-
塑料因其轻便、耐用、耐腐蚀、低成本等特点,而被广泛应用于日常生活、工农业生产、高新技术产业等领域。2021年,我国塑料制品累计产量为8004.0万t,累计增长5.9%[1]。塑料产品给人们生活带来极大的便利的同时,也带来的一系列环境问题。使用后的塑料制品由于受到了污染,其回收成本升高、分类难度加大、二次利用价值降低。截止2015年,全世界已经生产了78 亿t废弃塑料,其中仅有不到2%被回收利用[2]。塑料制品带来的各种问题,成为了当前全球关注的热点。微塑料(microplastics, MPs)是指直径小于5 mm的微小塑料颗粒,是由Thompson等[3]在2004年发表的文章中首次提出。这种小尺寸的塑料可以通过陆地、水源和空气传播,并且很难被人为治理[4]。虽然,我国在2020年底实施了“新版限塑令”,即禁止餐饮、零售行业使用不可降解塑料,全面推广可降解塑料的政策,但是一些报道认为,可降解塑料的大规模使用会在环境中引入更多微塑料,从而造成更大的环境负担[5]。
在过去十几年中,微塑料获得了相当大的关注。目前对于微塑料的研究主要集中于海洋、淡水环境以及河道湖泊沉积物、农用土地生态系统,生活污水等,而对大气中的微塑料鲜有研究[6-8]。由于样品收集困难、没有统一、规范的采样标准及前处理方法,所以对大气中微塑料的研究有限,且大部分研究缺乏对比性。微塑料通过大气运输向偏远地区的迁移及其对海洋和陆地生态系统中微塑料的贡献是塑料“源-路径-汇”模型中重要的一个部分[9]。最新的许多研究表明,微塑料可以通过大气运输传播到一些没有人为干扰的未开发地区,如偏远的山地[10-11]、高海拔地区[12-13]、北极地区[14-15]、海洋上空[16-17]、人迹罕至的沙漠[18-19]等。大气运输使得微塑料无处不在,并对人类和生态系统产生了重大影响。对于人体来说,通过呼吸吸入微塑料的量超过通过饮食摄入微塑料的量[20],而微塑料会给人体的呼吸系统造成负担,此外微塑料也可以作为病毒[21]或重金属[22]等其他有害物质的载体,以此对人体造成危害。
大气运输是微塑料转移、汇集过程中,不可忽视的重要环节。本文通过文献收集与分析概述了大气微塑料的采样方式、前处理过程和主要的表征手段。从丰度、物理形态、化学组成三方面介绍了大气中微塑料的赋存特征,同时分析了大气中微塑料可能的来源和迁移规律和健康风险。此外,还讨论了现有的大气微塑料研究方法的适用条件和特点对比,并展望了未来微塑料大气污染的发展方向和亟待解决的问题。
大气微塑料的分析方法、赋存特征和迁移规律研究进展
Occurrence characteristics, migration, and methodological progress of microplastic in the atmosphere
-
摘要: 微塑料可以进入土壤、淡水、海洋和大气环境,并在不同环境之间动态循环。近期许多研究表明微塑料可以随大气运动进行远距离运输。本文通过文献调研,对大气中微塑料常用的分析方法、物理化学特征、污染来源和迁移规律进行系统性的梳理。结果表明,目前微塑料的表征手段以光谱分析辅助视觉分析法为主。研究区域集中在大型城市及其近郊,形状以纤维和碎片为主,大小主要分布在500 μm以下,颜色以黑、白、透明为主,化合物类型与环境中污染物来源直接相关。大气微塑料的主要来源是纺织品和大块塑料的老化破碎,研究中主要采用HYSPLIT后向轨迹模型,利用气象数据计算污染物迁移路径,来推测其排放源。目前对于大气微塑料研究刚刚起步,研究体系尚未确立,急需确立采样方式和定量分析标准规则,建立高效、低成本的研究方法。Abstract: Microplastics enter soil, freshwater, marine, and atmospheric habitats, where they circulate actively amongst them. Several recent investigations have discovered that microplastics can travel considerable distances in the atmosphere. However, currently research on atmospheric microplastics is in its early stages, with no study framework in place. It is therefore necessary to develop efficient and low-cost research techniques, as well as sample procedures and standard criteria for quantitative analysis. in this study the analysis methodologies, physical and chemical characteristics, pollution sources, and migration laws of microplastics were comprehensively reviewed in the atmosphere of large cities and suburbs using various literature statistics. The results reveal that spectral analysis assisted visual analysis is the primary approach of microplastic characterization. The microplastics found were primarily fiber and debris, with a size distribution of less than 500 μm and a color range of black, white, and translucent. The sources of microplastic pollutants in the environment are thought to be directly tied to compound type, such as textiles, as well as the ageing and shattering of large plastics. Where, the migratory path of pollutants and the source of emissions were detect using widely practiced HYSPLIT backward trajectory model using meteorological data.
