-
土壤侵蚀被认为是全球重点关注的环境问题,威胁着土壤功能和可持续发展[1-2]。目前,有关土壤侵蚀的研究已从流失动力、过程和机理的剖析延伸至全球和区域性土壤侵蚀评价[3-4]、人类活动对土壤侵蚀的影响[5],土壤侵蚀与面源污染、养分循环及全球变化等几个方面[6-7]。土壤侵蚀具有很强的空间变异性。对于地球系统的缩微——流域而言,大流域尺度上,土壤侵蚀主要受地理位置、地形地貌、土壤母质和气候条件等多因素的差异影响;而小流域尺度上,不合理的土地利用对土壤侵蚀和氮磷流失具有更为显著的放大效应[5-6]。一般认为,小流域是开展土壤侵蚀研究的基本单元,土地利用是其自然和人为活动的综合表征[3]。因此,小流域尺度范围的土壤侵蚀和养分流失及其对土地利用响应的有关研究已成为全球环境变化研究的前沿问题。
当前,我国土壤侵蚀和养分流失方面的研究聚焦于黄土高原区和东北黑土区等侵蚀严重区域[4,8],而以轻、中度侵蚀为主的南方红壤丘陵区的有关研究相对不足[9-10]。事实上,我国南方红壤丘陵区约占全国土地面积的21%,具有地形起伏大、降雨侵蚀力强,土地利用强度高等特点,加上土壤承载侵蚀的本底浅薄(土体及其岩石风化层厚度仅为黄土厚度的2%—10%),土壤侵蚀和养分流失的“相对流失量”和潜在危害更大[6,11]。因此,结合多个南方红壤丘陵小流域,开展土壤侵蚀和养分流失对土地利用响应的进一步研究具有重要科学意义。
闽北为我国典型亚热带红壤丘陵区,是我国18个重点生态脆弱区之一[12],又位于闽江上游,其土壤侵蚀和养分流失影响着闽江流域的生态环境、洪涝安全和水体质量。研究表明,不合理的土地利用是造成闽北土壤侵蚀加剧的主要原因[9,11],然而,有关该区域土壤侵蚀和养分流失对土地利用响应的同步报道较少,也缺乏两者数量关系的深层次剖析[9,13-14]。核素示踪法具有快速简便、量化程度高、结果可靠等优点,适于小尺度范围的土壤侵蚀的定量化表征,并以137Cs应用最为广泛和成熟,可以很好地建立对应土地利用类型土壤侵蚀和养分流失的关系[6,10,13,15]。因此,基于137Cs核素示踪,以闽北山区多个小流域为对象,开展土地利用对土壤侵蚀和养分流失影响的示踪,定量揭示不同土地利用类型下土壤侵蚀量和养分流失量,为我国南方红壤丘陵区小流域水土保持和非点源防治提供科学参考,有利于土地利用结构和农业结构的优化调整,对改善流域生态环境具有重要意义。
土地利用对红壤丘陵区小流域土壤侵蚀和养分流失的影响
Effect of land use on soil erosion and nutrient loss in small watershed of red hilly soil
-
摘要: 以南方红壤丘陵区两个邻近小流域为对象,结合野外测试、数理模型及137Cs示踪技术,系统分析了各流域土地利用对土壤侵蚀、养分含量及流失量的影响。结果表明,研究区土壤137Cs集中分布于0—40 cm土层,背景值为1823.94 Bq·m−2。土壤侵蚀以裸地最为突出(土壤侵蚀量范围为866.11—1809.52 t·km−2·a−1),旱地(137.25—796.43 t·km−2·a−1)和茶园(85.17—1616.38 t·km−2·a−1)次之,其中,人为干扰下茶园土壤侵蚀量空间差异显著,草地和林地的土壤侵蚀量皆在允许侵蚀范围内(<500 t·km−2·a−1),水田基本不发生侵蚀。土壤有机碳(TOC)、总氮(TN)、总磷(TP)含量具有不同程度的表聚现象,前两者主要来源于植被凋落物,后者受施肥影响为主。人为干扰越强的茶园土壤养分流失量主要受土壤侵蚀影响呈现较大的流失潜力,应予以重点关注。因此,聚焦红壤山区多个邻近小流域土壤侵蚀和养分流失对土地利用的响应研究,可以为我国南方红壤丘陵山区小流域水土保持和面源污染防控提供理论参考。Abstract: Taking two adjacent small watersheds in the red soil hilly area in the south as the object, and systematically analyzes the impact of land use on soil erosion, nutrient distribution and loss in each watershed using the method of the field test, mathematical model, and 137Cs tracing technology. The results showed that the soil 137Cs in the study area was concentrated in the 0—40 cm soil layer, and the background value was 1823.94 Bq·m−2. The soil erosion in bare land was the most prominent (the range of soil erosion was 866.11—1809.52 t·km-2·a−1), followed by dry land (137.25—796.43 t·km−2·a−1) and tea garden (85.17—1616.38 t·km−2·a−1). Among them, the spatial difference of soil erosion in tea garden was significant under human disturbance. The soil erosion of grassland and forest land was within the allowable erosion range (< 500 t·km−2·a−1), and the paddy field was basically not eroded. The contents of soil organic carbon (TOC), total nitrogen (TN), and