10.1016/j.ecoenv.2020.110552 [35] HSIAO H Y, LIN H H H, YANG J S, et al. Intracellular organic matter from Chlorella vulgaris enhances the photodegradation of acetaminophen [J]. Chemosphere, 2021, 271: 129507. doi: 10.1016/j.chemosphere.2020.129507 [36] TENORIO R, FEDDERS A C, STRATHMANN T J, et al. Impact of growth phases on photochemically produced reactive species in the extracellular matrix of algal cultivation systems [J]. Environmental Science:Water Research & Technology, 2017, 3(6): 1095-1108. [37] NIU X Z, CROUÉ J P. Photochemical production of hydroxyl radical from algal organic matter [J]. Water Research, 2019, 161: 11-16. doi: 10.1016/j.watres.2019.05.089 [38] MCNEILL K, CANONICA S. Triplet state dissolved organic matter in aquatic photochemistry: Reaction mechanisms, substrate scope, and photophysical properties [J]. Environmental Science. Processes & Impacts, 2016, 18(11): 1381-1399. [39] YAO J J, ZHAO M, SONG L L, et al. Characteristics of extracellular organic matters and the formation potential of disinfection by-products during the growth phases of M. aeruginosa and Synedra sp [J]. Environmental Science and Pollution Research, 2022, 29(10): 14509-14521. doi: 10.1007/s11356-021-16647-8 [40] DU Y X, WANG J, LI H T, et al. The dual function of the algal treatment: Antibiotic elimination combined with CO2 fixation [J]. Chemosphere, 2018, 211: 192-201. doi: 10.1016/j.chemosphere.2018.07.163 [41] ZHANG L, GUO R X, LI H T, et al. Mechanism analysis for the process-dependent driven mode of NaHCO3 in algal antibiotic removal: Efficiency, degradation pathway and metabolic response [J]. Journal of Hazardous Materials, 2020, 394: 122531. doi: 10.1016/j.jhazmat.2020.122531 [42] CHENG D M, LIU H F, E Y, et al. Effects of natural colloidal particles derived from a shallow lake on the photodegradation of ofloxacin and ciprofloxacin [J]. Science of the Total Environment, 2021, 773: 145102. doi: 10.1016/j.scitotenv.2021.145102 [43] YANG X F, ZHENG X, WU L J, et al. Interactions between algal (AOM) and natural organic matter (NOM): Impacts on their photodegradation in surface waters [J]. Environmental Pollution, 2018, 242: 1185-1197. doi: 10.1016/j.envpol.2018.07.099 [44] TONG M Y, LI X, LUO Q, et al. Effects of humic acids on biotoxicity of tetracycline to microalgae Coelastrella sp [J]. Algal Research, 2020, 50: 101962. doi: 10.1016/j.algal.2020.101962 [45] TIAN Y J, FENG L, LI R N, et al. Inhibitory effects of antioxidant moieties in humic substances on phototransformation of chlortetracycline mediated by the algae extracellular organic matter [J]. Science of the Total Environment, 2021, 798: 149001. doi: 10.1016/j.scitotenv.2021.149001 [46] QIAN J, SHIMOTORI K, LIU X, et al. Enhancement of algal growth by Mg2+ released from anaerobic digestion effluent of aquatic macrophytes through photolysis [J]. Biochemical Engineering Journal, 2021, 172: 108065. doi: 10.1016/j.bej.2021.108065 [47] MCINTYRE A M, GUÉGUEN C. Binding interactions of algal-derived dissolved organic matter with metal ions [J]. Chemosphere, 2013, 90(2): 620-626. doi: 10.1016/j.chemosphere.2012.08.057 [48] WEI L X, LI H X, LU J F. Algae-induced photodegradation of antibiotics: A review [J]. Environmental Pollution, 2021, 272: 115589. doi: 10.1016/j.envpol.2020.115589 [49] GE L Y, DENG H H. Degradation of two fluoroquinolone antibiotics photoinduced by Fe(Ⅲ)-microalgae suspension in an aqueous solution [J]. Photochemical & Photobiological Sciences, 2015, 14(4): 693-699. [50] ZHOU T, CAO L P, ZHANG Q, et al. Effect of chlortetracycline on the growth and intracellular components of Spirulina platensis and its biodegradation pathway [J]. Journal of Hazardous Materials, 2021, 413: 125310. doi: 10.1016/j.jhazmat.2021.125310 [51] CAO J S, JIANG R X, WANG J Q, et al. Study on the interaction mechanism between cefradine and Chlamydomonas reinhardtii in water solutions under dark condition [J]. Ecotoxicology and Environmental Safety, 2018, 159: 56-62. doi: 10.1016/j.ecoenv.2018.04.068 [52] JIANG R X, WEI Y R, SUN J Y, et al. Degradation of cefradine in alga-containing water environment: A mechanism and kinetic study [J]. Environmental Science and Pollution Research International, 2019, 26(9): 9184-9192. doi: 10.1007/s11356-019-04279-y