-
Key words:
- atmospheric microplastics /
- analysis method /
- transportation rule /
- research progress
-
图 4 微塑料的来源与迁移[102]
Figure 4. Source and migration of microplastics
表 1 大气微塑料的赋存特征
Table 1. Occurrence characteristics of atmospheric microplastics
研究地区
Research area尺寸
Size颜色
Color聚合物类型
Polymer type形状
Shape丰度
Abundance参考
Ref.中国 大连海岸带 <1 mm(71.7%) 透明(32.7%)
黑色(29.1%)
蓝色(16.4%)
灰色(12.7%)
红色(5.5%)PET、CP、EPDM、PP、PU、PA、PEA 纤维(98.1%)、碎片(9.1%)、颗粒(1.8%) NA [62] 兰州 50—500 μm(70%) 透明(50%),黑色和蓝色、白色、红色、黄色、绿色 PET,PE,PA,PS,PVC和PMMA 碎片(44.4%)
纤维(47.5%)
泡沫、微球和薄膜353.8 个·m−2·d−1 [74] 河北
康保县<1 mm(41.4%)
1—3 mm(44.0%)
3—5 mm(14.5%)黑色、蓝色、透明、其他 RY(52.5%)
PE(11.5%)
腈纶(3.3%)
PES(26.2%)
PA(1.6%)
PP(3.3%)
PAN(1.6%)纤维(71.1%)
碎片(17.0%)
薄膜(12.0%)(1272.2±
209.1) 个·kg−1
(覆膜农田)
(1024.0±
459.1) 个·kg−1
(无膜农田)[63] 天津 NA NA 纤维素、PET、PA、PP、PE、PLA 纤维、颗粒 (4.1—8.5)×104 个·g−1 [55] 北京
天津
南京
上海
杭州<30 μm(61.6%)
30 −100 μm(33.1%)
100−300 μm(4.7%)
300−1000 μm(0.5%)
>1000 μm(0.1%)NA PET、PA、PE、PS、PP、PVC 碎片(88.2%)
纤维(11.8%)北京(393±112) 个·m−3
天津(324±145) 个·m−3
南京(177±59) 个·m−3
上海(267±117) 个·m−3
杭州(246±78) 个·m−3[20] 上海 主要尺寸范围
2.4—2181.5 μm
其中
<10 μm(21.2%)
>100 μm(11.7%)透明(57.0%)
绿色(15.8%)
蓝色(12.0%)PE(73.8%)
PES(9.2%)
PF(9.0%)
PVC(3.1%)
PP(0.6%)
PU(0.3%)
橡胶(0.2%)碎片(85%) 15.6—93.3 个·m−3 [75] 温州室内 <30 μm(60.4%)
30−100 μm(28.5%)
>100 μm(11%)NA PS、PA、PP、PE、PVC、PET 碎片(89.6%)
纤维(1583±1180) 个·m−3 [61] 温州室外 <30 μm(65.1%)
30−100 μm(29.4%)
>100 μm(5.5%)NA PS、PA、PP、PE、PVC、PET 碎片(94.2%)
纤维(189±85) 个·m−3 广州 57.2%纤维
(0.5—2 mm)
49.4%碎片(100—200 μm)白色(39.8%)
蓝色(28.7%)
红色(13.3%)
绿色(10.1%)
黄色(6.3%)PET、PS、PAN、PP、PA、ALK、EP、ABS 纤维(77.6±19.1%)
碎片(15.9±18.4%)
薄膜(2.1±2.9%)
微珠(4.4±4.9%)51—178
(114±40)个·m−2·d−1[76] 台湾室内 <50 μm(55%)
50—100 μm(36%)
>100 μm(9%)NA PMMA(27%)、
橡胶(21%)、
PU(13%)、PVC(9%)碎片、纤维 (46±55) 个·m−3 [72] 台湾室外 <50 μm(79%)
50—100 μm(21%)NA PMMA(40%)、
橡胶(13%)、PVC(12%)碎片、纤维 (28±24) 个·m−3 太平洋 西北太平洋 10—4556 μm
平均853 μm黑色为主 RY(67%)、PET(23%)、PMMA、PVC、PP、PVA 纤维(88—100%)
碎片(0—8%)
薄膜(0—2%)
颗粒(0—6%)(4.6—64)×10−3
(2.7 ± 1.8)×
10−2 个·m−3[46] 中国南海西北部 平均599±513 μm
<200 μm(28%)
200-500 μm(24%)
500-1000 μm(26%)黑色(28%)
蓝色(20%)
透明(19%)
白色(12%)
棕色(12%)
红色(9%)PES(29%)
RY(19%)
PP(15%)
PE(13%)
PS、PA纤维(65%)
碎片(20%)
颗粒(8%)
碎片(4%)
薄膜(3%)(1.3—6.3)×10−2
(3.5±1.5)×
10−2个·m−3[77] 亚洲 胡志明市 301—4872 μm 红色、蓝色、
绿色、灰色、
黑色PP、PE、PVC 纤维、碎片 71—917 个·m−2·d−1 [78] 亚洲 伊朗布什尔港市 8 μm~1 cm(纤维) 白色(39%)
黑色(21%)
红色(20%)
灰色(12%)
橙色(8%)PET(33%)
PE(29%)
PA(22%)
PS(10%)
PP(6%)碎片(63%)
纤维(27%)
薄膜(10%)5.2 个·m−3 [66] 伊朗设拉子市 市区<100 μm
(31.8%)
山区<100 μm
(74.6%)NA PP(38.2%)
PS(26.5%)
PE(20.5%)
PET(5.9%)
PVC(5.9%)
尼龙(2.9%)纤维(>99%) 1000—
3500个·m−2·month−1
(市区)
200—
600 个·m−2·month−1
(山区)[79] 伊朗布什尔港和设拉子 主要尺寸范围
>1000 μm白色透明(41%)
橙色(24%)
红色(16%)
黑色(9%)
绿色(7%)
紫色(3%)PE(42.0%)
PC(28.0%)
PP(18.6%)
PET(10.0%)
尼龙(1.4%)纤维(85%)
碎片(13%)
薄膜(2%)48.6—139 个·mg−1 [80] 欧洲 波兰格丁尼亚格但斯克湾 75—5000 μm
(纤维)
5—750 μm(碎片)
10—1520 μm
(薄膜)NA PE(41%)
PP(18%)
PE(14%)
PVC(14%)
EPM(9%)
PVA(9%)纤维(60%)
碎片(26%)
薄膜(14%)0—30
(10±8)个·m−2·d−1[81] 西班牙马德里 NA NA PES、PA、PE 碎片(67%) 13.9 个·m−3 [82] 西班牙农村 PES,PA和丙烯酸纤维 纤维(84%) 1.5 个·m−3 德国威悉河
(沉降)<500 μm 灰色(58%)透明(20%)和白色(15%) PP(39%)
PE(17%)
PET, PVC, PS, SI碎片(96.9%)
纤维(2.9%)
微球(0.2%)(99 ± 85) 个·m−2·d−1 [83] 德国威悉河
(悬浮)主要尺寸范围
4—33 μm
其中
<10 μm(67%)白色(82%)
蓝色(5%)
透明(2%)
黑色(2%)PE(78%) 碎片(79%)
