-
磷是植物生长发育所必需的大量元素之一,土壤中的磷形态直接影响植物磷吸收的水平[1-2]. 土壤中能被植物直接吸收利用的磷素形式是无机磷,大部分磷容易以铁磷、钙磷等难溶态磷滞留在土壤中,这主要受土壤类型、质地和理化特征等因素影响[3]. 我国土壤普遍存在磷素缺乏的现象,施用的磷肥只有10%—25%能被植物吸收,大部分磷肥在土壤中累积,容易造成磷资源浪费,或者随着地表径流和水土流失造成水体富营养化现象[4]. 因此,如何提升难溶态磷转化为有效磷是减少磷肥施用量、提升磷素利用率的重要途径.
低分子量有机酸活化土壤磷,提高植物吸收无机磷含量,是植物应对低磷逆境的重要机制[5-8]. 低分子量有机酸是土壤-植物-根际生态系统最活跃的碳形态,低浓度低分子量有机酸能促进土壤有效磷释放,其Hormesis效应-剂量关系已经受到了广泛的关注. Hormesis效应是指机体受外源化学物质胁迫产生的胁迫效应,表现为低浓度时产生刺激兴奋效应,而高浓度时表现为抑制作用的现象[9]. 在土壤生态系统中,Hormesis效应-剂量关系主要关注重金属、有机污染物(如多环芳烃、多氯联苯等)、农药及抗生素等外源有毒物质对植物生长发育、土壤微生物活性、土壤酶活性等因素的影响[10-12].
一定浓度范围内的低分子量有机酸对土壤磷的释放表现为剂量-效应关系,低分子量有机酸种类、浓度、浸提时间和浸提次数对土壤磷含量的释放有重要影响[13-15]. 陆文龙等[16]研究表明柠檬酸、苹果酸、酒石酸、草酸等对土壤中磷的活化与提取时间、提取浓度和土壤有效磷含量显著呈显著正相关. 庄正等[17]研究表明当浓度在0—8 mmol·L−1时,草酸、柠檬酸、苹果酸和丙二酸对土壤磷的释放量都随着有机酸浓度的提高而增加. 介晓磊等[18]研究表明当草酸、柠檬酸、苹果酸和酒石酸在0—5 mmol·L−1时,随着有机酸浓度的提高,石灰性土壤磷素释放量越大,增强的幅度为草酸 >柠檬酸 >酒石酸 >苹果酸. 总体来说,土壤pH和其它理化性质的改变、试验方法和培养时间的不同和低分子量有机酸种类和浓度都会显著影响土壤磷的释放[19]. 宋金凤等[20]以不同浓度的草酸和柠檬酸模拟凋落物对森林土壤磷释放的影响,结果表明有机酸的浸提时间、浸提次数对磷的持续释放及其动力学特征有显著影响,两种有机酸的最佳浸提时间为12 h,2.0 mmol·L−1柠檬酸处理下磷释放的累加效应大于草酸. Zhao等[21]研究表明0—10 mmol·L−1浓度的草酸和柠檬酸能显著提高构树和桑树根际土壤的磷释放量,其土壤磷释放量与有机酸浓度之间表现为线性关系. Ström等[22]研究表明在pH<3.5的酸性土壤和pH=7.5的碱性土壤中,0—100 mmol·L−1浓度的草酸、柠檬酸和苹果酸都能增加土壤磷的释放量,但在高pH作用下有机酸对磷的提取作用更有效. 因此,有机酸与其提取的有效磷之间的剂量-效应关系的变化及其原因等值得重点关注的问题.
湖滨带是水陆系统的交错带,该区域生产力和生物多样性较高,在湖泊生态系统中发挥着重要的生态功能,对污染物的滞留和水体净化、生物群落多样性的维护等具有重要影响[23-25]. 因此,本文在安庆沿江区域的菜子湖、破罡湖、武昌湖湿地湖滨带采集了表层土壤,选择了两种土壤中常见的低分子量有机酸: 苹果酸和酒石酸,研究添加不同浓度的苹果酸和酒石酸对3个湖泊湿地湖滨带土壤有效磷释放的影响,分析两种有机酸影响下土壤磷的剂量-效应关系曲线,探讨苹果酸和酒石酸对不同湖泊湿地有效磷释放的差异性,为低分子量有机酸改善土壤中磷素养分提供技术支撑,同时为磷素流失的环境风险防控和富磷水体的富营养化治理提供理论依据.
