-
纳米材料是一类由纳米结构单元构成且某一维度尺寸小于100 nm的材料,因具有超高的光学、电磁和力学性能,被广泛应用于生物传感、光电催化和环境治理等领域[1-5]. 层状双金属氢氧化物(LDHs)是一种二维黏土型无机金属类纳米材料,化学式为
$\text{[}{\text{M}}_{\text{1}\text{-}\text{x}}^{\text{2+}}{\text{M}}_{\text{x}}^{\text{3+}}\text{(OH}{\text{)}}_{\text{2}}\text{]}{\text{A}}_{\text{x/n}}^{\text{n}\text{-}}\text{·}\text{y}{\text{H}}_{\text{2}}\text{O}$ ,其中M2+和M3+分别为二价和三价金属阳离子,An-为层间阴离子[6-7]. 因其具有层板化学组成可调变、层间阴离子可交换等特性,LDHs在水环境治理领域备受关注[7-9],并且作为环境吸附剂被纳入中国化工行业标准(HG/T 5549-2019)[10]. 近年来,通过模板法合成的三维LDHs(3D-LDHs)因具有更大的表面积和较多的孔容结构引起了广泛的研究[11-13]. 如Zhou等[13]合成了比表面积高达126.31 m2·g−1、孔容为0.30 cm3·g−1的三维MgAl-LDH,发现其对石油废水中磺化褐煤的吸附容量(1014.20 mg·g−1)显著高于二维MgAl-LDHs的吸附容量(86 mg·g−1). 可见,LDHs结构上的调控能显著提高其在污染物治理领域的应用潜力. 然而,三维LDHs为粉末状吸附剂,回收不完全往往会随废水进入自然水体中[14-15],影响环境安全.微藻作为水生生态系统最重要的初级生产者,在维持生态系统结构和功能稳定方面发挥重要作用[16-17]. 同时,微藻因细胞个体小、繁殖速度快以及污染物耐受性低,常被选为生态毒理研究的模式生物[18]. 如MIAO等[19]利用海链藻(Thalassiosira)揭示纳米Ag的毒性主要源于其溶出Ag+;Schwab等[20]借助小球藻(Chlorella vulgaris)和月牙藻(Caulobacter crescentus)揭示了碳纳米管的遮光效应和团聚作用是胁迫微藻生长的主要原因;马菲菲等[21]研究发现,纳米TiO2对新月菱形藻(Nitzschia closterium)的生长抑制随其粒径减小而逐渐增强,并且其纳米片层可诱导藻细胞发生氧化损伤. 由此可见,纳米材料的溶出离子、粒径大小、片层结构等理化性质均可能胁迫微藻并诱导藻细胞生长抑制、光合受阻或者氧化损伤等. 此外,Tengda等[22]发现,二维Cu-Mg-Fe LDHs对四尾栅藻(Scenedesmus quadricauda)生长具有显著的抑制作用(EC50=10 mg·L−1)并且致毒机制主要为Cu-Mg-Fe LDHs黏附在微藻表面造成的遮光效应、与藻相互作用产生的团聚作用以及诱导大量活性氧生成而引发的氧化损伤等. 在材料结构上,三维LDHs比二维LDHs具有更大的比表面积和更多的活性位点,这大大增加了其与水生生物的接触面积.LDHs结构上的调控亦可能影响其存在的潜在生态风险[23]. 然而,目前有关三维LDHs对微藻的毒性影响及机制研究较少.
本研究选取水体环境中常见的小球藻(Chlorella vulgaris)和斜生栅藻(Scenedesmus Oblique)作为受试藻,同时选择应用广泛、原料低廉易得的三维镁铝双金属氢氧化物(3D-MgAl-LDH)为三维层状双金属氢氧化物的代表[24-27]. 考察3D-MgAl-LDH的理化特性(如暴露浓度、暴露时间、溶出物质等)对两种微藻的毒性影响,并通过测定微藻的细胞结构、光合色素含量和抗氧化酶活性等指标探讨微藻的致毒机制,以期为LDHs应用于实际废水治理的潜在风险评估提供理论依据.