微球(21%)(91 ± 47) 个·m−3 注:PET,聚对苯二甲酸乙二醇酯(polyethylene glycol terephthalate);PE,聚乙烯(polyethylene);PC,聚碳酸酯(polycarbonate);PES,聚酯(polyethylene terephthalate);PAN,聚丙烯腈(polyacrylonitrile);RY,人造丝(rayon);EP,环氧树脂(phenolic epoxy resin);ALK,醇酸树脂(alkyd resin);PF,酚醛树脂(phenol-formaldehyde resin);PVC,聚氯乙烯(polyvinyl chloride);PS,聚苯乙烯(polystyrene);PP,聚丙烯(polypropylene);PA,聚酰胺(polyamide);PU,聚氨酯(polyurethane);EPDM,乙烯/丙烯/二烯橡胶共聚物(ethylene/propylene/diene terpolymer);PVA,聚醋酸乙烯酯(polyvinyl acetate);ABS,丙烯腈-丁二烯-苯乙烯三元共聚物(abscopolymer);EPM,乙烯-丙烯共聚物(ethylene/propylene copolymer);PMMA,聚甲基丙烯酸甲酯(poly(methyl methacrylate));CP,赛璐玢(cellophane);SI,聚硅氧烷(polysiloxane). -
[1] 国家统计局. 国家数据[EB/OL]. [2022-3-24]. [2] RITCHIE H, ROSER M. Plastic Pollution - Our World in Data[EB/OL]. [2022-3-24]. [3] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [4] PADHA S, KUMAR R, DHAR A, et al. Microplastic pollution in mountain terrains and foothills: A review on source, extraction, and distribution of microplastics in remote areas [J]. Environmental Research, 2022, 207: 112232. doi: 10.1016/j.envres.2021.112232 [5] QIN M, CHEN C Y, SONG B, et al. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? [J]. Journal of Cleaner Production, 2021, 312: 127816. doi: 10.1016/j.jclepro.2021.127816 [6] 骆永明, 施华宏, 涂晨, 等. 环境中微塑料研究进展与展望 [J]. 科学通报, 2021, 66(13): 1547-1562. doi: 10.1360/TB-2020-0979 LUO Y M, SHI H H, TU C, et al. Research progresses and prospects of microplastics in the environment [J]. Chinese Science Bulletin, 2021, 66(13): 1547-1562(in Chinese). doi: 10.1360/TB-2020-0979
[7] CAN-GÜVEN E. Microplastics as emerging atmospheric pollutants: A review and bibliometric analysis [J]. Air Quality, Atmosphere & Health, 2021, 14(2): 203-215. [8] ALFONSO M B, ARIAS A H, RONDA A C, et al. Continental microplastics: Presence, features, and environmental transport pathways [J]. Science of the Total Environment, 2021, 799: 149447. doi: 10.1016/j.scitotenv.2021.149447 [9] STUBBINS A, LAW K L, MUÑOZ S E, et al. Plastics in the earth system [J]. Science, 2021, 373(6550): 51-55. doi: 10.1126/science.abb0354 [10] MATERIĆ D, LUDEWIG E, BRUNNER D, et al. Nanoplastics transport to the remote, high-altitude Alps [J]. Environmental Pollution, 2021, 288: 117697. doi: 10.1016/j.envpol.2021.117697 [11] ALLEN S, ALLEN D, PHOENIX V R, et al. Atmospheric transport and deposition of microplastics in a remote mountain catchment [J]. Nature Geoscience, 2019, 12(5): 339-344. doi: 10.1038/s41561-019-0335-5 [12] ZHANG Y L, GAO T G, KANG S C, et al. Importance of atmospheric transport for microplastics deposited in remote areas [J]. Environmental Pollution, 2019, 254: 112953. doi: 10.1016/j.envpol.2019.07.121 [13] NEELAVANNAN K, SEN I S, LONE A M, et al. Microplastics in the high-altitude Himalayas: Assessment of microplastic contamination in freshwater lake sediments, Northwest Himalaya (India) [J]. Chemosphere, 2022, 290: 133354. doi: 10.1016/j.chemosphere.2021.133354 [14] MARINA-MONTES C, PÉREZ-ARRIBAS L V, ANZANO J, et al. Characterization of atmospheric aerosols in the Antarctic region using Raman Spectroscopy and Scanning Electron Microscopy [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2022, 266: 120452. doi: 10.1016/j.saa.2021.120452 [15] BERGMANN M, MÜTZEL S, PRIMPKE S, et al. White and wonderful?Microplastics prevail in snow from the Alps to the Arctic [J]. Science Advances, 2019, 5(8): eaax1157. doi: 10.1126/sciadv.aax1157 [16] LIU K, WU T N, WANG X H, et al. Consistent transport of terrestrial microplastics to the ocean through atmosphere [J]. Environmental Science & Technology, 2019, 53(18): 10612-10619. [17] TRAINIC M, FLORES J M, PINKAS I, et al. Airborne