低分子量有机酸对湖泊湿地湖滨带土壤磷释放的影响
Effect of low molecular weight organic acids on soil phosphorus release of inner lakeside belt in lake wetlands
-
摘要: 本文采集安庆沿江菜子湖、破罡湖、武昌湖湖滨带的表层土壤,测定了不同浓度酒石酸和苹果酸影响下的3个湖泊土壤磷释放量. 结果表明,酒石酸和苹果酸都能对湖滨带土壤磷提取率,产生随有机酸浓度变化的Hormesis效应,苹果酸对磷的提取能力比酒石酸强. 酒石酸和苹果酸对破罡湖湖滨带土壤磷最大提取率(Ymax)分别为1817.57%和2166.63%,显著高于菜子湖和武昌湖. 两种有机酸对破罡湖湖滨带土壤磷的应对胁迫潜能(R)也分别高于菜子湖和武昌湖. 研究结果可为利用低分子量有机酸改善土壤中磷素养分提供理论依据,同时为磷素流失的环境风险控制提供技术支撑.
-
关键词:
- Hormesis效应 /
- 低分子量有机酸 /
- 有效磷 /
- 湖泊湿地
Abstract: In this study, the surface soils of inner lakeside belt in Caizi Lake, Pogang Lake and Wuchang Lake along Yangtze River of Anqing were collected, and the soil phosphorus release contents for three lakes affected by different concentrations of tartaric acid and malic acid were measured. The results showed that both tartaric acid and malic acid induced concentration-dependent hormesis effects on the extraction ratio of soil phosphorus in inner lakeside belt, and the malic acid had a stronger capacity of extract phosphorus than tartaric acid. The maximum extraction rate (Ymax) of soil phosphorus in inner lakeside belt of Pogang lake by tartaric acid and malic acid were 1817.57% and 2166.63%, respectively, which were significantly higher than those in Caizi Lake and Wuchang Lake. The potential for response stress (R) of the two organic acids to soil phosphorus in Pogang lake were higher than that in Caizi Lake and Wuchang Lake. The results can provide a theoretical basis for the use of low molecular weight organic acids to improve soil phosphorus nutrients, and provide technical support for the control of environmental risk of phosphorus loss. -
表 1 各湖泊湖滨带基本特征及采样点位置
Table 1. Basic characteristics and the location of sampling points in inner lakeside belt of three lakes
湖泊名称
Lake name湖滨带优势物种
Dominant species of lakeside belt湖泊面积/km2
Lake area采样区位置
Sampling area locationCZH 细叶薹草、长刺酸模、芦苇 146.3 E117°5′6.08″, N30°45′19.84″ E117°4′43.25″, N30°42′42.64″ E117°6′52.56″, N30°43′1.23″ PGH 芦苇、光头稗、一年蓬 22.7 E117°8′6.88″, N30°39′29.98″ E117°8′58.32″, N30°39′16.16″ E117°9′55.10″, N30°36′38.80″ WCH 野菰、莲子草、秋角菱 107.5 E116°41′45.72″, N30°14′51.66″ E116°45′7.52″, N30°17′21.54″ E116°46′10.39″, N30°17′40.00″ 表 2 供试低分子量有机酸的基本性质
Table 2. Basic properties of low molecular weight organic acids
有机酸类型
Organic acid type英文名称
English name化学式
Chemical formula解离常数
Dissociation constantCAS号
CAS Number苹果酸 Malic acid HOOC-CH(OH)-CH2-COOH K1=4.0×10−4 133-37-9 K2=8.9×10−6 酒石酸 Tartaric acid HOOC-CH(OH)-CH(OH)-COOH K1=9.1×10−4 617-48-1 K2=4.3×10−5 表 3 各湖泊湖滨带土壤基本理化性质
Table 3. Soil physicochemical properties in inner lakeside belt of three lakes
湖泊
LakepH 有机质/(g·kg−1)
Organic matter阳离子交换量/(cmol·kg−1)
Cation exchange capacity总磷/(mg·kg−1)
Total phosphorus有效磷/(mg·kg−1)
Available phosphorusCZH 4.97a±0.16 29.36a±1.91 12.9a±1.22 446a±21.66 1.20a±0.12 PGH 7.04c±0.11 22.15b±2.54 10.8a±0.64 298b±10.42 5.47b±0.63 WCH 5.85b±0.27 31.94a±1.28 11.7a±0.69 547c±20.11 2.10c±0.37 注:数据以平均值(M)±标准误差(SE)表示,平均值后面的小写字母表示同一指标在3个湖泊之间的差异性(P<0.05).
