-
无机元素是PM2.5的重要组成部分[1],既可以通过呼吸作用随PM2.5颗粒进入人体内并发生沉积,导致人体机能功能性障碍和不可逆性损伤,对人体健康危害较大,若多种重金属产生联合作用,则会将生物毒性效应放大;也可以通过迁移扩散作用在植物叶片中富集,通过沉降作用转移到地表土壤和地面水体,造成土壤和水体的二次污染,并通过生物化学作用进入动植物体内从而进入人体[2]. 有研究表明,Cr、Ni和 Cd等有毒元素的健康风险指数较高,对身体有致畸、致癌作用[3-4];Cu、Zn等重金属元素的生态风险指数较高,会对生态环境产生负面影响[5]. 根据第一次全国污染源普查结果显示,2007年全国大气中仅Pb、Hg、Cd、Cr和Se污染物年排放量已达约9500吨;2012年国家环保局颁布了新的《环境空气标准》,在原有基础上不仅增加了PM10和PM2.5 的日平均及年平均限值,也增加了一些元素浓度的年平均限值,比如 Cd、Pb等[6];2018年,生态环境部将Cd、Cr、Hg、Pb和As等5种元素及其类物质纳入《第一批有毒有害大气污染物名录》[7],可见我国日益重视无机元素污染,随着更多痕量分析仪器的普及,无机元素的分析将会是重中之重.
自2008年奥运会以来,我国举办了众多国际以及国内的重要活动,为确保活动的顺利进行,举办地以及周边地区开展一系列空气质量保障工作. 马宁等[8]收集了北京奥运会期间北京市的空气质量相关数据,发现北京市在申办、筹办、举办2008年北京奥运会的过程中加大了环保投入、推进了环境保护相关法规、标准实施、推进了一批环保措施的落实,从而持续改善了北京的空气质量. 赵辉等[9]通过南京空气质量发布系统实时监测的数据,对青奥会举办前、举办期间以及举办之后南京市主要大气污染物浓度变化特征进行比较分析,发现PM2.5、PM10、SO2和O3浓度变化特征相似,均为青奥会之后>青奥会之前>青奥会期间. 赵金帅等[10]基于近地面观测的常规污染六参数、气象数据和在线VOCs数据,以臭氧及其前体物 VOCs 为研究重点,评估了民运会期间采取的污染管控措施对郑州市空气质量的影响,结果表明2019年民运会管控期间污染物六参数相较上年同期均呈现降低趋势. 保障工作期间相关的城市空气质量得到显著改善,故保障工作前后空气质量的变化为污染管控和改善空气质量提供了最真实的情景模拟.
2021年中华人民共和国第十四届运动会9月15至9月27日在陕西举办,其中参赛场馆大多分布在西安市,为保证运动会的顺利举办,出台了一系列严格政策管控,例如区域性车辆限行、相关扬尘和工业企业停产停工等,使得污染物排放量削减,为评估管控效果,本研究选取9月15至9月27日作为管控期,9月其余时间作为常规期,通过两时段对比探究西安市第十四届运动会前后PM2.5中无机元素的污染特征以及来源差异,有助于理解西安空气污染物的变化特征,以期为减排措施提供理论支持.