三维镁铝层状双金属氢氧化物对微藻的毒性影响及致毒机制
Toxicity effects and mechanism of three-dimensional MgAl layered double hydroxides to microalgae
-
摘要: 为探究三维镁铝层状双金属氢氧化物(3D-MgAl-LDH)对微藻的毒性影响及致毒机制,本研究选取小球藻(Chlorella vulgaris)和斜生栅藻(Scenedesmus obliquus)作为受试藻,借助X射线粉末衍射仪、傅里叶红外光谱仪、扫描电子显微镜和激光粒径分析仪等测试技术表征3D-MgAl-LDH的组成及形貌,通过改变3D-MgAl-LDH暴露浓度、暴露时间以及溶出物质SDS浓度,明晰各因素对两种微藻的毒性影响,并测定3D-MgAl-LDH暴露后微藻的细胞结构、光合色素含量和抗氧化酶(MDA、SOD)活性以揭示其致毒机制. 结果表明:1)3D-MgAl-LDH是由LDH和SDS共组成的三维花状材料. 2)随3D-MgAl-LDH浓度增加,两种微藻的生长抑制率均呈增加趋势(P<0.05),其中小球藻对3D-MgAl-LDH毒性影响更为敏感,而斜生栅藻对3D-MgAl-LDH毒性影响表现出更强的耐受性. 3)随3D-MgAl-LDH暴露时间延长,两种微藻的生长抑制率均逐渐减小,表明微藻对3D-MgAl-LDH的胁迫作用产生抗逆性. 4)3D-MgAl-LDH对小球藻和斜生栅藻的致毒机制主要包括细胞割伤、遮光效应和氧化应激. 本研究结果为LDHs应用于实际废水治理的潜在风险评估提供理论依据.
-
关键词:
- 三维镁铝层状双金属氢氧化物 /
- 小球藻 /
- 斜生栅藻 /
- 毒性影响 /
- 致毒机制.
Abstract: In order to explore the toxicity effect and toxicity mechanism of Three-dimensional MgAl layered double hydroxide(3D-MgAl-LDH) on microalgae, Chlorella vulgaris and Scenedesmus obliquus were selected as the tested algae. The composition and morphology of 3D-MgAl-LDH were characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), fourier infrared spectroscopy (FT-IR) and laser particle size analyzer. To understand the toxicity effects, various experimental factors were systematically investigated, including exposure concentration, exposure time and SDS concentration of dissolved substances of 3D-MgAl-LDH. Moreover, the toxicity mechanisms were explored based on the analysis of cell structure, photosynthetic pigment content and antioxidant enzyme activity (MDA, SOD) of microalgae after 3D-MgAl-LDH exposure. Results showed that 1) 3D-MgAl-LDH composed by LDH and SDS exhibited a well three-dimensional flower-like structure. 2) With the increase of 3D-MgAl-LDH concentration, the inhibition rates of Chlorella vulgaris and Scenedesmus obliquus showed an increasing trend (P<0.05). In comparison, Chlorella vulgaris was more sensitive to 3D-MgAl-LDH toxicity, while Scenedesmus obliquus was more tolerant to 3D-MgAl-LDH toxicity. 3) With the extension of 3D-MgAl-LDH exposure time, the growth inhibition rates of both microalgae presented a gradually decreased trend, indicating that the microalgae possessed stress tolerance under 3D-MgAl-LDH stress. 4) The toxic mechanisms of 3D-MgAl-LDH on Chlorella vulgaris and Scenedesmus obliquus were cell laceration, shading effect and oxidative stress. This study provided a theoretical basis for potential risk assessment of the application of LDHs in practical wastewater treatment. -
图 1 常规LDH和3D-MgAl-LDH的X射线衍射图(a),SDS和3D-MgAl-LDH的傅里叶红外光谱(b),3D-MgAl-LDH的扫描电镜图(c),3D-MgAl-LDH的粒径分布图(d)和不同浓度3D-MgAl-LDH吸光度值变化情况(e)
Figure 1. XRD patterns of conventional LDH and 3D-MgAl-LDH (a),FT-IR spectra of SDS and 3D-MgAl-LDH (b),SEM image of 3D-MgAl-LDH (c),particle size distribution of 3D-MgAl-LDH (d) and changes in absorbance values of 3D-MgAl-LDH at different concentrations (e)
图 2 在不同浓度3D-MgAl-LDH中暴露96 h后的小球藻(a)和斜生栅藻(b)的生长抑制率
