-
PM2.5虽然在地球大气成分中的含量较少,但由于其粒径小,富含大量有毒有害物质[1],且在大气中停留时间长,扩散距离远等特征对大气环境[2]、空气质量和人体健康产生等重要影响. PM2.5包含的碳质气溶胶主要有有机碳(OC)和元素碳(EC),OC分为由污染物燃烧直接排放产生的一次有机碳(POC)和污染物经光化学反应后产生的二次有机碳(SOC)[3- 4]. EC主要由化石燃料和生物质燃烧的不完全燃烧产生[5],如机动车尾气、燃煤采暖等[6]. 有研究表明大气颗粒物污染的粒径已开始由粗向细转变,PM2.5的含碳物质甚至超过同一条件下的PM10中的含量. 因此研究细粒径PM2.5中碳质气溶胶污染对现阶段区域或城市大气污染防治更有意义. 目前已有学者对我国各个地区的城市大气碳质气溶胶进行研究,张毓秀[7]、丁峰[8]和程渊等[9]分别对沈阳、北京、天津等北方城市进行了PM2.5中碳质组的污染时空特征、污染来源以及相关性等研究,张菊[10]和黄众思等[11]也对成都、上海等南方城市进行了相关研究,发现PM2.5和碳质气溶胶污染具有冬>春>秋>夏,夜间间>白天的特征;武高峰等[12]对2017年石家庄市采暖季中的PM2.5碳组分进行白天夜间区分研究,发现SOC、SOC/OC值在夜间高于白天;DAO等[13]指出我国北方26个城市PM2.5大气有机和元素碳显著降低. 崔倩等[14]指出从空间分布看,我国北方城市PM2.5平均浓度整体高于南方城市,且浓度水平差距显著,北方城市PM2.5浓度大多在100 μg·m−3上下,南方城市浓度多低于100 μg·m−3;张礁石等[15]对APEC会议前后北京地区污染物分布及变化特征、气象影响因素和气团传输路径特征进行了分析,发现减排措施和有利的气象条件能有效削减污染物排放;Yao等[16]利用DSL监控站点的在线监测数据,研究了的2015—2017年的上海冬季郊区碳质气溶胶的时间演变、气象效应以及主要来源,发现汽车尾气是OC和EC的主要来源,说明在大都市内控制车辆尾气排放是减少碳质气溶胶污染的重要途径. 吴瑕等[17]利用分子标记物、特征比值及主成分分析以及多元线性回归(PCA-MRL)模型等方法探讨了长春有机气溶胶的主要来源.
西安位于关中平原中部,南边秦岭,西安城区位于渭河平原二级阶梯上,近年经济发展较快,人口增长较多,再加上交通区位等条件已使其成为我国重要的战略城市,地形条件和社会发展使得该地区污染源潜在因子较多且污染物易堆积. 本文基于前人研究对2021年秋季PM2.5中的碳质气溶胶进行污染特征和来源探讨,为西安乃至陕西的大气污染防治工作提供借鉴依据.
西安市秋季PM2.5中碳质组分特征及来源分析
Distribution characteristics and source analysis of carbonaceous PM2.5 in autumn in Xi’an
-
摘要: 本文基于西安市2021年9月1日至11月14日利用Sunset Model 4/OCEC(RT-4) Lab 有机碳元素碳在线分析仪实时采集PM2.5中的OC和EC,分析了PM2.5、OC和EC的质量浓度特征,结合湿清除率探究降水强度与PM2.5的关系,利用OC/EC比值、OC与EC相关性以及二次有机碳(SOC)估算探究OC和EC的排放来源. 结果表明,西安市秋季PM2.5、OC和EC平均浓度分别为(29.6±28.1)μg·m−3、(6.1±4.3)μg·m−3、(1.2±0.9)μg·m−3;OC和EC浓度质量变化都呈夜间高于白天和中度污染>轻度污染>清洁天的特征. 污染物清除率受到降水强度和污染物浓度的综合影响. 降水强度小但PM2.5及其碳质气溶胶浓度较高的情况下,降水的正清除作用较弱. 西安市OC/EC比值的平均值为3.15,说明大气中存在着较为明显的二次有机碳污染;不同污染程度下OC,EC的来源复杂程度为清洁天>中度污染天气>轻度污染天,从排放源来看,不同污染程度下均是燃烧直接排放大于非燃烧排放. SOC的平均值为4.3 μg·m−3,对OC的贡献率为71.7%,SOC与NO2、SO2的相关性显著,说明研究期间西安有机碳的二次污染转化较为明显且主要来源于机动车尾气,生物质燃烧和工业排放.Abstract: In this paper, Sunset Model 4/OCEC(RT-4)Lab Organic Carbon online analyzer was used to determine OC and EC in PM2.5 from September 1 to November 14, 2021 in Xi'an in real time. The mass concentration characteristics of PM2.5, OC and EC were analyzed, and the relationship between precipitation intensity and PM2.5 was explored based on the wet clearance rate. The emission sources of OC and EC were estimated by the ratio of OC/EC, correlation between OC and EC, and secondary organic carbon (SOC). The results showed that: (1) the average concentrations of PM2.5, OC and EC in Xi'an in autumn were (29.6 ± 28.1) μg·m−3, (6.1 ± 4.3) μg·m−3 and (1.2 ± 0.9) μg·m−3, respectively. OC and EC concentrations at night were significantly higher than those at day, and presented a trend of moderate pollution > light pollution > clean days. (2) The pollutant removal rate is influenced by precipitation intensity and pollutant concentration. When the precipitation intensity is small but PM2.5 and its carbon aerosol