Note: The data was shown by mean (M) ± standard error (SE), and the different lowercase letters indicated the difference of the same index in the three lakes (P<0.05).表 4 不同拟合方程模拟酒石酸和苹果酸对磷提取率
Table 4. The different fitting equations simulated the extraction rates of phosphorus by tartaric acid and malic acid
有机酸
Organic acid湖泊名称
Lake name线性方程
Linear equation$ Y=\mathrm{a}X+b $ 多项式方程
Polynomial equation$ Y=\mathrm{a}{X}^{2}+bX+c $ 幂指数方程
Exponential equation$ Y=\mathrm{a}{X}^{b} $ 双曲线方程
Hyperbolic equation$ Y=\dfrac{aX}{b+X} $ 酒石酸 CZH r=0.5606
P=0.1905r=0.9974
P=0.0001r=0.7362
P=0.0592r=0.8450
P=0.0160PGH r=0.7410
P=0.0562r=0.9628
P=0.0053r=0.8812
P=0.0088r=0.9589
P=0.0006WCH r=0.8960
P=0.0063r=0.9957
P<0.0001r=0.9578
P=0.0007r=0.9852
P<0.0001苹果酸 CZH r=0.7192
P=0.0685r=0.9478
P=0.0103r=0.8083
P=0.0278r=0.8664
P=0.0116PGH r=0.8418
P=0.0175r=0.9845
P=0.0010r=0.9353
P=0.0020r=0.9837
P<0.0001WCH r=0.8516
P=0.0150r=0.9833
P=0.0011r=0.9152
P=0.0038r=0.9533
P=0.0009注:X表示有机酸浓度(mmol·L−1),Y表示有机酸对土壤磷的提取率(%).r表示拟合曲线的相关系数,P表示显著性意义.
Note: X is the concentration of organic acids (mmol·L−1), Y is the extraction rates of phosphorus by organic acids (%). r is the correlation coefficient of the fitting equation, P is the significant difference.表 5 不同有机酸提取各湖滨带土壤磷Hormesis效应参数
Table 5. Hormetic parameters of soil phosphorus induced by different organic acids in inner lakeside belt of three lakes
有机酸
Organic acid湖泊名称
Lake nameD1 D2 NMe Ymax Xmax Qi ΔD R 酒石酸 CZH −0.04 24.47 12.21 784.62 2.43 −545.77 24.51 13551.25 PGH −1.13 28.64 13.76 1817.57 4.02 −25.36 29.77 93383.91 WCH −0.47 32.97 16.25 422.91 1.47 −69.97 33.44 10561.63 苹果酸 CZH 0.63 26.63 13.63 634.10 4.23 42.24 26.00 4377.96 PGH −0.61 30.70 15.04 2166.63 6.55 −50.07 31.31 88529.41 WCH 0.37 30.20 15.28 787.07 2.25 81.58 29.83 11313.27 -
[1] GILBERT N. Environment: the disappearing nutrient [J]. Nature, 2009, 461(7265): 716-718. doi: 10.1038/461716a [2] LAMBERS H. Phosphorus acquisition and utilization in plants [J]. Annual Review of Plant Biology, 2022, 73: 17-42. doi: 10.1146/annurev-arplant-102720-125738 [3] 魏丹, 杨华薇, 陈延华, 等. 有机酸对土壤磷的活化利用研究进展[J]. 农业环境科学学报, 2022, 41(7): 1391-1399. WEI D, YANG H W, CHEN Y H, et al. Research on the activation and regulation of soil phosphorus by organic acids[J]. Journal of Agro-Environment Science, 2022, 41(7): 1391-1399.
[4] 王永壮, 陈欣, 史奕, 等. 低分子量有机酸对土壤磷活化及其机制研究进展 [J]. 生态学杂志, 2018, 37(7): 2189-2198. WANG Y Z, CHEN X, SHI Y, et al. Review on the effects of low-molecular-weight organic acids on soil phosphorus activation and mechanisms [J]. Chinese Journal of Ecology, 2018, 37(7): 2189-2198(in Chinese).