total phosphorus (TP) have different degrees of surface aggregation. The first two mainly come from vegetation litter, and the latter is mainly affected by fertilization. The soil nutrient loss in tea plantations with stronger human disturbance was mainly affected by soil erosion and showed great loss potential, which should be paid more attention. Therefore, focusing on the response of soil erosion and nutrient loss to land use in multiple adjacent small watersheds in red soil hilly areas can provide theoretical reference for soil and water conservation and non-point source pollution prevention and control in small watersheds in red soil hilly areas in southern China.
-
Key words:
- soil erosion /
- nutrient loss /
- 137Cs tracer method /
- land use type /
- mountain area of North Fujian
-
表 1 研究区137Cs背景值(Bq·m−2)
Table 1. Background value of 137Cs in study area (Bq·m−2)
深度/m
Depth变化范围
Variation range平均值
Mean value标准差
Standard deviationCV/% 0—5 475.60—523.97 500.20 14.37 3.09 5—10 408.12—455.27 434.09 17.90 4.12 10—15 338.20—361.62 352.85 6.79 1.93 15—20 224.24—248.40 239.22 7.72 3.23 20—25 132.30—163.17 151.56 9.17 6.05 25—30 76.26—105.08 90.13 9.03 10.01 30—35 25.58—41.33 34.22 4.63 13.53 35—40 10.58—18.24 15.01 2.18 14.50 40—45 1.51—6.80 3.99 2.04 51.03 45—50 0—7.25 1.83 2.20 120.19 50—55 0—2.18 0.56 0.71 127.04 55—60 0—0.74 0.28 0.36 129.11 表 2 研究区不同土地利用类型基本信息表
Table 2. Basic information of different land use types in the study area
土地利用类型
Land use type研究区
Research area基本信息
Essential information样地数量
Number of sample plots种植作物
Raise crops管理措施
Management林地
WoodlandCSX 10 竹林、马尾松 基本不施肥 GT 7 杉木、樟树 基本不施肥 茶园
Tea gardenCSX 8 茶树 尿素为基肥、追施复合肥 GT 11 茶树 少施或不施肥 草地
GrasslandCSX 4 狗牙根为主 基本不施肥 GT 5 狗牙根为主 基本不施肥 裸地
Unused landCSX 4 无 不施肥 GT 5 无 不施肥 旱地
Dry landCSX 4 蔬菜 尿素和复合肥为主 GT 5 蔬菜 尿素和复合肥为主 水田
Paddy fieldCSX 6 水稻 尿素和复合肥为主 GT 5 水稻 尿素和复合肥为主 表 3 研究区不同土地利用类型土壤侵蚀量(t·km−2·a−1)
Table 3. Soil erosion amount of different land use types in the study area(t·km−2·a−1)
土地利用类型
Land use type研究区
Research area范围
Range平均值
Mean value标准差
Standard deviationCV/% 林地
WoodlandCSX 3.08—317.62 99.41 112.95 113.62 GT 1.79—122.80 52.19 45.26 86.72 茶园
Tea gardenCSX 789.48—1616.38 1121.13 268.10 23.91 GT 85.17—754.56 355.22 212.34 59.78 草地
GrasslandCSX 89.94—250.37 167.33 56.81 33.95 GT 59.14—214.76 155.07 55.93 36.07 裸地
Unused landCSX 1093.79—1809.52 1336.39 279.26 20.89 GT 866.11—1527.00 1159.16 227.27 19.61 旱地
Dry landCSX 137.25—796.43 425.52 248.92 58.50 GT 183.85—686.05 378.59 187.55 49.54 水田
Paddy fieldCSX −0.70—9.00 5.13 3.31 64.65 GT 0.02—9.00 5.68 3.33 58.69 注:“—”表示采样点发生土壤沉积.