十四运期间西安市PM2.5中无机元素的污染特征及来源解析
Pollution characteristics and source analysis of inorganic elements in PM2.5 in Xi 'an during The 14th National Games
-
摘要: 为了解十四运期间西安市PM2.5中无机元素的污染特征及来源,利用重金属在线分析仪(Amms-100)于2021年9月(7日—30日)进行实时观测,运用富集因子(EF)和正交矩阵因子分解法(PMF)进行来源解析、健康风险评价模型进行风险评估. 结果表明,PM2.5日均值在常规期为(16.2±5.8) μg·m–3,管控期为(11.9±5.2)μg·m–3,均低于国家一级日平均限值(35 μg·m–3);无机元素的平均质量浓度在常规期为2.7 μg·m–3,在管控期为2.0 μg·m–3,表明十四运期间的管控措施对PM2.5及其无机元素有治理效果. 富集因子结果表明,Cu、Zn、Br和Se全部来自于人为活动排放;Cr、Co、As和Pb主要受人为排放影响,因管控期间各种限制政策影响,以上元素在管控期较低. PMF分析结果表明十四运前后PM2.5中无机元素主要来源于扬尘(48.5%)、工业(23.7%)、燃烧(18.7%)和交通源(9.0%). 健康风险评价结果表明,常规期Mn在儿童群体中存在非致癌风险,Cr和As对人体存在致癌风险;除V以外,其他元素危险系数(HQ)和终生增量致癌风险(ILCR)均为常规期>管控期.Abstract: In order to understand the characteristics and sources of inorganic elements in PM2.5 in Xi'an during The 14th Nation Games, on-line monitoring instrument Amms-100 is used to collect the elements in September from 7 to 30, 2021, combined with enrichment factor method, matrix factorization method and health risk assessment to analyze the source and health risk of the metal elements in the atmosphere.The average daily mass concentration of PM2.5 in the regular period was (16.2±5.8) μg·m–3, and in the control period was (11.9±5.2) μg·m–3. The average mass concentration of inorganic elements was 2.7 μg·m–3 in the regular period and 2.0 μg·m–3 in the control period, indicating that the control measures had a certain effect on the pollution of inorganic elements in PM2.5. The enrichment factor results showed that Cu, Zn, Br and Se were all from human activities. Cr, Co, As and Pb are mainly affected by anthropogenic emissions, which is mainly related to various restriction policies during the control period. The results of PMF showed that the inorganic elements in PM2.5 were mainly from dust(48.5%), industrial(23.7%), combustion(18.7%) and traffic sources(9.0%). The results of health risk assessment showed that Mn had non-carcinogenic risk in children, Cr and As had carcinogenic risk in human body. Except for V, other elements hazard quotient (HQ) and incremental lifetime cancer risk (ILCR) were in the control period < conventional period, indicating that the control had a significant effect on the control of element pollution.
-
Key words:
- inorganic elements /
- PM2.5 /
- The 14th National Games /
- source analysis /
- Xi’an.
-
污染程度
The degree of pollution来源
SourceEF<10 轻微(Light) 主要源于自然源 10<EF<100 中度(Mild) 主要源于人类活动 EF>100 高度(strong) 全部源于类活动 表 2 暴露参数值
Table 2. Values of exposure parameters
单位
Unit儿童
Child男性
Male成年女性