[5] HAN Y, WHITE P J, CHENG L Y. Mechanisms for improving phosphorus utilization efficiency in plants [J]. Annals of Botany, 2021, 129(3): 247-258. [6] RYAN P R, DELHAIZE E, JONES D L. Function and mechanism of organic anion exudation from plant roots [J]. Annual Review of Plant Physiology and Plant Molecular Biology, 2001, 52: 527-560. doi: 10.1146/annurev.arplant.52.1.527 [7] CHEN Y T, WANG Y, YEH K C. Role of root exudates in metal acquisition and tolerance [J]. Current Opinion in Plant Biology, 2017, 39: 66-72. doi: 10.1016/j.pbi.2017.06.004 [8] JONES D L. Organic acids in the rhizosphere-a critical review [J]. Plant and Soil, 1998, 205(1): 25-44. doi: 10.1023/A:1004356007312 [9] CALABRESE E J, BALDWIN L A. Toxicology rethinks its central belief [J]. Nature, 2003, 421(6924): 691-692. doi: 10.1038/421691a [10] 卢明星, 徐传红, 朱咏莉, 等. Cd诱导土壤ALP的Hormesis效应: 土地利用变化的驱动机制 [J]. 南京林业大学学报(自然科学版), 2020, 44(2): 173-180. LU M X, XU C H, ZHU Y L, et al. Hormetic effect of Cd on soil alkaline phosphatase: Driving mechanism of land use change [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(2): 173-180(in Chinese).
[11] WANG S Y, HUANG B, FAN D W, et al. Hormetic responses of soil microbiota to exogenous Cd: A step toward linking community-level hormesis to ecological risk assessment [J]. Journal of Hazardous Materials, 2021, 416: 125760. doi: 10.1016/j.jhazmat.2021.125760 [12] ZHU Y L, LIU C L, YOU Y, et al. Magnitude of the mixture hormetic response of soil alkaline phosphatase can be predicted based on single conditions of Cd and Pb [J]. Ecotoxicology, 2019, 28(7): 790-800. doi: 10.1007/s10646-019-02077-3 [13] KPOMBLEKOU-A K, TABATABAI M A. Effect of low-molecular weight organic acids on phosphorus release and phytoavailabilty of phosphorus in phosphate rocks added to soils [J]. Agriculture, Ecosystems & Environment, 2003, 100(2/3): 275-284. [14] HOU E Q, TANG S B, CHEN C R, et al. Solubility of phosphorus in subtropical forest soils as influenced by low-molecular organic acids and key soil properties [J]. Geoderma, 2018, 313: 172-180. doi: 10.1016/j.geoderma.2017.10.039 [15] 孔涛, 伏虹旭, 吕刚, 等. 低分子量有机酸对滨海盐碱土壤磷的活化作用 [J]. 环境化学, 2016, 35(7): 1526-1531. doi: 10.7524/j.issn.0254-6108.2016.07.2015112701 KONG T, FU H X, LYU G, et al. Enhanced release of phosphorus from coastal saline alkaline soil induced by low molecular weight organic acids [J]. Environmental Chemistry, 2016, 35(7): 1526-1531(in Chinese). doi: 10.7524/j.issn.0254-6108.2016.07.2015112701
[16] 陆文龙, 王敬国, 曹一平, 等. 低分子量有机酸对土壤磷释放动力学的影响 [J]. 土壤学报, 1998, 35(4): 493-500. doi: 10.3321/j.issn:0564-3929.1998.04.008 LU W L, WANG J G, CAO Y P, et al. Kinetics of phosphorus release from soils, as affected by organic acids with low-molecular-weight [J]. Acta Pedologica Sinica, 1998, 35(4): 493-500(in Chinese). doi: 10.3321/j.issn:0564-3929.1998.04.008
[17] 庄正, 李艳娟, 刘青青, 等. 模拟杉木凋落物源有机酸对南方红壤磷的持续释放效应 [J]. 福建农林大学学报(自然科学版), 2017, 46(5): 569-575. ZHUANG Z, LI Y J, LIU Q Q, et al. Sustained release of phosphorus by organic acid extraction from litter-derived red soil from Chinese fir plantation in Southern China [J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2017, 46(5): 569-575(in Chinese).