Note: “—”indicates soil deposition at sampling points.表 4 研究区不同土地利用类型土壤养分流失量
Table 4. Soil nutrient loss of different land use types in the study area
土地利用类型
Land use type研究区
Research areaTOC/(t·km−2·a−1) TN/(t·km−2·a−1) TP/(t·km−2·a−1) 范围
Range平均值
Mean value范围
Range平均值
Mean value范围
Range平均值
Mean value林地
WoodlandCSX 0.14—16.16 3.71 0.01—1.19 0.26 0—0.18 0.05 GT 0.09—5.78 2.52 0.01—0.43 0.18 0—0.06 0.03 茶园
Tea gardenCSX 20.61—66.63 38.16 1.72—5.55 3.18 0.53—1.33 0.81 GT 3.21—35.76 14.29 0.25—2.55 1.02 0.05—0.49 0.22 草地
GrasslandCSX 2.83—9.27 5.37 0.20—0.46 0.30 0.04—0.12 0.08 GT 2.02—6.69 4.82 0.13—0.38 0.30 0.03—0.10 0.07 裸地
Unused landCSX 11.36—14.75 13.28 0.91—1.01 0.97 0.31—0.43 0.37 GT 7.47—14.09 10.82 0.67—0.91 0.87 0.21—0.40 0.33 旱地
Dry landCSX 2.58—9.38 6.70 0.33—1.70 1.07 0.10—0.48 0.30 GT 3.48—9.45 5.98 0.44—1.57 0.91 0.12—0.56 0.28 水田
Paddy fieldCSX -0.02—0.23 0.13 0—0.02 0.01 0—0.01 0.01 GT 0—0.25 0.16 0—0.02 0.01 0—0.01 0.01 -
[1] FERREIRA C S S, SEIFOLLAHI-AGHMIUNI S, DESTOUNI G, et al. Soil degradation in the European Mediterranean region: Processes, status and consequences [J]. Science of the Total Environment, 2022, 805: 150106. doi: 10.1016/j.scitotenv.2021.150106 [2] TAN Z L, LEUNG L R, LI H Y, et al. A substantial role of soil erosion in the land carbon sink and its future changes [J]. Global Change Biology, 2020, 26(4): 2642-2655. doi: 10.1111/gcb.14982 [3] BORRELLI P, ROBINSON D A, FLEISCHER L R, et al. An assessment of the global impact of 21st century land use change on soil erosion [J]. Nature Communications, 2017, 8: 2013. doi: 10.1038/s41467-017-02142-7 [4] LIN H L, ZHAO Y T. Soil erosion assessment of alpine grassland in the source park of the Yellow River on the Qinghai-Tibetan Plateau, China [J]. Frontiers in Ecology and Evolution, 2022, 9: 771439. doi: 10.3389/fevo.2021.771439 [5] CHEN J, XIAO H B, LI Z W, et al. Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China [J]. Ecological Engineering, 2019, 132: 109-114. doi: 10.1016/j.ecoleng.2019.04.010 [6] NIU X Y, WANG Y H, YANG H, et al. Effect of land use on soil erosion and nutrients in Dianchi Lake watershed, China [J]. Pedosphere, 2015, 25(1): 103-111. doi: 10.1016/S1002-0160(14)60080-1 [7] WANG Y X, RAN L S, FANG N F, et al. Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau [J]. Catena, 2018, 167: 257-265. doi: 10.1016/j.catena.2018.05.005 [8] WEN X, ZHEN L. Soil erosion control practices in the Chinese Loess Plateau: A systematic review [J]. Environmental Development, 2020, 34: 100493. doi: 10.1016/j.envdev.2019.100493 [9] YE H M, HUA W P, HUANG C C, et al. Quantitative evaluation of soil erosion in the upper Minjiang River Basin of China based on integration of geospatial technologies using RUSLE [J]. Polish Journal of Environmental Studies, 2020, 29(5): 3419-3429. doi: 10.15244/pjoes/114260 [10] 刘丹, 丁明军, 文超, 等. 赣南红壤丘陵区137Cs示踪土壤侵蚀对土壤养分元素的影响 [J]. 水土保持学报, 2019, 33(1): 62-67. LIU D, DING M J, WEN C, et al. Effects of soil erosion on soil nutrient elements based on 137Cs tracer in the red soil hilly region of southern Jiangxi Province [J]. Journal of Soil and Water Conservation, 2019, 33(1): 62-67(in Chinese).