Figure 2. Growth inhibition rate of Chlorella vulgaris (a) and Scenedesmus Obliquus (b) at various 3D-MgAl-LDH concentration after 96 h exposure (different letters in the figure represent significant differences between treated groups with different concentrations,P<0.05)
图 7 暴露96 h后3D-MgAl-LDH 对小球藻(a)和斜生栅藻(b)MDA及SOD影响(图中小写字母代表不同浓度处理组间存在显著性差异,P<0.05)
Figure 7. The effect of 3D-MgAl-LDH on the MDA and SOD of Chlorella vulgaris(a)and Scenedesmus Obliquus(b)after 96 h (different letters in the figure represent significant differences between treated groups and different concentrations groups,P<0.05)
表 1 3D-MgAl-LDH对小球藻和斜生栅藻的细胞生长动力学参数
Table 1. Cells growth kinetic parameters of Chlorella vulgaris and Scenedesmus Oblique by 3D-LDHs
3D-MgAl-LDH 浓度 /(mg·L−1)
3D-MgAl-LDH concentration小球藻
Chlorella vulgaris斜生栅藻
Scenedesmus ObliquusA(×105)/(cells·mL−1) K/h−1 R2 A(×105)/(cells·mL−1) K/h−1 R2 0 4.20 0.034 0.998 15.00 0.020 0.951 10 3.95 0.032 0.997 14.43 0.019 0.943 25 3.50 0.033 0.997 13.40 0.021 0.951 50 2.74 0.035 0.998 10.88 0.021 0.966 150 1.94 0.037 0.996 9.31 0.023 0.958 300 0.96 0.044 0.996 10.56 0.022 0.927 注:A为微藻细胞外推密度,K为生长速率常数,R2为相关系数. 表 2 不同浓度3D-MgAl-LDH振荡96 h后的Mg2+、Al3 + 和SDS溶出浓度
Table 2. The amount of Mg2+,Al3 + and SDS dissolved by 3D-MgAl-LDH at different concentrations after 96 h
3D-MgAl-LDH 浓度/(mg·L−1)
3D-MgAl-LDH concentrationMg2+溶出浓度/(mg·L−1)
Mg2+ dissolution concentrationAl3+溶出浓度/(mg·L−1)
Al3+ dissolution concentrationSDS溶出浓度/(mg·L−1)
SDS dissolution concentration0 0 未检出 0 10 0.11 1.03 25 0.20 2.12 50 0.34 4.61 150 1.53 11.22 300 3.58 20.41 -
[1] 文若曦, 孙振东, 周群芳, 等. 人工合成纳米材料的生物可给性与毒性 [J]. 环境化学, 2017, 36(1): 1-15. doi: 10.1002/etc.3708 WEN R X, SUN Z D, ZHOU Q F, et al. Bioavailability and toxicity of engineered nanomaterials [J]. Environmental Chemistry, 2017, 36(1): 1-15(in Chinese). doi: 10.1002/etc.3708
[2] 章哲超, 胡佶, 刘淑霞, 等. 纳米二氧化硅与汞(Hg2+)对中肋骨条藻(Skeletonema costatum)的联合毒性效应 [J]. 环境化学, 2018, 37(4): 661-669. doi: 10.7524/j.issn.0254-6108.2017081506 ZHANG Z C, HU J, LIU S X, et al. Effect of nano-SiO2 on the toxicity of Hg2+ to Skeletonema costatum [J]. Environmental Chemistry, 2018, 37(4): 661-669(in Chinese). doi: 10.7524/j.issn.0254-6108.2017081506
[3] 方梦园, 赵天慧, 赵晓丽, 等. 碳纳米管对腐殖酸的吸附及其环境意义 [J]. 环境化学, 2020, 39(10): 2897-2906. doi: 10.7524/j.issn.0254-6108.2019111002 FANG M Y, ZHAO T H, ZHAO X L, et al. Effect of humic acid on adsorption and sedimentation of carboxylic multi-walled carbon nanotubes with different diameters [J]. Environmental Chemistry, 2020, 39(10): 2897-2906(in Chinese). doi: 10.7524/j.issn.0254-6108.2019111002
[4] HASSANPOUR M, HOSSEINI TAFRESHI S A, AMIRI O, et al. Toxic effects of Fe2WO6 nanoparticles towards microalga Dunaliella salina: Sonochemical synthesis nanoparticles and investigate its impact on the growth [J]. Chemosphere, 2020, 258: 127348. doi: 10.1016/j.chemosphere.2020.127348 [5] 王亲媛. 有机三维层状双金属氢氧化物对藻类的致毒机制研究[D]. 南昌∶南昌大学, 2021. WANG Q Y. Toxicity in algal induced by organic three-dimensional layered double hydroxides [D]. Nanchang: Nanchang University, 2021 (in Chinese).