[18] 介晓磊, 李有田, 庞荣丽, 等. 低分子量有机酸对石灰性土壤磷素形态转化及有效性的影响 [J]. 土壤通报, 2005, 36(6): 856-860. doi: 10.3321/j.issn:0564-3945.2005.06.009 JIE X L, LI Y T, PANG R L, et al. Effect of low molecular weight organic acids on transformation and availability of phosphates in calcareous soil [J]. Chinese Journal of Soil Science, 2005, 36(6): 856-860(in Chinese). doi: 10.3321/j.issn:0564-3945.2005.06.009
[19] 张乃于, 闫双堆, 李娟, 等. 低分子量有机酸对土壤磷组分影响的Meta分析 [J]. 植物营养与肥料学报, 2019, 25(12): 2076-2083. doi: 10.11674/zwyf.19330 ZHANG N Y, YAN S D, LI J, et al. Meta-analysis on the effects of low molecular weight organic acids on increasing availability of soil phosphorus [J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2076-2083(in Chinese). doi: 10.11674/zwyf.19330
[20] 宋金凤, 刘星平, 孙金兵, 等. 有机酸对暗棕壤磷的持续释放效应及其动力学特征 [J]. 北京林业大学学报, 2015, 37(10): 1-8. SONG J F, LIU X P, SUN J B, et al. Sustained release and the kinetics of phosphorus from dark brown forest soils by organic acids [J]. Journal of Beijing Forestry University, 2015, 37(10): 1-8(in Chinese).
[21] ZHAO K, WU Y Y. Rhizosphere calcareous soil P-extraction at the expense of organic carbon from root-exuded organic acids induced by phosphorus deficiency in several plant species [J]. Soil Science and Plant Nutrition, 2014, 60(5): 640-650. doi: 10.1080/00380768.2014.934191 [22] STRÖM L, OWEN A G, GODBOLD D L, et al. Organic acid behaviour in a calcareous soil implications for rhizosphere nutrient cycling [J]. Soil Biology and Biochemistry, 2005, 37(11): 2046-2054. doi: 10.1016/j.soilbio.2005.03.009 [23] 王洪铸. 湖滨带的基本概念(代前言)[J]. 长江流域资源与环境, 2012, 21(S2): 1-2. WANG H Z. Basic concepts of lakeshore zones(preface)[J]. Resources and Environment in the Yangtze Basin, 2012, 21(Sup 2): 1-2(in Chinese).
[24] 柴培宏, 代嫣然, 梁威, 等. 湖滨带生态修复研究进展 [J]. 中国工程科学, 2010, 12(6): 32-35. doi: 10.3969/j.issn.1009-1742.2010.06.006 CHAI P H, DAI Y R, LIANG W, et al. Advances of ecological restoration of lakeside zone [J]. Engineering Sciences, 2010, 12(6): 32-35(in Chinese). doi: 10.3969/j.issn.1009-1742.2010.06.006
[25] 赵宽, 万昕, 郭展翅, 等. 安庆湿地湖滨带土壤重金属含量特征及潜在生态风险评价 [J]. 水生态学杂志, 2021, 42(4): 67-75. ZHAO K, WAN X, GUO Z C, et al. Characterization of heavy metals and assessment of potential ecological risk in shoreline buffer zone soils of Anqing Lake wetland [J]. Journal of Hydroecology, 2021, 42(4): 67-75(in Chinese).
[26] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agriculture Press, 2000(in Chinese).
[27] 曹慧, 孙辉, 杨浩, 等. 土壤酶活性及其对土壤质量的指示研究进展 [J]. 应用与环境生物学报, 2003, 9(1): 105-109. doi: 10.3321/j.issn:1006-687X.2003.01.025 CAO H, SUN H, YANG H, et al. A review-soil enzyme activity and its indication for soil quality [J]. Chinese Journal of Applied and Environmental Biology, 2003, 9(1): 105-109(in Chinese). doi: 10.3321/j.issn:1006-687X.2003.01.025
[28] 江桂斌, 郑明辉, 孙红文. 环境化学前沿-第二辑[M]. 北京: 科学出版社, 2019. JIANG G B, ZHENG M H, SUN H W. Frontiers of Environmental Chemistry(Volume Ⅱ) [M]. Beijing: Science Press, 2019(in Chinese).
