-
氮是自然界植物和动物生长所必须的营养元素,硝酸盐是农作物的重要养分,并在维持水生生态系统中起着关键作用[1]. 然而,过量的硝酸盐进入水环境会导致水体富营养化,引起藻类和浮游植物大量生长,并导致水华和赤潮[2]. 此外,长期饮用含过量硝酸盐的水会对人类健康造成潜在影响,如糖尿病、自然流产、甲状腺疾病、直肠癌和胃癌等[3]. 世界卫生组织规定,水体中硝酸盐的允许浓度为50 mg∙L−1,饮用水中硝酸盐含量最高含量不超过10 mg∙L−1[4-5]. 人类生活、工农业生产排放导致水体中硝酸盐浓度持续增加,采取一系列技术手段进行氮净化刻不容缓.
水体硝酸盐污染的修复治理方法主要有化学法、物理法及生物法[6-8]. 相对于生物法,物理化学吸附具有效率高、操作和工艺简单的特点,适用于需要硝酸盐快速去除的场景. 为了提高吸附剂吸附性能,通常在吸附剂表面引入官能团或者金属离子等,以调节其物理化学性质[9]. 表面含有大量羟基的壳聚糖,可作为吸附剂用于去除水中硝酸盐,然而其在酸性环境中的稳定性较低,实际水处理应用受到限制;有研究通过在壳聚糖中引入功能性官能团以改善其结构性能,但制备过程较为复杂[10];氧化镁改性后的生物炭可以提高硝酸盐去除效率,然而处理成本高昂,因此不适合大规模应用[11]. 季铵盐作为一种阳离子表面活性剂,常被用于吸附剂表面修饰. 研究表明,季铵盐功能化吸附剂对硝酸盐具有较高亲和力[12-13],季铵盐改性蒙脱土对硝酸盐等阴离子表现出优异的吸附性能[14]. 壳聚糖珠与环氧丙基三甲基氯化铵交联得到的季铵化壳聚糖珠对1000 mg∙L−1硝酸盐溶液吸附能力达到67.5 mg∙g-1[15].
进行阴离子吸附剂的功能化改性时,季铵盐的选择尤为重要,例如十二烷基二甲基溴化铵改性蒙脱石用于去除水中硝酸盐时,尽管最大吸附量达到8.77 mg∙g−1,但烷基季铵盐中Br– 在离子交换过程中会释放到水中,造成二次污染,故在制备吸附剂时需要用FeCl4–进一步处理[16]. 活性炭经十四烷基三甲基溴化铵处理后在25 ℃,pH=6.6,投加量为1 g∙L−1条件下对100 mg∙L−1
${\rm{NO}}_3^{-} $ 的吸附量仅有1.94 mg∙g−1,将活性炭与碳纳米管进一步处理后,吸附量方可达到14.59 mg∙g−1[17]. 聚二烯丙基二甲基氯化铵(pDADMAC)为季铵盐的一种,在水体中极易电离带有正电荷,被广泛应用于废水和饮用水处理行业,具有絮凝藻类,细菌及有机物等物质的作用[18-21]. 相比于其他季铵盐类,pDADMAC毒性低且价格便宜. 有研究表明,pDADMAC改性活性炭颗粒可以增加水中磷酸根吸附,且改性方法简便,不会对水环境造成二次污染[22]. 活性炭具有高比表面积、丰富的孔隙率和良好的阳离子交换能力,被作为吸附剂广泛应用于气体净化、水处理、冶金和食品加工等领域. 目前,以活性炭为载体用于吸附硝酸盐的烷基季铵盐功能化吸附剂的研究还鲜见报道.本文用pDADMAC对活性炭进行改性,制备一种硝酸盐氮吸附剂. 通过对照实验,验证改性吸附剂的吸附能力;利用SEM和FT-IR表征改性前后材料的表面特性,以及吸附动力学和吸附等温线拟合分析,探讨其吸附机制;进一步地,根据重复性和干扰性实验,研究材料的重复利用性和抗阴离子干扰性能.