microplastic particles detected in the remote marine atmosphere [J]. Communications Earth & Environment, 2020, 1: 64. [18] ABBASI S, TURNER A, HOSEINI M, et al. Microplastics in the lut and kavir deserts, Iran [J]. Environmental Science & Technology, 2021, 55(9): 5993-6000. [19] WANG F, LAI Z P, PENG G Y, et al. Microplastic abundance and distribution in a Central Asian desert [J]. Science of the Total Environment, 2021, 800: 149529. doi: 10.1016/j.scitotenv.2021.149529 [20] ZHU X, HUANG W, FANG M Z, et al. Airborne microplastic concentrations in five megacities of northern and southeast China [J]. Environmental Science and Technology, 2021, 55(19): 12871-12881. [21] LIU Q Y, SCHAUER J. Airborne microplastics from waste as a transmission vector for COVID-19 [J]. Aerosol and Air Quality Research, 2021, 21(1): 200439. [22] WRIGHT S L, KELLY F J. Plastic and human health: A micro issue? [J]. Environmental Science & Technology, 2017, 51(12): 6634-6647. [23] DRIS R, GASPERI J, ROCHER V, et al. Microplastic contamination in an urban area: A case study in Greater Paris [J]. Environmental Chemistry, 2015, 12(5): 592. doi: 10.1071/EN14167 [24] 周倩, 田崇国, 骆永明. 滨海城市大气环境中发现多种微塑料及其沉降通量差异 [J]. 科学通报, 2017, 62(33): 3902-3909. doi: 10.1360/N972017-00956 ZHOU Q, TIAN C G, LUO Y M. Various forms and deposition fluxes of microplastics identified in the coastal urban atmosphere [J]. Chinese Science Bulletin, 2017, 62(33): 3902-3909(in Chinese). doi: 10.1360/N972017-00956
[25] DONG H K, WANG L X, WANG X P, et al. Microplastics in a remote lake basin of the Tibetan Plateau: Impacts of atmospheric transport and glacial melting[J]. Environmental Science & Technology, 2021: acs. est. 1c03227. [26] AKANYANGE S N, LYU X J, ZHAO X H, et al. Does microplastic really represent a threat?A review of the atmospheric contamination sources and potential impacts [J]. Science of the Total Environment, 2021, 777: 146020. doi: 10.1016/j.scitotenv.2021.146020 [27] ZHANG Y L, KANG S C, ALLEN S, et al. Atmospheric microplastics: A review on current status and perspectives [J]. Earth-Science Reviews, 2020, 203: 103118. doi: 10.1016/j.earscirev.2020.103118 [28] VIANELLO A, JENSEN R L, LIU L, et al. Simulating human exposure to indoor airborne microplastics using a Breathing Thermal Manikin [J]. Scientific Reports, 2019, 9: 8670. doi: 10.1038/s41598-019-45054-w [29] LI J Y, LIU H H, CHEN J P. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection [J]. Water Research, 2018, 137: 362-374. doi: 10.1016/j.watres.2017.12.056 [30] DI M X, WANG J. Microplastics in surface waters and sediments of the Three Gorges Reservoir, China [J]. Science of the Total Environment, 2018, 616/617: 1620-1627. doi: 10.1016/j.scitotenv.2017.10.150 [31] 李昇昇, 李良忠, 李敏, 等. 环境样品中微塑料及其结合污染物鉴别分析研究进展 [J]. 环境化学, 2020, 39(4): 960-974. doi: 10.7524/j.issn.0254-6108.2019102304 LI S S, LI L Z, LI M, et al. Study on identification of microplastics and the combined pollutants in environmental samples [J]. Environmental Chemistry, 2020, 39(4): 960-974(in Chinese). doi: 10.7524/j.issn.0254-6108.2019102304