[11] 梁音, 张斌, 潘贤章, 等. 南方红壤丘陵区水土流失现状与综合治理对策 [J]. 中国水土保持科学, 2008, 6(1): 22-27. doi: 10.3969/j.issn.1672-3007.2008.01.004 LIANG Y, ZHANG B, PAN X Z, et al. Current status and comprehensive control strategies of soil erosion for hilly region in the Southern China [J]. Science of Soil and Water Conservation, 2008, 6(1): 22-27(in Chinese). doi: 10.3969/j.issn.1672-3007.2008.01.004
[12] 刘军会, 邹长新, 高吉喜, 等. 中国生态环境脆弱区范围界定 [J]. 生物多样性, 2015, 23(6): 725-732. doi: 10.17520/biods.2015147 LIU J H, ZOU C X, GAO J X, et al. Location determination of ecologically vulnerable regions in China [J]. Biodiversity Science, 2015, 23(6): 725-732(in Chinese). doi: 10.17520/biods.2015147
[13] 张燕, 张洪, 彭补拙, 等. 不同土地利用方式下农地土壤侵蚀与养分流失 [J]. 水土保持通报, 2003, 23(1): 23-26,31. doi: 10.3969/j.issn.1000-288X.2003.01.006 ZHANG Y, ZHANG H, PENG B Z, et al. Soil erosion and nutrient loss of various land use patterns [J]. Bulletin of Soil and Water Conservation, 2003, 23(1): 23-26,31(in Chinese). doi: 10.3969/j.issn.1000-288X.2003.01.006
[14] 朱秀端. 闽北地区水土流失动态变化及其驱动机制研究 [J]. 水土保持通报, 2007, 27(5): 164-170. doi: 10.3969/j.issn.1000-288X.2007.05.037 ZHU X D. Dynamic changes and driving mechanisms of soil and water loss in north Fujian [J]. Bulletin of Soil and Water Conservation, 2007, 27(5): 164-170(in Chinese). doi: 10.3969/j.issn.1000-288X.2007.05.037
[15] ZHANG X B, HIGGITT D L, WALLING D E. A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China [J]. Hydrological Sciences Journal, 1990, 35(3): 243-252. doi: 10.1080/02626669009492427 [16] 刘宇, 吕一河, 傅伯杰, 等. 137Cs示踪法土壤侵蚀量估算的本底值问题 [J]. 地理研究, 2010, 29(7): 1171-1181. LIU Y, LV Y H, FU B J, et al. Reference value of 137Cs tracing technique in soil loss estimation: A spatial variation analysis [J]. Geographical Research, 2010, 29(7): 1171-1181(in Chinese).
[17] 高明, 刘磊, 杨九东, 等. 应用137Cs技术研究江西余江县小流域不同耕地上的土壤侵蚀 [J]. 农业环境科学学报, 2007, 26(3): 929-933. doi: 10.3321/j.issn:1672-2043.2007.03.023 GAO M, LIU L, YANG J D, et al. Estimation of soil erosion rates on different cultivated land use using 137Cs technique in the catchment, Yujiang County, Jiangxi Province [J]. Journal of Agro-Environment Science, 2007, 26(3): 929-933(in Chinese). doi: 10.3321/j.issn:1672-2043.2007.03.023
[18] 王俊杰, 苏正安, 周涛, 等. 137Cs和210Pbex双核素示踪“三北”防护林区退耕前后坡地土壤侵蚀变化 [J]. 农业工程学报, 2020, 36(24): 64-72. doi: 10.11975/j.issn.1002-6819.2020.24.008 WANG J J, SU Z G, ZHOU T, et al. 137Cs and 210Pbex tracing of soil erosions on cultivated and reforested slope lands in Three North-Shelter Forest Region [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(24): 64-72(in Chinese). doi: 10.11975/j.issn.1002-6819.2020.24.008
[19] 王永平, 周子柯, 滕昊蔚, 等. 滇南小流域3种土地利用方式下土壤侵蚀及养分流失特征 [J]. 水土保持研究, 2021, 28(1): 11-18. doi: 10.13869/j.cnki.rswc.2021.01.001 WANG Y P, ZHOU Z K, TENG H W, et al. Characteristics of soil erosion and nutrient losses in three land use patterns in the small watershed of southern Dianchi [J]. Research of Soil and Water Conservation, 2021, 28(1): 11-18(in Chinese). doi: 10.13869/j.cnki.rswc.2021.01.001
[20] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. LU R K. Methods for chemical analysis of soil agriculture[M]. Beijing: China Agricultural Science and Technology Press, 2000(in Chinese).