Female浓度c mg·m‒3 — — — 呼吸速率IR mg·m‒3 8.6 16.6 13.5 暴露频率EF d·a‒1 365 365 365 暴露年限ED a 6 30 30 体重BW kg 15 67.3 57.3 平均暴露时间AT (non-carcinogenic) d 365×ED 365×ED 365×ED 平均暴露时间AT (carcinogenic) d 365×18 365×72.4 365×77.4 元素
Elements参考剂量 /(mg·(kg·d)−1)
RFD风险斜率因子/ (kg·d·mg−1)
SFPb 3.5×10−3 Ba 2.0×10−1 Mn 1.4×10−5 Zn 3.0×10−1 Cu 4.0×10−2 As 3.0×10−4 15.1 Cr 2.8×10−5 8.4 表 4 量级较小的元素在管控期和常规期的浓度变化(ng·m−3)
Table 4. Mass concentration changes of element in the routine and control periods(ng·m−3)
元素
Element管控期
Control常规期
Routine变化幅度
Amplitude of variationV 2.2 2.1 1.7% Cr 7.2 8.7 –17.4% Mn 20.7 29.1 –28.9% Co 5.7 5.0 13.0% Cu 27.3 28.1 –2.8% Zn 133.6 189.1 –29.4% As 3.3 3.6 –9.6% Se 4.3 3.2 34.0% Br 5.8 7.1 –18.8% Tl 3.4 3.3 2.0% Pb 13.4 16.0 –16.3% 表 5 无机元素富集因子分析结果
Table 5. Enrichment factor analysis results of inorganic element
元素
Element常规期
Routine管控期
Control平均
AverageAl 2.1 1.5 1.8 K 1.5 1.2 1.3 Ca 0.8 0.9 0.9 Ti 0.6 0.6 0.6 V 5.2 3.2 4.0 Cr 18.4 14.1 15.8 Mn 5.9 5.3 5.5 Co 85.3 47.8 62.3 Cu 204.2 133.8 161.2 Zn 307.6 277.3 289.0 As 46.4 32.8 38.1 Se 3132.7 1481.1 2123.6 Br 446.3 350.9 388.0 Ba 4.2 4.1 4.1 Pb 100.0 76.0 85.4 表 6 管控期和常规期非致癌风险评价结果
Table 6. Results of non carcinogenic risk assessment in control period and routine period
管控期
Control常规期
Routine儿童
Child成人(男)
Male成人(女)
Female儿童
Child成人(男)
Male成人(女)
FemalePb 2.2×10−3 9.4×10−4 8.9×10−4 2.6×10−3 1.1×10−3 1.1×10−3 V 1.8×10−1 7.7×10−2 7.3×10−2 1.7×10−1 7.5×10−2 7.2×10−2 Ba 3.9×10−5 1.7×10−5 1.6×10−5 5.9×10−5 2.5×10−5 2.4×10−5 Mn 8.5×10−1 3.6×10−1 3.5×10−1 1.2×100 5.1×10−1 4.9×10−1 Zn 2.6×10−4 1.1×10−4 1.0×10−4 3.6×10−4 1.6×10−4 1.5×10−4 Cu 3.9×10−4 1.7×10−4 1.6×10−4 4.0×10−4 1.7×10−4 1.7×10−4 Cr 1.5×10−1 6.3×10−2 6.0×10−2 1.8×10−1 7.7×10−2 7.3×10−2 As 6.2×10−3 2.7×10−3 2.6×10−3 6.9×10−3 2.9×10−3 2.8×10−3 表 7 管控期和常规期致癌风险评价结果
Table 7. Results of cancer risk assessment in control period and routine period
管控
Control常规
Routine儿童
Child成人(男)
Male成人(女)
Female儿童
Child成人(男)
Male成人(女)
FemaleCr 1.2×10−5 6.2×10−6 5.5×10−6 1.4×10−5 7.5×10−6 6.7×10−6 As 9.4×10−6 5.0×10−6 4.5×10−6 1.0×10−5 5.6×10−6 4.9×10−6 -
[1] 郑元铸, 葛琳琳, 郑旭军, 等. 温州市区PM2.5无机元素污染特征及来源分析 [J]. 环境化学, 2017, 36(1): 84-91. doi: 10.7524/j.issn.0254-6108.2017.01.2016051802 ZHENG Y Z, GE L L, ZHENG X J, et al. Characteristics and source apportionment of inorganic elements in PM2.5 in Wenzhou, Zhejiang [J]. Environmental Chemistry, 2017, 36(1): 84-91(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.01.2016051802
[2] 孟菁华, 史学峰, 向怡, 等. 大气中重金属污染现状及来源研究 [J]. 环境科学与管理, 2017, 42(8): 51-53. MENG J H, SHI X F, XIANG Y, et al. Current status and sources of heavy metal in atmosphere [J]. Environmental Science and Management, 2017, 42(8): 51-53(in Chinese).