[32] ZHANG Q, ZHAO Y P, DU F N, et al. Microplastic fallout in different indoor environments [J]. Environmental Science & Technology, 2020, 54(11): 6530-6539. [33] dos SANTOS GALVÃO L, FERNANDES E M S, FERREIRA R R, et al. Critical steps for microplastics characterization from the atmosphere [J]. Journal of Hazardous Materials, 2022, 424: 127668. doi: 10.1016/j.jhazmat.2021.127668 [34] LIU K, WANG X H, FANG T, et al. Source and potential risk assessment of suspended atmospheric microplastics in Shanghai [J]. Science of the Total Environment, 2019, 675: 462-471. doi: 10.1016/j.scitotenv.2019.04.110 [35] SHIM W J, HONG S H, EO S E. Identification methods in microplastic analysis: A review [J]. Analytical Methods, 2017, 9(9): 1384-1391. doi: 10.1039/C6AY02558G [36] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. [37] ARAUJO C F, NOLASCO M M, RIBEIRO A M P, et al. Identification of microplastics using Raman spectroscopy: Latest developments and future prospects [J]. Water Research, 2018, 142: 426-440. doi: 10.1016/j.watres.2018.05.060 [38] ABBASI S, KESHAVARZI B, MOORE F, et al. Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran [J]. Environmental Pollution, 2019, 244: 153-164. doi: 10.1016/j.envpol.2018.10.039 [39] MAES T, JESSOP R, WELLNER N, et al. A rapid-screening approach to detect and quantify microplastics based on fluorescent tagging with Nile Red [J]. Scientific Reports, 2017, 7: 44501. doi: 10.1038/srep44501 [40] WRIGHT S L, ULKE J, FONT A, et al. Atmospheric microplastic deposition in an urban environment and an evaluation of transport [J]. Environment International, 2020, 136: 105411. doi: 10.1016/j.envint.2019.105411 [41] ERNI-CASSOLA G, GIBSON M I, THOMPSON R C, et al. Lost, but found with Nile red: A novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples [J]. Environmental Science & Technology, 2017, 51(23): 13641-13648. [42] WANG W F, WANG J. Investigation of microplastics in aquatic environments: An overview of the methods used, from field sampling to laboratory analysis [J]. TrAC Trends in Analytical Chemistry, 2018, 108: 195-202. doi: 10.1016/j.trac.2018.08.026 [43] 周帅, 李伟轩, 唐振平, 等. 气载微塑料的赋存特征、迁移规律与毒性效应研究进展 [J]. 中国环境科学, 2020, 40(11): 5027-5037. doi: 10.3969/j.issn.1000-6923.2020.11.045 ZHOU S, LI W X, TANG Z P, et al. Progress on the occurrence, migration and toxicity of airborne microplastics [J]. China Environmental Science, 2020, 40(11): 5027-5037(in Chinese). doi: 10.3969/j.issn.1000-6923.2020.11.045
[44] CAI L Q, WANG J D, PENG J P, et al. Characteristic of microplastics in the atmospheric fallout from Dongguan City, China: Preliminary research and first evidence [J]. Environmental Science and Pollution Research, 2017, 24(32): 24928-24935. doi: 10.1007/s11356-017-0116-x [45] WANG X H, LI C J, LIU K, et al. Atmospheric microplastic over the South China Sea and East Indian Ocean: Abundance, distribution and source [J]. Journal of Hazardous Materials, 2020, 389: 121846. doi: 10.1016/j.jhazmat.2019.121846 [46] DING J F, SUN C J, HE C F, et al. Atmospheric microplastics in the northwestern Pacific Ocean: Distribution, source, and deposition [J]. Science of the Total Environment, 2022, 829: 154337. doi: 10.1016/j.scitotenv.2022.154337 [47] ROCHA-SANTOS T A P, DUARTE A C. Preface[M]//Characterization and Analysis of Microplastics. Amsterdam: Elsevier, 2017: xv-xvi. [48] XU G J, CHENG H Y, JONES R, et al. Surface-enhanced Raman spectroscopy facilitates the detection of microplastics <1 μm in the environment [J]. Environmental Science & Technology, 2020, 54(24): 15594-15603. [49] 杨东琪. 环境样品中微塑料理化特征的检测和表征方法[D]. 上海: 华东师范大学, 2017. YANG D Q. Methods for detecting and representing physical and chemical features of microplastics in environmental samples[D]. Shanghai: East China Normal University, 2017(in Chinese).