concentration is high, or when precipitation intensity is large but PM2.5 concentration is low, the positive clearance effect of precipitation is weak. (3) The average value of OC/EC ratio in Xi’an is 3.15, indicating the obvious secondary organic carbon pollution in the atmosphere. The trend of source complexity of OC and EC was clean > moderate pollution > light pollution days. Direct combustion emissions were greater than non-combustion emissions under different pollution levels. (4) The mean value of SOC was 4.3 μg·m−3, and the contribution rate to OC was 71.7%. The correlation between SOC and NO2 and SO2 was significant, indicating that the secondary pollution transformation of organic carbon in Xi'an was obvious and mainly came from vehicle exhaust, biomass burning and industrial emissions during the study period.
-
Key words:
- organic carbon /
- carbon element /
- PM2.5 /
- SOC estimation /
- rainwater removal /
- Xi’an.
-
表 1 国内城市PM2.5中OC、EC浓度和OC/EC水平
Table 1. OC and EC concentrations and OC/EC levels in PM2. 5in Domestic cities
采样点
Sampling site采样时间
Sampling timeOC/(μg·m−3) EC/(μg·m−3) OC/EC 测量方法
Measuring method数据来源
Data sources西安 2021秋 6.1±4.3 1.2±0.9 1.4±1.1 TOT 本文 西安 2017秋 10.74±4.12 2.34±0.92 4.6±1.32 TOT [27] 北京 2016秋 17.5 2.3 7.6 TOR [26] 天津 2020冬 15.63 4.19 3.73 TOT [25] 成都 2017秋 9.25±3.8 4.27±1.7 2.18±0.41 TOT [10] 南京 2018秋 6.16±3.07 2.48±1.42 2.32±2.06 TOT [23] 南昌 2013秋 11.03 4.46 2.5 TOT [28] 杭州 2019秋 10.0 2.4 4.2 TOR [24] 广州 2015秋 5.86±2.16 1.40±0.56 4.18±1.25 TOR [29] 上海 2010夏 8.6±6.2 2.4±1.3 3.80±1.59 TOR [30] 表 2 降水量与PM2.5、OC、EC的清除关系
Table 2. Clearance relationship between precipitation and PM2.5, OC, EC
PM2.5/(μg·m−3) 降水量/mm
Precipitation清除率/%
Clearance ratio正清除率/%
Positive clearance ratio23.1 0—5 -3.5 60.0 14.8 5—10 28.4 75.0 12.2 10—25 12.1 50.0 11.4 >25 6.4 100.0 OC/(μg·m−3) 降水量/mm
Precipitation清除率/%
Clearanceratio正清除率/%
Positive clearance ratio4.4 0—5 -40.8 39.2 3.0 5—10 3.3 50.0 2.2 10—25 26.4 100.0 2.6 >25 15.7 100.0 EC/(μg·m−3) 降水量/mm
Precipitation清除率/%
Clearanceratio正清除率/%
Positive clearance ratio0.9 0—5 -46.4 25.0 0.6 5—10 3.1 50.0 0.4 10—25 56.7 50.0 0.4 >25 7.9 100.0 表 3 碳质组分与SO2、NO2、CO、O3相关性
Table 3. Correlation between carbon components and SO2, NO2, CO, O3
OC EC SOC SO2 NO2 CO O3 PM2.5 OC 1 0.7067 0.8545** 0.2872 0.7005** 0.0946 0.1211 0.6821** EC 1 0.2456 0.2456 0.5562** -0.0364 -0.1051 0.7752** SOC 1 0.4964* 0.5288** 0.1475 0.1030 0.3493 SO2 1 0.2196 0.4923* 0.7715** -0.1046 NO2 1 0.5394** 0.0330 0.5259** CO 1 0.40276 0.1525 O3 -0.1051 PM2.5 1 **P<0.01, *P<0.05. -
[1] 严梦园, 程燕, 田杰, 等. 西安城区冬季污染天单颗粒气溶胶的化学组分特征及混合状态 [J]. 环境化学, 2022, 41(3): 823-833. YAN M Y, CHENG Y, TIAN J, et al. Chemical composition and Mixing states of single atmospheric particles in Xi'an during winter [J]. Environmental Chemistry, 2022, 41(3): 823-833(in Chinese).