[3] 张鑫, 赵小曼, 孟雪洁, 等. 北京、新乡夏季大气颗粒物中重金属的粒径分布及人体健康风险评价 [J]. 环境科学, 2018, 39(3): 997-1003. ZHANG X, ZHAO X M, MENG X J, et al. Particle size distribution and human health risk assessment of heavy metals in atmospheric particles from Beijing and Xinxiang during summer [J]. Environmental Science, 2018, 39(3): 997-1003(in Chinese).
[4] THOMAS L D K, HODGSON S, NIEUWENHUIJSEN M, et al. Early kidney damage in a population exposed to cadmium and other heavy metals [J]. Environmental Health Perspectives, 2009, 117(2): 181-184. doi: 10.1289/ehp.11641 [5] 徐静, 李杏茹, 张兰, 等. 北京城郊PM2.5中金属元素的污染特征及潜在生态风险评价 [J]. 环境科学, 2019, 40(6): 2501-2509. XU J, LI X R, ZHANG L, et al. Concentration and ecological risk assessment of heavy metals in PM2.5 collected in urban and suburban areas of Beijing [J]. Environmental Science, 2019, 40(6): 2501-2509(in Chinese).
[6] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 环境空气质量标准: GB 3095—2012[S]. 北京: 中国环境科学出版社, 2016. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Ambient air quality standard: GB 3095—2012[S]. Beijing: China Environment Science Press, 2016(in Chinese).
[7] 中华人民共和国生态环境部. 有毒有害大气污染物名录(第一批)[R]. 2018. MINISTRY of Ecology and Environment of the People's Republic of China. List of Toxic and Harmful Air Pollutants (first batch) [R]. 2018.
[8] 马宁, 刘民, 梁万年. 2008年北京奥运会对北京空气质量的影响 [J]. 首都公共卫生, 2010, 4(3): 103-110. MA N, LIU M, LIANG W N. Impact of Beijing 2008 Olympic Games on its air quality [J]. Capital Journal of Public Health, 2010, 4(3): 103-110(in Chinese).
[9] 赵辉, 郑有飞, 吴晓云, 等. 青年奥林匹克运动会期间南京市主要大气污染物浓度变化与分析 [J]. 环境化学, 2015, 34(5): 824-831. doi: 10.7524/j.issn.0254-6108.2015.05.2014101505 ZHAO H, ZHENG Y F, WU X Y, et al. Variation and analysis of air pollutants concentration in Nanjing during the Youth Olympic Games [J]. Environmental Chemistry, 2015, 34(5): 824-831(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.05.2014101505
[10] 赵金帅, 于世杰, 王楠, 等. 郑州市少数民族运动会期间O3及VOCs污染特征的演变和评估 [J]. 环境科学, 2020, 41(10): 4436-4445. ZHAO J S, YU S J, WANG N, et al. Evolution and evaluation of O3 and VOCs in Zhengzhou during the national traditional games of ethnic minorities period [J]. Environmental Science, 2020, 41(10): 4436-4445(in Chinese).
[11] SHEN Z T, ZHANG J Z, HOU D Y, et al. Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue [J]. Environment International, 2019, 122: 357-362. doi: 10.1016/j.envint.2018.11.045 [12] 张宝贵, 郭爱红, 周遗品. 环境化学[M]. 2版. 武汉: 华中科技大学出版社, 2018. ZHANG B G, GUO A H, ZHOU Y P. Environmental Chemistry [M]. Wuhan: Huazhong University of Science and Technology Press, 2018(in Chinese).