[50] CABERNARD L, ROSCHER L, LORENZ C, et al. Comparison of Raman and Fourier transform infrared spectroscopy for the quantification of microplastics in the aquatic environment [J]. Environmental Science & Technology, 2018, 52(22): 13279-13288. [51] HUPPERTSBERG S, KNEPPER T P. Instrumental analysis of microplastics—Benefits and challenges [J]. Analytical and Bioanalytical Chemistry, 2018, 410(25): 6343-6352. doi: 10.1007/s00216-018-1210-8 [52] la NASA J, BIALE G, FABBRI D, et al. A review on challenges and developments of analytical pyrolysis and other thermoanalytical techniques for the quali-quantitative determination of microplastics [J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104841. doi: 10.1016/j.jaap.2020.104841 [53] CHOUCHENE K, NACCI T, MODUGNO F, et al. Soil contamination by microplastics in relation to local agricultural development as revealed by FTIR, ICP-MS and pyrolysis-GC/MS [J]. Environmental Pollution, 2022, 303: 119016. doi: 10.1016/j.envpol.2022.119016 [54] ZHANG J J, WANG L, KANNAN K. Microplastics in house dust from 12 countries and associated human exposure [J]. Environment International, 2020, 134: 105314. doi: 10.1016/j.envint.2019.105314 [55] PENG C, ZHANG X F, ZHANG X Y, et al. Bacterial community under the influence of microplastics in indoor environment and the health hazards associated with antibiotic resistance genes [J]. Environmental Science & Technology, 2022, 56(1): 422-432. [56] JIMÉNEZ-SKRZYPEK G, ORTEGA-ZAMORA C, GONZÁLEZ-SÁLAMO J, et al. The current role of chromatography in microplastic research: Plastics chemical characterization and sorption of contaminants [J]. Journal of Chromatography Open, 2021, 1: 100001. doi: 10.1016/j.jcoa.2021.100001 [57] GOßMANN I, SÜßMUTH R, SCHOLZ-BÖTTCHER B M. Plastic in the air?!- Spider webs as spatial and temporal mirror for microplastics including tire wear particles in urban air [J]. Science of the Total Environment, 2022, 832: 155008. doi: 10.1016/j.scitotenv.2022.155008 [58] MBACHU O, JENKINS G, PRATT C, et al. A new contaminant superhighway?A review of sources, measurement techniques and fate of atmospheric microplastics [J]. Water, Air, & Soil Pollution, 2020, 231(2): 85. [59] SHI B, PATEL M, YU D, et al. Automatic quantification and classification of microplastics in scanning electron micrographs via deep learning [J]. Science of the Total Environment, 2022, 825: 153903. doi: 10.1016/j.scitotenv.2022.153903 [60] WANG X H, LIU K, ZHU L X, et al. Efficient transport of atmospheric microplastics onto the continent via the East Asian summer monsoon [J]. Journal of Hazardous Materials, 2021, 414: 125477. doi: 10.1016/j.jhazmat.2021.125477 [61] LIAO Z L, JI X L, MA Y, et al. Airborne microplastics in indoor and outdoor environments of a coastal city in Eastern China [J]. Journal of Hazardous Materials, 2021, 417: 126007. doi: 10.1016/j.jhazmat.2021.126007 [62] 涂晨, 田媛, 刘颖, 等. 大连海岸带夏、秋季大气沉降(微)塑料的赋存特征及其表面生物膜特性 [J]. 环境科学, 2022, 43(4): 1821-1828. doi: 10.13227/j.hjkx.202108117 TU C, TIAN Y, LIU Y, et al. Occurrence of atmospheric (micro)plastics and the characteristics of the plastic associated biofilms in the coastal zone of Dalian in summer and autumn [J]. Environmental Science, 2022, 43(4): 1821-1828(in Chinese). doi: 10.13227/j.hjkx.202108117
[63] TIAN X, YANG M N, GUO Z L, et al. Plastic mulch film induced soil microplastic enrichment and its impact on wind-blown sand and dust [J]. Science of the Total Environment, 2022, 813: 152490. doi: 10.1016/j.scitotenv.2021.152490 [64] 蔡立奇. 微塑料在不同环境中的污染特征及其降解行为研究[D]. 广州: 广东工业大学, 2019. CAI L Q. Study on the characteristics of microplastics in different environments and their degradation behaviors[D]. Guangzhou: Guangdong University of Technology, 2019(in Chinese).