[2] CHOWDHURY S, POZZER A, HAINES A, et al. Global health burden of ambient PM2.5 and the contribution of anthropogenic black carbon and organic aerosols [J]. Environment International, 2022, 159: 107020. doi: 10.1016/j.envint.2021.107020 [3] 孙玺, 周声圳, 高敏, 等. 珠海2019年秋季一次大气污染过程的特征、成因及来源分析 [J]. 环境科学学报, 2022, 42(8): 64-75. SUN X, ZHOU S C, GAO M, et al. Analysis of the characteristics, formation mechanisms and sources of an atmospheric pollution in Zhuhai during the autumn of 2019 [J]. Acta Scientiae Circumstantiae, 2022, 42(8): 64-75(in Chinese).
[4] 李婧琳, 曾友石, 刘卫, 等. 拉萨市大气中碳颗粒物的浓度变化及特征 [J]. 环境化学, 2020, 39(4): 911-919. doi: 10.7524/j.issn.0254-6108.2019092205 LI J L, ZENG Y S, LIU W, et al. Concentration changes and characteristics of atmospheric carbon particulates in Lhasa [J]. Environmental Chemistry, 2020, 39(4): 911-919(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092205
[5] WANG H B, ZHANG L M, YAO X H, et al. Identification of decadal trends and associated causes for organic and elemental carbon in PM2.5 at Canadian urban sites [J]. Environment International, 2022, 159: 107031. doi: 10.1016/j.envint.2021.107031 [6] XIE M J, PENG X, SHANG Y, et al. Collocated measurements of light-absorbing organic carbon in PM2.5: Observation uncertainty and organic tracer-based source apportionment [J]. Journal of Geophysical Research:Atmospheres, 2022, 127(5): e2021JD035874. [7] 张毓秀, 任万辉, 王嘉禾, 等. 沈阳市冬季不同污染程度PM2.5中OC和EC污染特征 [J]. 中国环境科学, 2021, 41(7): 3066-3075. doi: 10.3969/j.issn.1000-6923.2021.07.008 ZHANG Y X, REN W H, WANG J H, et al. Characteristics of organic carbon(OC) and elemental carbon(EC) under different pollution levels of PM2.5 during winter in Shenyang [J]. China Environmental Science, 2021, 41(7): 3066-3075(in Chinese). doi: 10.3969/j.issn.1000-6923.2021.07.008
[8] 丁峰, 朱志锋, 陆晓波, 等. 2014—2018年南京PM2.5中碳组分污染特征分析 [J]. 中国环境监测, 2020, 36(2): 165-172. DING F, ZHU Z F, LU X B, et al. Characteristics analysis of carbon components in PM2.5 in Nanjing from 2014 to 2018 [J]. Environmental Monitoring in China, 2020, 36(2): 165-172(in Chinese).
[9] 程渊, 刘保双, 毕晓辉, 等. 天津市区夏冬季环境空气PM2.5中碳组分污染特征及来源研究 [J]. 环境科学学报, 2018, 38(9): 3394-3405. CHENG Y, LIU B S, BI X H, et al. Character and source analysis of carbonaceous aerosol in PM2.5 during summer-winter period, Tianjin urban area [J]. Acta Scientiae Circumstantiae, 2018, 38(9): 3394-3405(in Chinese).
[10] 张菊, 林瑜, 乔玉红, 等. 成都市西南郊区夏秋季PM2.5碳组分化学特征 [J]. 环境工程, 2017, 35(10): 100-104. ZHANG J, LIN Y, QIAO Y H, et al. Character of carbonaceous aerosol in pm2.5 during summer-autumn period in southwest suburb of Chengdu [J]. Environmental Engineering, 2017, 35(10): 100-104(in Chinese).