[13] BARBIERI M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination [J]. Journal of Geology & Geophysics, 2016, 5: 1-4. [14] BLANCHARD D G, LOUIS N E, ABDOURAHIMI, et al. Environmental pollution by heavy metals in the gold mining region of east Cameroon [J]. American Journal of Environmental Sciences, 2018, 14(5): 212-225. doi: 10.3844/ajessp.2018.212.225 [15] TAN J H, DUAN J C, MA Y L, et al. Source of atmospheric heavy metals in winter in Foshan, China [J]. Science of the Total Environment, 2014, 493: 262-270. doi: 10.1016/j.scitotenv.2014.05.147 [16] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [17] DAI Q L, LIU B S, BI X H, et al. Dispersion normalized PMF provides insights into the significant changes in source contributions to PM 2.5 after the COVID-19 outbreak [J]. Environmental Science & Technology, 2020, 54(16): 9917-9927. [18] 周变红, 王锦, 曹夏, 等. 宝鸡市冬季碳质气溶胶污染特征及来源解析 [J]. 环境化学, 2020, 39(12): 3336-3345. doi: 10.7524/j.issn.0254-6108.2020081105 ZHOU B H, WANG J, CAO X, et al. Characteristics and sources of carbon fractions during winter in Baoji City [J]. Environmental Chemistry, 2020, 39(12): 3336-3345(in Chinese). doi: 10.7524/j.issn.0254-6108.2020081105
[19] 王红果, 孙永旺, 王芳, 等. 济源市疫情防控期间VOCs的变化特征、臭氧生成潜势及来源解析 [J]. 环境科学学报, 2021, 41(3): 761-769. WANG H G, SUN Y W, WANG F, et al. Characteristics, ozone formation potential and source apportionment of VOCs during epidemic prevention in Jiyuan [J]. Acta Scientiae Circumstantiae, 2021, 41(3): 761-769(in Chinese).
[20] LIU G, LI J H, WU D, et al. Chemical composition and source apportionment of the ambient PM2.5 in Hangzhou, China [J]. Particuology, 2015, 18: 135-143. doi: 10.1016/j.partic.2014.03.011 [21] CHANG Y H, HUANG K, XIE M J, et al. First long-term and near real-time measurement of trace elements in China's urban atmosphere: Temporal variability, source apportionment and precipitation effect [J]. Atmospheric Chemistry and Physics, 2018, 18(16): 11793-11812. doi: 10.5194/acp-18-11793-2018 [22] EPA W. D. U. United States Environmental Protection Agency (US EPA). Exposure Factors Hand book 2011 Edition (Final Report). EPA/600/R-09/05[R]. 2011. [23] 环境保护部. 中国人群暴露参数手册-成人卷[M]. 北京: 中国环境科学出版社, 2013: 798. The Ministry of Environmental Protection. 2013. Handbook of Exposure Parameters for the Chinese population-adult volume [M]. Beijing: China Environmental Science Press, 2013: 798(in Chinese).
[24] EPA. Risk Assessment Guidance for Superfund. Volume I: Human Health Evaluation Manual(Part F)[S]. Washington, USA: Office of Emergency and Remedial Response: EPA, 1989. [25] EPA. Exposure Factors Hand Book: 2011 Edition(final Report) [M]. Washington, USA: National Center for Environmental Assessment Office of Research and Development: 2011: 4-21. [26] VIANA M, KUHLBUSCH T A J, QUEROL X, et al. Source apportionment of particulate matter in Europe: A review of methods and results [J]. Journal of Aerosol Science, 2008, 39(10): 827-849. doi: 10.1016/j.jaerosci.2008.05.007 [27] GONET T, MAHER B A. Airborne, vehicle-derived Fe-bearing nanoparticles in the urban environment: A review [J]. Environmental Science & Technology, 2019, 53(17): 9970-9991. [28] QUEROL X, VIANA M, ALASTUEY A, et al. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain [J]. Atmospheric Environment, 2007, 41(34): 7219-7231. doi: 10.1016/j.atmosenv.2007.05.022 [29] VARRICA D, BARDELLI F, DONGARRÀ G, et al. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues [J]. Atmospheric Environment, 2013, 64: 18-24. doi: 10.1016/j.atmosenv.2012.08.067 [30] SHARMA S K, MUKHERJEE S, CHOUDHARY N, et al. Seasonal variation and sources of carbonaceous species and elements in PM2.5 and PM10 over the eastern Himalaya [J]. Environmental Science and Pollution Research International, 2021, 28(37): 51642-51656. doi: 10.1007/s11356-021-14361-z [31] JIAO P, ZHANG J, LV J, et al. Refined pretreatment process of gasoline antiknock agent methylcyclopentadienyl manganese tricarbonyl (MMT) product involves removing solid insoluble matter by solid-liquid separation of MMT synthesis reaction solution and distilling. China, CN109438524-A[P]. 2019-3-8. [32] SRIMURUGANANDAM B, SHIVA NAGENDRA S M. Source characterization of PM10 and PM2.5 mass using a chemical mass balance model at urban roadside [J]. Science of the Total Environment, 2012, 433: 8-19. doi: 10.1016/j.scitotenv.2012.05.082 [33] KOTHAI P, SARADHI I V, PANDIT G G, et al. Chemical characterization and source identification of particulate matter at an urban site of navi Mumbai, India [J]. Aerosol and Air Quality Research, 2011, 11(5): 560-569. doi: 10.4209/aaqr.2011.02.0017 [34] ZHANG N N, CAO J J, HO K, et al. Chemical characterization of aerosol collected at Mt. Yulong in wintertime on the southeastern Tibetan Plateau [J]. Atmospheric Research, 2012, 107: 76-85. doi: 10.1016/j.atmosres.2011.12.012 [35] SHEN Z X, SUN J, CAO J J, et al. Chemical profiles of urban fugitive dust PM2.5 samples in Northern Chinese cities [J]. Science of the Total Environment, 2016, 569/570: 619-626. doi: 10.1016/j.scitotenv.2016.06.156 [36] VOUK V B, PIVER W T. Metallic elements in fossil fuel combustion products: Amounts and form of emissions and evaluation of carcinogenicity and mutagenicity [J]. Environmental Health Perspectives, 1983, 47: 201-225. doi: 10.1289/ehp.8347201 [37] AMIL N, LATIF M T, KHAN M F, et al. Seasonal variability of PM2.5 composition and sources in the KlangValley urban-industrial environment [J]. Atmospheric Chemistry and Physics, 2016, 16(8): 5357-5381. doi: 10.5194/acp-16-5357-2016 [38] 周变红, 王锦, 曹夏, 等. 宝鸡市冬季PM2.5中元素污染特征及健康风险评估 [J]. 生态毒理学报, 2020, 15(4): 299-311. ZHOU B H, WANG J, CAO X, et al. Characteristics and health risk assessments of elements in PM2.5 during winter in Baoji City [J]. Asian Journal of Ecotoxicology, 2020, 15(4): 299-311(in Chinese).
[39] CIGÁNKOVÁ H, MIKUŠKA P, HEGROVÁ J, et al. Seasonal variation and sources of elements in urban submicron and fine aerosol in Brno, Czech republic [J]. Aerosol and Air Quality Research, 2021, 21(5): 200556. doi: 10.4209/aaqr.2020.09.0556 [40] XU H M, CAO J J, HO K F, et al. Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi’an, China [J]. Atmospheric Environment, 2012, 46: 217-224. doi: 10.1016/j.atmosenv.2011.09.078 [41] DUAN J C, GUO S J, TAN J H, et al. Characteristics of atmospheric carbonyls during haze days in Beijing, China [J]. Atmospheric Research, 2012, 114/115: 17-27. doi: 10.1016/j.atmosres.2012.05.010 [42] UNITED States Environmental Protection Agency. Risk assessment guidance for Superfund. Volume I: Human health evaluation manual ( part A)[R]. Washington DC: Office of Emergency and Remedial Response, U S, 1989. [43] ZHANG Y F. Evaluation of the changes of the concentration, composition and possible sources of size-resolved particulate matter between 2010 and 2011 in a western Chinese mega city [J]. Aerosol and Air Quality Research, 2014: 1500-1514.