pDADMAC改性活性炭对水中硝酸盐的吸附特性
Adsorption characteristics of nitrate in water by pDADMAC modified activated carbon
-
摘要: 相对于生化反硝化,吸附法对
${\fbox{}}{\rm{NO}}_3^{-} $ 的去除速率更快. 自然胶体对${\rm{NO}}_3^{-} $ 的吸附能力有限,研发高效、低成本、制备流程简便的${\rm{NO}}_3^{-} $ 吸附剂具有重要价值. 用聚二烯丙基二甲基氯化铵(pDADMAC)改性活性炭(GAC),提升其Zeta电位,实现对${\rm{NO}}_3^{-} $ 的高效吸附,并通过改性前后材料的形貌表征,探究其对水中${\rm{NO}}_3^{-} $ 的吸附机制. 结果表明,pDADMAC负载到了活性炭表面,pDADMAC-GAC表面Zeta电位在pH=4—12范围内都得到了提升,因此在较宽的pH范围内对${\rm{NO}}_3^{-} $ 都有良好的吸附效果. pDADMAC改性后的活性炭(pDADMAC-GAC)对${\rm{NO}}_3^{-} $ 的吸附量明显提高,约为改性前的3.36—5.06倍. pDADMAC-GAC对${\rm{NO}}_3^{-} $ 的吸附动力学过程符合准二级动力学,吸附过程以化学吸附为主;在25 ℃、 pH=6、初始${\rm{NO}}_3^{-} $ 浓度为15 mg∙L-1条件下,准二级动力学模型计算得到的pDADMAC-GAC对硝酸盐的最大吸附量为3.26 mg∙g-1. Langmuir吸附等温线拟合效果最好,表明其主要是单分子层吸附. 重复性和干扰性实验表明,pDADMAC-GAC具有可重复利用性,水中共存的${\rm{SO}}_4^{2-} $ 、${\rm{H}}_2 {\rm{PO}}_4^- $ 和Cl− 阴离子对${\rm{NO}}_3^{-} $ 吸附有一定干扰. 综上,pDADMAC-GAC具有作为优良的${\rm{NO}}_3^{-} $ 阴离子吸附剂的潜力.Abstract: Compared with biochemical denitrification, the adsorption process is more faster to the removal of${\rm{NO}}_3^{-} $ from water. As natural colloids, their adsorption capacity of${\rm{NO}}_3^{-} $ was limited, so, it is of great value to develop adsorbents with high efficiency, low cost and simple preparation process. In this study, activated carbon (GAC) was modified with polydiallyl dimethyl ammonium chloride (pDADMAC) to improve its Zeta potential and achieve the efficient adsorption capacity for${\rm{NO}}_3^{-} $ . The adsorption mechanism was investigated by the morphological characterization of the materials before and after modification. The results showed that pDADMAC was loaded on the surface of activated carbon, and the Zeta potential of pDADMAC-GAC surface increased in the range of pH 4—12, so it had a good adsorption performance on${\rm{NO}}_3^{-} $ in a wide range of pH. The adsorption capacity of pDADMAC-GAC to${\rm{NO}}_3^{-} $ was significantly increased, which was about 3.36—5.06 times of that before modification. The adsorption process of pDADMAC-GAC on${\rm{NO}}_3^{-} $ was corresponding with quasi-second-order kinetics model, which indicates the chemical adsorption is main. Under the conditions of 25 ℃, pH= 6 and initial${\rm{NO}}_3^{-} $ concentration of 15 mg∙L−1, the maximum adsorption capacity of pDADMAC-GAC on nitrate calculated by quasi-second-order kinetics model was 3.26 mg∙g−1. Langmuir model are better to correspond the adsorption isotherms, indicating that it is a monolayer adsorption. Repeatability and interference experiments showed that pDADMAC-GAC was reusable, and the coexistence of${\rm{SO}}_4^{2-} $ ,${\rm{H}}_2 {\rm{PO}}_4^- $ and Cl− anions in water interfered with${\rm{NO}}_3^{-} $ adsorption to a certain extent. In conclusion, pDADMAC-GAC has the potential to be an excellent${\rm{NO}}_3^{-} $ anionic adsorbent.-
Key words:
- nitrate adsorption /
- pDADMAC /
- modified activated carbon /
- kinetics /
- coexisting anions.