[11] 黄众思, 修光利, 朱梦雅, 等. 上海市夏冬两季PM2.5中碳组分污染特征及来源解析 [J]. 环境科学与技术, 2014, 37(4): 124-129. HUANG Z S, XIU G L, ZHU M Y, et al. Characteristics and sources of carbonaceous species in PM2.5 in summer and winter in Shanghai [J]. Environmental Science & Technology, 2014, 37(4): 124-129(in Chinese).
[12] 武高峰, 王丽丽, 武志宏, 等. 石家庄市采暖季PM2.5碳组分昼夜污染特征及来源分析 [J]. 环境科学学报, 2020, 40(7): 2356-2364. WU G F, WANG L L, WU Z H, et al. Pollution diurnal variation and source analysis of PM2.5 carbon components in heating season in Shijiazhuang City [J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2356-2364(in Chinese).
[13] DAO X, JI D S, ZHANG X, et al. Significant reduction in atmospheric organic and elemental carbon in PM2.5 in 2+26 cities in Northern China [J]. Environmental Research, 2022, 211: 113055. doi: 10.1016/j.envres.2022.113055 [14] 崔倩, 张艳平, 莫杨, 等. 我国主要城市大气颗粒物及碳组分污染水平研究进展 [J]. 环境卫生学杂志, 2021, 11(3): 287-295. doi: 10.13421/j.cnki.hjwsxzz.2021.03.012 CUI Q, ZHANG Y P, MO Y, et al. Research advances in atmospheric particulate matter and carbon component pollution levels in major cities of China [J]. Journal of Environmental Hygiene, 2021, 11(3): 287-295(in Chinese). doi: 10.13421/j.cnki.hjwsxzz.2021.03.012
[15] 张礁石, 陆亦怀, 桂华侨, 等. APEC会议前后北京地区PM2.5污染特征及气象影响因素 [J]. 环境科学研究, 2016, 29(5): 646-653. ZHANG J S, LU Y H, GUI H Q, et al. Variations of PM2.5 pollution and related meteorological factors before and after the 2014 APEC conference in Beijing [J]. Research of Environmental Sciences, 2016, 29(5): 646-653(in Chinese).
[16] YAO L, HUO J T, WANG D F, et al. Online measurement of carbonaceous aerosols in suburban Shanghai during winter over a three-year period: Temporal variations, meteorological effects, and sources [J]. Atmospheric Environment, 2020, 226: 117408. doi: 10.1016/j.atmosenv.2020.117408 [17] 吴瑕, 曹芳, 翟晓瑶, 等. 长春秋季细颗粒物中有机气溶胶组成特征及来源 [J]. 环境科学, 2019, 40(8): 3438-3446. doi: 10.13227/j.hjkx.201901031 WU X, CAO F, ZHAI X Y, et al. Molecular composition and source apportionment of fine organic aerosols in autumn in Changchun [J]. Environmental Science, 2019, 40(8): 3438-3446(in Chinese). doi: 10.13227/j.hjkx.201901031
[18] ZHU T, SHANG J, ZHAO D F. The roles of heterogeneous chemical processes in the formation of an air pollution complex and gray haze [J]. Science China Chemistry, 2011, 54(1): 145-153. doi: 10.1007/s11426-010-4181-y [19] MOOIBROEK D, SCHAAP M, WEIJERS E P, et al. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands [J]. Atmospheric Environment, 2011, 45(25): 4180-4191. doi: 10.1016/j.atmosenv.2011.05.017 [20] MIN X Y, XU D Y, HU X, et al. Changes in total organic carbon and organic carbon fractions of reclaimed minesoils in response to the filling of different substrates [J]. Journal of Environmental Management, 2022, 312: 114928. doi: 10.1016/j.jenvman.2022.114928 [21] 彭小乐, 郝庆菊, 温天雪, 等. 重庆市北碚城区气溶胶中有机碳和元素碳的污染特征 [J]. 环境科学, 2018, 39(8): 3502-3510. doi: 10.13227/j.hjkx.201711205 PENG X L, HAO Q J, WEN T X, et al. Pollution characteristics of organic carbon and elemental carbon in atmospheric aerosols in Beibei district, Chongqing [J]. Environmental Science, 2018, 39(8): 3502-3510(in Chinese). doi: 10.13227/j.hjkx.201711205
[22] ZHAO L, LUN X X, LI R N, et al. Deposition of PM2.5 sulfate in the spring on urban forests in Beijing, China [J]. Atmosphere, 2017, 8(12): 3. [23] 袁思宇, 沈国锋, 赵秋月. 南京市秋季大气颗粒物中有机碳和元素碳的浓度水平及分布特征 [J]. 环境化学, 2014, 33(5): 724-730. doi: 10.7524/j.issn.0254-6108.2014.05.021 YUAN S Y, SHEN G F, ZHAO Q Y. Concentrations and distribution characteristics of organic carbon and element carbon in ambient particulate matter(PM10 and PM2.5)during autumn in Nanjing [J]. Environmental Chemistry, 2014, 33(5): 724-730(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.05.021
[24] 朱俊, 王琼真, 丁皓, 等. 环杭州湾区域秋冬季PM2.5中有机碳和元素碳污染特征及来源 [J]. 环境污染与防治, 2021, 43(7): 864-870. ZHU J, WANG Q Z, DING H, et al. Characteristics and sources of organic carbon and elemental carbon in PM2.5 in autumn and winter of Hangzhou Bay area [J]. Environmental Pollution & Control, 2021, 43(7): 864-870(in Chinese).