[65] KLEIN M, FISCHER E K. Microplastic abundance in atmospheric deposition within the Metropolitan area of Hamburg, Germany [J]. Science of the Total Environment, 2019, 685: 96-103. doi: 10.1016/j.scitotenv.2019.05.405 [66] AKHBARIZADEH R, DOBARADARAN S, AMOUEI TORKMAHALLEH M, et al. Suspended fine particulate matter (PM2.5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: Their possible relationships and health implications [J]. Environmental Research, 2021, 192: 110339. doi: 10.1016/j.envres.2020.110339 [67] HARTMANN N B, HÜFFER T, THOMPSON R C, et al. Are we speaking the same language?recommendations for a definition and categorization framework for plastic debris [J]. Environmental Science & Technology, 2019, 53(3): 1039-1047. [68] MUNYANEZA J, JIA Q L, QARAAH F A, et al. A review of atmospheric microplastics pollution: In-depth sighting of sources, analytical methods, physiognomies, transport and risks [J]. Science of the Total Environment, 2022, 822: 153339. doi: 10.1016/j.scitotenv.2022.153339 [69] MATSUGUMA Y, TAKADA H, KUMATA H, et al. Microplastics in sediment cores from Asia and Africa as indicators of temporal trends in plastic pollution [J]. Archives of Environmental Contamination and Toxicology, 2017, 73(2): 230-239. doi: 10.1007/s00244-017-0414-9 [70] 罗犀, 张玉兰, 康世昌, 等. 大气微塑料研究进展 [J]. 自然杂志, 2021, 43(4): 274-286. doi: 10.3969/j.issn.0253-9608.2021.04.006 LUO X, ZHANG Y L, KANG S C, et al. Research progress of microplastics in the atmosphere [J]. Chinese Journal of Nature, 2021, 43(4): 274-286(in Chinese). doi: 10.3969/j.issn.0253-9608.2021.04.006
[71] PLASTICS EUROPE. Plastics - the Facts 2021 • Plastics Europe[EB/OL]. [2022-3-22]. [72] CHEN E Y, LIN K T, JUNG C C, et al. Characteristics and influencing factors of airborne microplastics in nail salons [J]. Science of the Total Environment, 2022, 806: 151472. doi: 10.1016/j.scitotenv.2021.151472 [73] ABBASI S, ALIREZAZADEH M, RAZEGHI N, et al. Microplastics captured by snowfall: A study in Northern Iran [J]. Science of the Total Environment, 2022, 822: 153451. doi: 10.1016/j.scitotenv.2022.153451 [74] LIU Z, BAI Y, MA T T, et al. Distribution and possible sources of atmospheric microplastic deposition in a valley basin city (Lanzhou, China) [J]. Ecotoxicology and Environmental Safety, 2022, 233: 113353. doi: 10.1016/j.ecoenv.2022.113353 [75] XIE Y C, LI Y, FENG Y, et al. Inhalable microplastics prevails in air: Exploring the size detection limit [J]. Environment International, 2022, 162: 107151. doi: 10.1016/j.envint.2022.107151 [76] HUANG Y M, HE T, YAN M T, et al. Atmospheric transport and deposition of microplastics in a subtropical urban environment [J]. Journal of Hazardous Materials, 2021, 416: 126168. doi: 10.1016/j.jhazmat.2021.126168 [77] DING Y C, ZOU X Q, WANG C L, et al. The abundance and characteristics of atmospheric microplastic deposition in the northwestern South China Sea in the fall [J]. Atmospheric Environment, 2021, 253: 118389. doi: 10.1016/j.atmosenv.2021.118389 [78] TRUONG T N S, STRADY E, KIEU-LE T C, et al. Microplastic in atmospheric fallouts of a developing Southeast Asian megacity under tropical climate [J]. Chemosphere, 2021, 272: 129874. doi: 10.1016/j.chemosphere.2021.129874 [79] ABBASI S, TURNER A. Dry and wet deposition of microplastics in a semi-arid region (Shiraz, Iran) [J]. Science of the Total Environment, 2021, 786: 147358. doi: 10.1016/j.scitotenv.2021.147358 [80] KASHFI F S, RAMAVANDI B, ARFAEINIA H, et al. Occurrence and exposure assessment of microplastics in indoor dusts