-
图 1 pDADMAC浓度(a)及溶液初始pH(b)对
${\rm{NO}}_3^{-} $ 吸附的影响(a) 0.2 g GAC, 0.2 L 15 mg∙L−1${\rm{NO}}_3^{-} $ , pH=6, 25 ℃; (b) 350 g∙L−1 pDADMAC, 0.2 L 15 mg∙L−1${\rm{NO}}_3^{-} $ , 0.2 g pDADMAC-GAC, 25 ℃Figure 1. Effect of pDADMAC concentration (a) and initial pH (b) of solution on
${\rm{NO}}_3^{-} $ adsorption表 1 改性前后吸附剂的元素含量和BET分析
Table 1. Elemental contents and BET analysis of activated carbon before and after modification
材料
Material质量百分比/%
Weight percentage原子百分比/%
Atomic percentage比表面积/(m2∙g−1)
Surface area孔容/ (cm2∙g−1)
Total pore volumeC N O Cl Ca C N O Cl Ca GAC 94.97 — 4.15 — 0.25 96.56 — 3.17 — 0.08 948.12 0.4099 pDADMAC-GAC 92.83 0.47 4.57 2 0.13 95.33 0.41 3.53 0.69 0.04 729.97 0.3606 表 2 吸附动力学模型拟合参数
Table 2. Fitting parameters of adsorption kinetic models
拟合方程
Kinetic models参数
Parameters初始条件
Initial conditions5 mg∙L−1 15 mg∙L−1 25 mg∙L−1 GAC pDADMAC-GAC GAC pDADMAC-GAC GAC pDADMAC-GAC qe实际值/(mg∙g−1) 0.4768 2.4114 0.9582 3.2152 1.0058 3.5443 准一级动力学 k1/min−1 6.69×10−3 1.75×10−2 0.50×10−1 0.35×10−1 0.12×10−1 0.48×10−1 qe理论值/(mg∙g−1) 0.4334 2.0281 0.6124 2.1542 0.7550 3.1402 R2 0.9790 0.9875 0.9079 0.9479 0.9758 0.9407 准二级动力学 k2/(g∙(mg∙min)−1) 0.31×10−1 1.95×10−2 1.36×10−1 4.87×10−2 4.97×10−2 4.24×10−2 qe理论值/(mg∙g−1) 0.5137 2.4443 0.9649 3.2609 1.0180 3.4777 R2 0.9805 0.9948 0.9991 0.9999 0.9948 0.9988 颗粒内扩散 kp/(mg∙(g∙min0.5)−1) 0.0289 0.2453 0.0807 0.3151 0.0711 0.6640 R2 0.9906 0.9836 0.9007 0.9337 0.9782 0.9683 表 3 不同温度下pDADMAC-GAC的吸附等温线拟合参数
Table 3. Fitting parameters of adsorption isotherms at different temperatures
模型
Models参数
Parameters温度/K
Temperature288 298 308 Langmuir qmax/(mg∙g−1) 80.4538 81.2759 84.0346 KL 8.58×10−4 6.41×10−4 6.51×10−4 R2 0.9258 0.9761 0.9789 Freundlich 1/n 0.7946 0.7936 0.7787 KF 0.1670 0.1359 0.1567 R2 0.9032 0.9666 0.9761 -
[1] SERIO F, MIGLIETTA P P, LAMASTRA L, et al. Groundwater nitrate contamination and agricultural land use: A grey water footprint perspective in Southern Apulia Region (Italy) [J]. Science of the Total Environment, 2018, 645: 1425-1431. doi: 10.1016/j.scitotenv.2018.07.241 [2] GLIBERT P M. Harmful algae at the complex Nexus of eutrophication and climate change [J]. Harmful Algae, 2020, 91: 101583. doi: 10.1016/j.hal.2019.03.001 [3] ZHANG Q Y, QIAN H, XU P P, et al. Effect of hydrogeological conditions on groundwater nitrate pollution and human health risk assessment of nitrate in Jiaokou Irrigation District [J]. Journal of Cleaner Production, 2021, 298: 126783. doi: 10.1016/j.jclepro.2021.126783 [4] ZHAO F, XIN J, YUAN M J, et al. A critical review of existing mechanisms and strategies to enhance N2 selectivity in groundwater nitrate reduction [J]. Water Research, 2022, 209: 117889. doi: 10.1016/j.watres.2021.117889 [5] WHO. Guidelines for Drinking-water Quality, Fourth ed [R]. World HealOrgan, 2011. [6] SONG N F, XU J, CAO Y P, et al. Chemical removal and selectivity reduction of nitrate from water by (nano) zero-valent iron/activated carbon micro-electrolysis [J]. Chemosphere, 2020, 248: 125986. doi: 10.1016/j.chemosphere.2020.125986 [7] CECCONET D, DEVECSERI M, CALLEGARI A, et al. Effects of process operating conditions on the autotrophic denitrification of nitrate-contaminated groundwater using bioelectrochemical systems [J]. Science of the Total Environment, 2018, 613/614: 663-671. doi: 10.1016/j.scitotenv.2017.09.149 [8] WU J L, YIN Y N, WANG J L. Hydrogen-based membrane biofilm reactors for nitrate removal from water and wastewater [J]. International Journal of Hydrogen Energy, 2018, 43(1): 1-15. doi: 10.1016/j.ijhydene.2017.10.178 [9] TONG D L, ZHUANG J, LEE J, et al. Concurrent transport and removal of nitrate, phosphate and pesticides in low-cost metal- and carbon-based materials [J]. Chemosphere, 2019, 230: 84-91. doi: 10.1016/j.chemosphere.2019.05.056 [10] BANU H A T, KARTHIKEYAN P, VIGNESHWARAN S, et al. Adsorptive performance of lanthanum encapsulated biopolymer chitosan-Kaolin clay hybrid composite for the recovery of nitrate and phosphate from water [J]. International Journal of Biological Macromolecules, 2020, 154: 188-197. doi: 10.1016/j.ijbiomac.2020.03.074 [11] LI R H, WANG J J, ZHOU B Y, et al. Simultaneous capture removal of phosphate, ammonium and organic substances by MgO impregnated biochar and its potential use in swine wastewater treatment [J]. Journal of Cleaner Production, 2017, 147: 96-107. doi: 10.1016/j.jclepro.2017.01.069 [12] 郑雯婧, 林建伟, 詹艳慧, 等. 氯化十六烷基吡啶改性活性炭对水中硝酸盐的吸附作用 [J]. 环境科学, 2013, 34(11): 4325-4332. doi: 10.13227/j.hjkx.2013.11.036 ZHENG W J, LIN J W, ZHAN Y H, et al. Removal of nitrate from aqueous solution using cetylpyridinium chloride (CPC)-modified activated carbon as the adsorbent [J]. Environmental Science, 2013, 34(11): 4325-4332(in Chinese). doi: 10.13227/j.hjkx.2013.11.036
[13] 郑雯婧, 林建伟, 詹艳慧, 等. 锆-十六烷基三甲基氯化铵改性活性炭对水中硝酸盐和磷酸盐的吸附特性 [J]. 环境科学, 2015, 36(6): 2185-2194. doi: 10.13227/j.hjkx.2015.06.036 ZHENG W J, LIN J W, ZHAN Y H, et al. Adsorption characteristics of nitrate and phosphate from aqueous solution on zirconium-hexadecyltrimethylammonium chloride modified activated carbon [J]. Environmental Science, 2015, 36(6): 2185-2194(in Chinese). doi: 10.13227/j.hjkx.2015.06.036
[14] BAGHERIFAM S, KOMARNENI S, LAKZIAN A, et al. Highly selective removal of nitrate and perchlorate by organoclay [J]. Applied Clay Science, 2014, 95: 126-132. doi: 10.1016/j.clay.2014.03.021 [15] SOWMYA A, MEENAKSHI S. An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions [J]. Journal of Environmental Chemical Engineering, 2013, 1(4): 906-915. doi: 10.1016/j.jece.2013.07.031 [16] LUO W H, HUANG Q D, ZENG P, et al. Gemini surfactant-modified montmorillonite with tetrachloroferrate (FeCl4−) as a counterion simultaneously sequesters nitrate and phosphate from aqueous solution [J]. Journal of Hazardous Materials, 2021, 409: 124829. doi: 10.1016/j.jhazmat.2020.124829 [17] MENG X M, YAO L, JIANG W J, et al. In situ growth synthesis of the CNTs@AC hybrid material for efficient nitrate-nitrogen adsorption [J]. ACS Omega, 2021, 6(2): 1612-1622. doi: 10.1021/acsomega.0c05566 [18] PALTRINIERI L, REMMEN K, MÜLLER B, et al. Improved phosphoric acid recovery from sewage sludge ash using layer-by-layer modified membranes [J]. Journal of Membrane Science, 2019, 587: 117162. doi: 10.1016/j.memsci.2019.06.002 [19] RAY J R, SHABTAI I A, TEIXIDÓ M, et al. Polymer-clay composite geomedia for sorptive removal of trace organic compounds and metals in urban stormwater [J]. Water Research, 2019, 157: 454-462. doi: 10.1016/j.watres.2019.03.097 [20] 岳钦艳, 许鹏举, 李倩, 等. 聚二甲基二烯丙基氯化铵改性高炉渣的制备及其应用 [J]. 环境化学, 2006, 25(6): 735-738. doi: 10.3321/j.issn:0254-6108.2006.06.016 YUE Q Y, XU P J, LI Q, et al. Preparation and application of pdmdaac-bf slag [J]. Environmental Chemistry, 2006, 25(6): 735-738(in Chinese). doi: 10.3321/j.issn:0254-6108.2006.06.016