[25] 姜建芳, 侯丽丽, 齐梦溪, 等. 天津市采暖季PM2.5中碳组分污染特征及来源分析 [J]. 生态环境学报, 2020, 29(6): 1181-1188. JIANG J F, HOU L L, QI M X, et al. Pollution characteristics and sources of carbonaceous components in PM2.5 during heating season in Tianjin [J]. Ecology and Environmental Sciences, 2020, 29(6): 1181-1188(in Chinese).
[26] 吕喆, 韩力慧, 程水源, 等. 北京城区冬夏季含碳气溶胶浓度特征及区域传输对灰霾形成影响 [J]. 北京工业大学学报, 2018, 44(3): 463-472. doi: 10.11936/bjutxb2017030027 LYU Z, HAN L H, CHENG S Y, et al. Characteristics of carbonaceous aerosols and influence of regional transport on haze formation in winter and summer in urban of Beijing [J]. Journal of Beijing University of Technology, 2018, 44(3): 463-472(in Chinese). doi: 10.11936/bjutxb2017030027
[27] 康宝荣, 刘立忠, 刘焕武, 等. 关中地区细颗粒物碳组分特征及来源解析 [J]. 环境科学, 2019, 40(8): 3431-3437. doi: 10.13227/j.hjkx.201810189 KANG B R, LIU L Z, LIU H W, et al. Pollution characteristics and sources of carbonaceous components in PM2.5 in the Guanzhong area [J]. Environmental Science, 2019, 40(8): 3431-3437(in Chinese). doi: 10.13227/j.hjkx.201810189
[28] 郑权, 赵莉斯, 于瑞莲, 等. 南昌市秋季大气PM2.5中碳组分污染特征 [J]. 环境科学导刊, 2018, 37(3): 6-10. ZHENG Q, ZHAO L S, YU R L, et al. Characteristics of carbonaceous components in PM2.5 in Nanchang City, China [J]. Environmental Science Survey, 2018, 37(3): 6-10(in Chinese).
[29] 刘晶晶, 胡献舟, 黄凤莲, 等. 广州PM2.5中有机碳和元素碳的污染特征 [J]. 湖南科技大学学报(自然科学版), 2019, 34(4): 111-117. LIU J J, HU X Z, HUANG F L, et al. Characteristics of organic carbon(OC) and elemental carbon(EC) in PM2.5 in Guangzhou, China [J]. Journal of Hunan University of Science & Technology (Natural Science Edition), 2019, 34(4): 111-117(in Chinese).
[30] 张懿华, 王东方, 赵倩彪, 等. 上海城区PM2.5中有机碳和元素碳变化特征及来源分析 [J]. 环境科学, 2014, 35(9): 3263-3270. ZHANG Y H, WANG D F, ZHAO Q B, et al. Characteristics and sources of organic carbon and elemental carbon in PM2.5 in Shanghai urban area [J]. Environmental Science, 2014, 35(9): 3263-3270(in Chinese).
[31] 赵晨曦, 王云琦, 王玉杰, 等. 北京地区冬春PM2.5和PM10污染水平时空分布及其与气象条件的关系 [J]. 环境科学, 2014, 35(2): 418-427. ZHAO C X, WANG Y Q, WANG Y J, et al. Temporal and spatial distribution of PM2.5 and PM10 pollution status and the correlation of particulate matters and meteorological factors during winter and spring in Beijing [J]. Environmental Science, 2014, 35(2): 418-427(in Chinese).