[29] JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils–misconceptions and knowledge gaps [J]. Plant and Soil, 2003, 248(1/2): 31-41. doi: 10.1023/A:1022304332313 [30] BAETZ U, MARTINOIA E. Root exudates: The hidden part of plant defense [J]. Trends in Plant Science, 2014, 19(2): 90-98. doi: 10.1016/j.tplants.2013.11.006 [31] NEUMANN G, RÖMHELD V. The release of root exudates as affected by the plant physiological status// PINTON R, VARANINI Z, NANNIPIERI Z. The rhizosphere: biochemistry and organic substances at the soil-plant interface[M]. New York, USA: Marcel Dekker Inc. , 2000. [32] HE X J, AUGUSTO L, GOLL D S, et al. Global patterns and drivers of soil total phosphorus concentration [J]. Earth System Science Data, 2021, 13(12): 5831-5846. doi: 10.5194/essd-13-5831-2021 [33] STRÖM L, OWEN A G, GODBOLD D L, et al. Organic acid behaviour in a calcareous soil: Sorption reactions and biodegradation rates [J]. Soil Biology and Biochemistry, 2001, 33(15): 2125-2133. doi: 10.1016/S0038-0717(01)00146-8 [34] 孙桂芳, 金继运, 王玲莉, 等. 低分子量有机酸类物质对红壤和黑土磷有效性的影响 [J]. 植物营养与肥料学报, 2010, 16(6): 1426-1432. doi: 10.11674/zwyf.2010.0618 SUN G F, JIN J Y, WANG L L, et al. Effect of low-molecular-weight organic acids on Olsen-P in red soil and black soil [J]. Plant Nutrition and Fertilizer Science, 2010, 16(6): 1426-1432(in Chinese). doi: 10.11674/zwyf.2010.0618
[35] 龚松贵, 王兴祥, 张桃林, 等. 低分子量有机酸对红壤无机磷活化的作用 [J]. 土壤学报, 2010, 47(4): 692-697. doi: 10.11766/trxb2010470414 GONG S G, WANG X X, ZHANG T L, et al. Release of inorganic phosphorus from red soils induced by low molecular weight organic acids [J]. Acta Pedologica Sinica, 2010, 47(4): 692-697(in Chinese). doi: 10.11766/trxb2010470414
[36] 王艳玲, 朱红霞, 王琳, 等. 有机酸对红壤磷素吸附特性的影响 [J]. 土壤通报, 2011, 42(3): 685-691. WANG Y L, ZHU H X, WANG L, et al. Effect of organic acids on phosphorus adsorption characteristic in red soil [J]. Chinese Journal of Soil Science, 2011, 42(3): 685-691(in Chinese).
[37] YANG X Y, CHEN X W, GUO E H, et al. Path analysis of phosphorus activation capacity as induced by low-molecular-weight organic acids in a black soil of Northeast China [J]. Journal of Soils and Sediments, 2019, 19(2): 840-847. doi: 10.1007/s11368-018-2034-z [38] 杨绍琼, 党廷辉, 戚瑞生, 等. 低分子量有机酸对不同肥力土壤磷素的活化作用 [J]. 干旱地区农业研究, 2012, 30(4): 60-64. doi: 10.3969/j.issn.1000-7601.2012.04.011 YANG S Q, DANG T H, QI R S, et al. Activation of organic acids on phosphorus of soil with different fertility [J]. Agricultural Research in the Arid Areas, 2012, 30(4): 60-64(in Chinese). doi: 10.3969/j.issn.1000-7601.2012.04.011
[39] 唐海燕, 魏世强. 低分子有机酸对淹水土壤磷释放动力学的影响 [J]. 西南农业大学学报(自然科学版), 2005, 27(4): 439-443. TANG H Y, WEI S Q. Kinetics of phosphorus release from flooded soils as affected by organic acids with low molecular weight [J]. Journal of Southwest Agricultural University, 2005, 27(4): 439-443(in Chinese).
[40] 施葵初. 安徽湿地[M]. 合肥: 合肥工业大学出版社, 2003. SHI K C. Wetlands in Anhui Province[M]. Hefei: Hefei University of Technology Press, 2003(in Chinese).
[41] 程中才. 中国湿地资源-安徽卷[M]. 北京: 中国林业出版社, 2015. CHENG Z C. Chinese wetlands resources-Anhui[M]. Beijing: China Forestry Publishing House, 2015 (in Chinese).
[42] 刘丽, 梁成华, 王琦, 等. 低分子量有机酸对土壤磷活化影响的研究 [J]. 植物营养与肥料学报, 2009, 15(3): 593-600. doi: 10.3321/j.issn:1008-505X.2009.03.015 LIU L, LIANG C H, WANG Q, et al. Effects of low-molecular-weight organic acids on soil phosphorus release [J]. Plant Nutrition and Fertilizer Science, 2009, 15(3): 593-600(in Chinese). doi: 10.3321/j.issn:1008-505X.2009.03.015