[21] 田秉晖, 潘纲, 栾兆坤. 阳离子聚电解质强化絮凝去除活性染料的研究 [J]. 环境化学, 2007, 26(1): 46-50. doi: 10.3321/j.issn:0254-6108.2007.01.011 TIAN B H, PAN G, LUAN Z K. Study on enhanced flocculation removal of reactive dyes by cationic polyelectrolyte [J]. Environmental Chemistry, 2007, 26(1): 46-50(in Chinese). doi: 10.3321/j.issn:0254-6108.2007.01.011
[22] WANG Z Y, BAKSHI S, LI C Y, et al. Modification of pyrogenic carbons for phosphate sorption through binding of a cationic polymer [J]. Journal of Colloid and Interface Science, 2020, 579: 258-268. doi: 10.1016/j.jcis.2020.06.054 [23] SHEPHERD J G, JOSEPH S, SOHI S P, et al. Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties [J]. Chemosphere, 2017, 179: 57-74. doi: 10.1016/j.chemosphere.2017.02.123 [24] WANG J L, GUO X. Adsorption kinetic models: Physical meanings, applications, and solving methods [J]. Journal of Hazardous Materials, 2020, 390: 122156. doi: 10.1016/j.jhazmat.2020.122156 [25] MAZARJI M, AMINZADEH B, BAGHDADI M, et al. Removal of nitrate from aqueous solution using modified granular activated carbon [J]. Journal of Molecular Liquids, 2017, 233: 139-148. doi: 10.1016/j.molliq.2017.03.004 [26] GUO X, WANG J L. Comparison of linearization methods for modeling the Langmuir adsorption isotherm [J]. Journal of Molecular Liquids, 2019, 296: 111850. doi: 10.1016/j.molliq.2019.111850 [27] YAZDI F, ANBIA M, SALEHI S. Characterization of functionalized chitosan-clinoptilolite nanocomposites for nitrate removal from aqueous media [J]. International Journal of Biological Macromolecules, 2019, 130: 545-555. doi: 10.1016/j.ijbiomac.2019.02.127 [28] ISLAM M, PATEL R. Physicochemical characterization and adsorption behavior of Ca/Al chloride hydrotalcite-like compound towards removal of nitrate [J]. Journal of Hazardous Materials, 2011, 190(1/2/3): 659-668. [29] HSIEH H S, PIGNATELLO J J. Modified carbons for enhanced nucleophilic substitution reactions of adsorbed methyl bromide [J]. Applied Catalysis B:Environmental, 2018, 233: 281-288. doi: 10.1016/j.apcatb.2018.04.007 [30] XIA F, YANG H F, LI L, et al. Enhanced nitrate adsorption by using cetyltrimethylammonium chloride pre-loaded activated carbon [J]. Environmental Technology, 2020, 41(27): 3562-3572. doi: 10.1080/09593330.2019.1615133 [31] ZHANG G S, LIU H J, LIU R P, et al. Removal of phosphate from water by a Fe-Mn binary oxide adsorbent [J]. Journal of Colloid and Interface Science, 2009, 335(2): 168-174. doi: 10.1016/j.jcis.2009.03.019 [32] WAN D J, LIU H J, LIU R P, et al. Adsorption of nitrate and nitrite from aqueous solution onto calcined (Mg-Al) hydrotalcite of different Mg/Al ratio [J]. Chemical Engineering Journal, 2012, 195/196: 241-247. doi: 10.1016/j.cej.2012.04.088 [33] SOWMYA A, MEENAKSHI S. Removal of nitrate and phosphate anions from aqueous solutions using strong base anion exchange resin [J]. Desalination and Water Treatment, 2013, 51(37/38/39): 7145-7156. [34] LONG L, XUE Y W, HU X L, et al. Study on the influence of surface potential on the nitrate adsorption capacity of metal modified biochar [J]. Environmental Science and Pollution Research International, 2019, 26(3): 3065-3074. doi: 10.1007/s11356-018-3815-z