[32] 栾天, 郭学良, 张天航, 等. 不同降水强度对PM2.5的清除作用及影响因素 [J]. 应用气象学报, 2019, 30(3): 279-291. doi: 10.11898/1001-7313.20190303 LUAN T, GUO X L, ZHANG T H, et al. The scavenging process and physical removing mechanism of pollutant aerosols by different precipitation intensities [J]. Journal of Applied Meteorological Science, 2019, 30(3): 279-291(in Chinese). doi: 10.11898/1001-7313.20190303
[33] 于彩霞, 邓学良, 石春娥, 等. 降水和风对大气PM2.5、PM10的清除作用分析 [J]. 环境科学学报, 2018, 38(12): 4620-4629. YU C X, DENG X L, SHI C E, et al. The scavenging effect of precipitation and wind on PM2.5 and PM10 [J]. Acta Scientiae Circumstantiae, 2018, 38(12): 4620-4629(in Chinese).
[34] 何涛, 彭燕, 雷正翠. 常州市颗粒物湿清除和雨后PM2.5浓度增长研究 [J]. 环境污染与防治, 2021, 43(9): 1114-1117,1123. HE T, PENG Y, LEI Z C. Wet scavenging of particulate matter and increase of PM2.5 after rain in Changzhou [J]. Environmental Pollution & Control, 2021, 43(9): 1114-1117,1123(in Chinese).
[35] 周广强, 瞿元昊, 高伟, 等. 云下湿清除作用对长三角PM2.5模拟的影响 [J]. 中国环境科学, 2020, 40(7): 2794-2801. doi: 10.3969/j.issn.1000-6923.2020.07.002 ZHOU G Q, QU Y H, GAO W, et al. Simulated impact of blow-cloud wet scavenging on PM2.5 over the YRD [J]. China Environmental Science, 2020, 40(7): 2794-2801(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.07.002
[36] WU C, YU J Z. Determination of primary combustion source organic carbon-to-elemental carbon (OC / EC) ratio using ambient OC and EC measurements: Secondary OC-EC correlation minimization method [J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5453-5465. doi: 10.5194/acp-16-5453-2016 [37] WU C, WU D, YU J Z. Quantifying black carbon light absorption enhancement with a novel statistical approach [J]. Atmospheric Chemistry and Physics, 2018, 18(1): 289-309. doi: 10.5194/acp-18-289-2018 [38] 李朝阳, 袁亮, 张小玲, 等. 成都碳质气溶胶变化特征及二次有机碳的估算[J]. 中国环境科学, 2022, 42(6): 2504-2513. LI C Y, YUAN L, ZHANG X L, et al. Characteristics of carbonaceous aerosols and estimation of secondary organic carbon in Chengdu [J]. China Environmental Science, 2022, 42(6): 2504-2513(in Chinese).
[39] 谢添, 曹芳, 章炎麟, 等. 2015~2019年南京北郊碳质气溶胶组成变化 [J]. 环境科学, 2022, 43(6): 2858-2866. XIE T, CAO F, ZHANG Y L, et al. Changes of carbonaceous aerosol in the northern suburb of Nanjing from 2015 to 2019 [J]. Environmental Science, 2022, 43(6): 2858-2866(in Chinese).
[40] 杜博涵, 黄晓锋, 何凌燕, 等. 宁波市PM2.5中碳组分的时空分布特征和二次有机碳估算 [J]. 环境科学, 2015, 36(9): 3128-3134. DU B H, HUANG X F, HE L Y, et al. Seasonal and spatial variations of carbon fractions in PM2.5 in Ningbo and the estimation of secondary organic carbon [J]. Environmental Science, 2015, 36(9): 3128-3134(in Chinese).
[41] 薛凡利, 牛红亚, 武振晓, 等. 邯郸市PM2.5和PM10中有机碳与元素碳的污染特征 [J]. 环境化学, 2021, 40(10): 3246-3257. doi: 10.7524/j.issn.0254-6108.2020061701 XUE F L, NIU H Y, WU Z X, et al. Pollution characteristics of organic carbon and elemental carbon in PM2.5 and PM10 of Handan City [J]. Environmental Chemistry, 2021, 40(10): 3246-3257(in Chinese). doi: 10.7524/j.issn.0254-6108.2020061701