[6] CHATTERJEE A, BHARADIYA P, HANSORA D. Layered double hydroxide based bionanocomposites [J]. Applied Clay Science, 2019, 177: 19-36. doi: 10.1016/j.clay.2019.04.022 [7] ZHAO D L, SHENG G D, HU J, et al. The adsorption of Pb (II) on Mg2Al layered double hydroxide [J]. Chemical Engineering Journal, 2011, 171(1): 167-174. doi: 10.1016/j.cej.2011.03.082 [8] FOGG A M, DUNN J S, SHYU S-G, et al. Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl·H2O [J]. Chemistry of Materials, 1998, 10(1): 351-355. doi: 10.1021/cm9705202 [9] AI L H, ZHANG C Y, MENG L Y. Adsorption of methyl orange from aqueous solution on hydrothermal synthesized Mg–Al layered double hydroxide [J]. Journal of Chemical & Engineering Data, 2011, 56(11): 4217-4225. [10] ZHANG P, ZHANG L J, KE Z S, et al. Sulfate-loaded layered double oxide: A bifunctional adsorbent for simultaneous purification of metal ion and anionic dye [J]. Applied Clay Science, 2022, 216: 106366. doi: 10.1016/j.clay.2021.106366 [11] LI T, LI G H, LI L H, et al. Large-scale self-assembly of 3D flower-like hierarchical Ni/co-LDHs microspheres for high-performance flexible asymmetric supercapacitors [J]. ACS Applied Materials & Interfaces, 2016, 8(4): 2562-2572. [12] YU X Y, LUO T, JIA Y, et al. Three-dimensional hierarchical flower-like Mg-Al-layered double hydroxides: Highly efficient adsorbents for As (V) and Cr (VI) removal [J]. Nanoscale, 2012, 4(11): 3466-3474. doi: 10.1039/c2nr30457k [13] ZHOU L, SLANÝ M, BAI B B, et al. Enhanced removal of sulfonated lignite from oil wastewater with multidimensional MgAl-LDH nanoparticles [J]. Nanomaterials(Basel, Switzerland), 2021, 11(4): 861. [14] QLAN H B, HUANG S D, BA Z C, et al. HTO/cellulose aerogel for rapid and highly selective Li+ recovery from seawater [J]. Molecules (Basel, Switzerland), 2021, 26(13): 4054. doi: 10.3390/molecules26134054 [15] LU N, WANG Y Q, NING S Q, et al. Design of plasmonic Ag-TiO2/H3PW12O40 composite film with enhanced sunlight photocatalytic activity towards o-chlorophenol degradation [J]. Scientific Reports, 2017, 7: 17298. doi: 10.1038/s41598-017-17221-4 [16] TEELING H, FUCHS B M, BENNKE C M, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms [J]. eLife, 2016, 5: e11888. doi: 10.7554/eLife.11888 [17] ZHOU X, ZHEG Y, TANG Y Y, et al. Artificial regulation of state transition for augmenting plant photosynthesis using synthetic light-harvesting polymer materials [J]. Science Advances, 2020, 6(35): eabc5237. doi: 10.1126/sciadv.abc5237 [18] 罗潇宇, 任垠安, 高浩杰, 等. 2种类型多壁碳纳米管对蛋白核小球藻的毒理研究 [J]. 生态毒理学报, 2018, 13(6): 333-341. LUO X Y, REN Y N, GAO H J, et al. The toxicology effects of two types of multi-walled carbon nanotubes on the physiology of Chlorella pyrenoidosa [J]. Asian Journal of Ecotoxicology, 2018, 13(6): 333-341(in Chinese).