[21] 张相, 李肖, 林杰, 等. 南方红壤丘陵区侵蚀沟道内土壤团聚体及有机碳特征 [J]. 农业工程学报, 2020, 36(19): 115-123. doi: 10.11975/j.issn.1002-6819.2020.19.013 ZHANG X, LI X, LIN J, et al. Characteristics of soil aggregates and organic carbon in eroded gully in red soil region of Southern China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 115-123(in Chinese). doi: 10.11975/j.issn.1002-6819.2020.19.013
[22] 方海燕, 盛美玲, 孙莉英, 等. 137Cs和210Pbex示踪黑土区坡耕地土壤侵蚀对有机碳的影响 [J]. 应用生态学报, 2013, 24(7): 1856-1862. FANG H Y, SHENG M L, SUN L Y, et al. Using 137Cs and 210Pbex to trace the impact of soil erosion on soil organic carbon at a slope farmland in the black soil region [J]. Chinese Journal of Applied Ecology, 2013, 24(7): 1856-1862(in Chinese).
[23] 华珞, 张志刚, 李俊波, 等. 基于土壤137Cs监测的土壤侵蚀与有机质流失: 以密云水库为例 [J]. 核农学报, 2005, 19(3): 208-213. doi: 10.3969/j.issn.1000-8551.2005.03.011 HUA L, ZHANG Z G, LI J B, et al. Soil erosion and organic matter loss by using fallout 137Cs as tracer in Miyun reservoir valley [J]. Acta Agriculturae Nucleatae Sinica, 2005, 19(3): 208-213(in Chinese). doi: 10.3969/j.issn.1000-8551.2005.03.011
[24] 陈洋, 张海东, 于东升, 等. 南方红壤区植被结构类型与降雨模式对林下水土流失的影响 [J]. 农业工程学报, 2020, 36(5): 150-157. doi: 10.11975/j.issn.1002-6819.2020.05.017 CHEN Y, ZHANG H D, YU D S, et al. Effects of vegetation structure types and rainfall patterns on soil and water loss of understory vegetation in red soil areas of South China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 150-157(in Chinese). doi: 10.11975/j.issn.1002-6819.2020.05.017
[25] 牛晓音, 王延华, 杨浩, 等. 滇池双龙流域不同土地利用方式下土壤侵蚀与土壤养分分异 [J]. 环境科学研究, 2014, 27(9): 1043-1050. doi: 10.13198/j.issn.1001-6929.2014.09.13 NIU X Y, WANG Y H, YANG H, et al. Effects of different land uses on soil erosion and soil nutrient variability in the shuanglong catchment of Dianchi watershed [J]. Research of Environmental Sciences, 2014, 27(9): 1043-1050(in Chinese). doi: 10.13198/j.issn.1001-6929.2014.09.13
[26] 王库, 史学正, 于东升. 红壤丘陵区不同土地利用方式下的土壤侵蚀特征 [J]. 西南农业大学学报(自然科学版), 2006, 28(5): 697-701. WANG K, SHI X Z, YU D S. Soil erosion characteristics under different land use types in hilly red soil regions [J]. Journal of Southwest Agricultural University(Natural Science Edition), 2006, 28(5): 697-701(in Chinese).
[27] BOUAJILA A, OMAR Z, MAGHERBI G. Soil aggregation, aggregate-associated organic carbon, and total nitrogen under different land use in Regosols of coastal arid lands in Gabes, Tunisia [J]. Arabian Journal of Geosciences, 2021, 14(18): 1-12. [28] GELAW A M, SINGH B R, LAL R. Soil organic carbon and total nitrogen stocks under different land uses in a semi-arid watershed in Tigray, Northern Ethiopia [J]. Agriculture, Ecosystems & Environment, 2014, 188: 256-263.