[19] MIAO A J, SCHWEHR K A, XU C, et al. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances [J]. Environmental Pollution, 2009, 157(11): 3034-3041. doi: 10.1016/j.envpol.2009.05.047 [20] SCHWAB F, BUCHELI T D, LUKHELE L P, et al. Are carbon nanotube effects on green algae caused by shading and agglomeration [J]. Environmental Science & Technology, 2011, 45(14): 6136-6144. [21] 马菲菲, 孙雪梅, 韩倩, 等. 不同粒径 TiO2 颗粒对海洋微藻的毒性效应 [J]. 海洋学报(中文版), 2015, 37(10): 100-105. MA F F, SUN X M, HAN Q, et al. Toxic effects of TiO2 particles with different size on the marine microalga [J]. Acta Oceanologica Sinica, 2015, 37(10): 100-105(in Chinese).
[22] DING T D, LIN K D, CHEN J, et al. Causes and mechanisms on the toxicity of layered double hydroxide (LDH) to green algae Scenedesmus quadricauda [J]. Science of the Total Environment, 2018, 635: 1004-1011. doi: 10.1016/j.scitotenv.2018.04.222 [23] JIANG Y Q, ZHANG H G, WANG Y G, et al. Modulation of apoptotic pathways of macrophages by surface-functionalized multi-walled carbon nanotubes [J]. PLoS One, 2013, 8(6): e65756. doi: 10.1371/journal.pone.0065756 [24] PAN X M, ZHANG M M, LIU H L, et al. Adsorption behavior and mechanism of acid orange 7 and methylene blue on self-assembled three-dimensional MgAl layered double hydroxide: Experimental and DFT investigation [J]. Applied Surface Science, 2020, 522: 146370. doi: 10.1016/j.apsusc.2020.146370 [25] ZHANG J, XIE X L, LI C J, et al. The role of soft colloidal templates in the shape evolution of flower-like MgAl-LDH hierarchical microstructures [J]. RSC Advances, 2015, 5(38): 29757-29765. doi: 10.1039/C5RA01561H [26] YU J Y, FAN G L, YANG Y, et al. Multi-level three-dimensional Mg-Al layered double hydroxide hierarchical microstructures with enhanced basic catalytic property [J]. Journal of Colloid and Interface Science, 2014, 432: 1-9. doi: 10.1016/j.jcis.2014.06.054 [27] SUN Y L, GAO X, YANG N, et al. Morphology-controlled synthesis of three-dimensional hierarchical flowerlike Mg-Al layered double hydroxides with enhanced catalytic activity for transesterification [J]. Industrial & Engineering Chemistry Research, 2019, 58(19): 7937-7947. [28] CREPALDI E L, PAVAN P C, TRONTO J, et al. Chemical, structural, and thermal properties of Zn (II)-Cr (III) layered double hydroxides intercalated with sulfated and sulfonated surfactants [J]. Journal of Colloid and Interface Science, 2002, 248(2): 429-442. doi: 10.1006/jcis.2002.8214 [29] LICHTENTHALER H K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes [J]. Methods in Enzymology:Elsevier, 1987, 148: 350-382. [30] LI B, HE J, EVANS D G. Experimental investigation of sheet flexibility of layered double hydroxides: One-pot morphosynthesis of inorganic intercalates [J]. Chemical Engineering Journal, 2008, 144(1): 124-137. doi: 10.1016/j.cej.2008.06.031 [31] ZHANG Q R, TENG J, ZOU G D, et al. Efficient phosphate sequestration for water purification by unique sandwich-like MXene/magnetic iron oxide nanocomposites [J]. Nanoscale, 2016, 8(13): 7085-7093. doi: 10.1039/C5NR09303A [32] ZHANG P, HE T, LI P, et al. New insight into the hierarchical microsphere evolution of organic three-dimensional layer double hydroxide: The key role of the surfactant template [J]. Langmuir:the ACS Journal of Surfaces and Colloids, 2019, 35(42): 13562-13569. doi: 10.1021/acs.langmuir.9b02465 [33] YU J F, LIU J J, CLEARFIELD A, et al. Synthesis of layered double hydroxide single-layer nanosheets in formamide [J]. Inorganic Chemistry, 2016, 55(22): 12036-12041. doi: 10.1021/acs.inorgchem.6b02203 [34] PUIG GIRIBETS M, SANTOS M, GARCIA GUERREIRO M P. Basal hsp70 expression levels do not explain adaptive variation of the warm-and cold-climate O3+4+7 and OST gene arrangements of Drosophila subobscura [J]. BMC Evolutionary Biology, 2020, 20(1): 17. doi: 10.1186/s12862-020-1584-z [35] QIU T A, GUIDOLIN V, HOANG K, et al. Nanoscale battery cathode materials induce DNA damage in bacteria [J]. Chemical Science, 2020, 11(41): 11244-11258. doi: 10.1039/D0SC02987D [36] GUO R Z, LIN Y F, Zheng Y F, et al. The microbial changes in subgingival plaques of orthodontic patients: A systematic review and meta-analysis of clinical trials [J]. BMC Oral Health, 2017, 17(1): 90. doi: 10.1186/s12903-017-0378-1 [37] GRANADOS A, PLEIXATS R, VALLRIBERA A. Recent advances on antimicrobial and anti-inflammatory cotton fabrics containing nanostructures [J]. Molecules (Basel, Switzerland), 2021, 26(10): 3008. doi: 10.3390/molecules26103008 [38] FAN J H, CUI Y B, WAN M X, et al. Lipid accumulation and biosynthesis genes response of the oleaginous Chlorella pyrenoidosa under three nutrition stressors [J]. Biotechnology for Biofuels, 2014, 7(1): 17. doi: 10.1186/1754-6834-7-17 [39] LIU Y H, WANG S, WANG Z, et al. TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae [J]. Nanomaterials, 2018, 8(2): 95. doi: 10.3390/nano8020095 [40] KHANNA K, JAMWAL V L, GANDHI S G, et al. Metal resistant PGPR lowered Cd uptake and expression of metal transporter genes with improved growth and photosynthetic pigments in Lycopersicon esculentum under metal toxicity [J]. Scientific Reports, 2019, 9: 5855. doi: 10.1038/s41598-019-41899-3 [41] HUSAIN H, LATIEF U, AHMAD R. Pomegranate action in curbing the incidence of liver injury triggered by Diethylnitrosamine by declining oxidative stress via Nrf2 and NFκB regulation [J]. Scientific Reports, 2018, 8: 8606. doi: 10.1038/s41598-018-26611-1 [42] TURKEZ H, GEYIKOGLU F, MOKHTAR Y I, et al. Eicosapentaenoic acid protects against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced hepatic toxicity in cultured rat hepatocytes [J]. Cytotechnology, 2012, 64(1): 15-25. doi: 10.1007/s10616-011-9386-1 [43] LI F, DUAN T Y, LI Y Z. Effects of the fungal endophyte epichloë festucae var. lolii on growth and physiological responses of perennial ryegrass cv. fairway to combined drought and pathogen stresses [J]. Microorganisms, 2020, 8(12): 1917. doi: 10.3390/microorganisms8121917 [44] ZHANG P, QIAN G R, XU Z P, et al. Effective adsorption of sodium dodecylsulfate (SDS) by hydrocalumite (CaAl-LDH-Cl) induced by self-dissolution and re-precipitation mechanism [J]. Journal of Colloid and Interface Science, 2012, 367(1): 264-271. doi: 10.1016/j.jcis.2011.10.036 [45] DIETZ A C, SCHNOOR J L. Advances in phytoremediation [J]. Environmental Health Perspectives, 2001, 109(Suppl 1): 163-168. doi: 10.1289/ehp.01109s1163 [46] 潘雪梅. 有机三维层状双金属氢氧化物和甲基橙复合体系对小球藻的生物效应及机制研究[D]. 南昌∶南昌大学, 2021. PAN X M. Study on biological effect and mechanism of composite system of organic three-dimensional layered double hydroxides and methyl orange on Chlorella vulgaris[D]. Nanchang: Nanchang University, 2021 (in Chinese).
[47] METZLER D M, ERDEM A, TSENG Y H, et al. Responses of algal cells to engineered nanoparticles measured as algal cell population, chlorophyll a, and lipid peroxidation: Effect of particle size and type [J]. Journal of Nanotechnology, 2012, 2012: 237284.