of buildings with different applications in Bushehr and Shiraz Cities, Iran [J]. The Science of the Total Environment, 2022, 829: 154651. doi: 10.1016/j.scitotenv.2022.154651 [81] SZEWC K, GRACA B, DOŁĘGA A. Atmospheric deposition of microplastics in the coastal zone: Characteristics and relationship with meteorological factors [J]. Science of the Total Environment, 2021, 761: 143272. doi: 10.1016/j.scitotenv.2020.143272 [82] GONZÁLEZ-PLEITER M, EDO C, AGUILERA Á, et al. Occurrence and transport of microplastics sampled within and above the planetary boundary layer [J]. Science of the Total Environment, 2021, 761: 143213. doi: 10.1016/j.scitotenv.2020.143213 [83] KERNCHEN S, LÖDER M G J, FISCHER F, et al. Airborne microplastic concentrations and deposition across the Weser River Catchment [J]. Science of the Total Environment, 2022, 818: 151812. doi: 10.1016/j.scitotenv.2021.151812 [84] CONG Z, KANG S, KAWAMURA K, et al. Carbonaceous aerosols on the south edge of the Tibetan Plateau: Concentrations, seasonality and sources [J]. Atmospheric Chemistry and Physics, 2015, 15(3): 1573-1584. doi: 10.5194/acp-15-1573-2015 [85] BAENSCH-BALTRUSCHAT B, KOCHER B, STOCK F, et al. Tyre and road wear particles (TRWP) - A review of generation, properties, emissions, human health risk, ecotoxicity, and fate in the environment [J]. Science of the Total Environment, 2020, 733: 137823. doi: 10.1016/j.scitotenv.2020.137823 [86] 曾永平. 环境微塑料概论[M]. 北京: 科学出版社, 2020: 322-329. ZENG Y P. Introduction to microplastics environment[M]. Beijing: Science Press, 2020: 322-329(in Chinese).
[87] LI Y W, SHAO L Y, WANG W H, et al. Airborne fiber particles: Types, size and concentration observed in Beijing [J]. Science of the Total Environment, 2020, 705: 135967. doi: 10.1016/j.scitotenv.2019.135967 [88] HU T Y, HE P J, YANG Z, et al. Emission of airborne microplastics from municipal solid waste transfer stations in downtown [J]. Science of the Total Environment, 2022, 828: 154400. doi: 10.1016/j.scitotenv.2022.154400 [89] O'BRIEN S, OKOFFO E D, O'BRIEN J W, et al. Airborne emissions of microplastic fibres from domestic laundry dryers [J]. Science of the Total Environment, 2020, 747: 141175. doi: 10.1016/j.scitotenv.2020.141175 [90] 刘艳, 唐颖, 宋阳, 等. 源于织物洗涤过程的微塑料释放 [J]. 印染, 2021, 47(7): 72-74. LIU Y, TANG Y, SONG Y, et al. Microplastic release from the fabric washing process [J]. China Dyeing & Finishing, 2021, 47(7): 72-74(in Chinese).
[91] SUN J, HO S S H, NIU X Y, et al. Explorations of tire and road wear microplastics in road dust PM2.5 at eight megacities in China [J]. Science of the Total Environment, 2022, 823: 153717. doi: 10.1016/j.scitotenv.2022.153717 [92] KOLE P J, LÖHR A J, van BELLEGHEM F G A J, et al. Wear and tear of tyres: A stealthy source of microplastics in the environment [J]. International Journal of Environmental Research and Public Health, 2017, 14(10): 1265. doi: 10.3390/ijerph14101265 [93] LIU K, WANG X H, WEI N, et al. Accurate quantification and transport estimation of suspended atmospheric microplastics in megacities: Implications for human health [J]. Environment International, 2019, 132: 105127. doi: 10.1016/j.envint.2019.105127 [94] CHEN Y X, LI X Y, ZHANG X T, et al. Air conditioner filters become sinks and sources of indoor microplastics fibers [J]. Environmental Pollution, 2022, 292: 118465. doi: 10.1016/j.envpol.2021.118465 [95] AMATO-LOURENÇO L F, CARVALHO-OLIVEIRA R, JÚNIOR Jr, et al. Presence of airborne microplastics in human lung tissue [J]. Journal of Hazardous Materials, 2021, 416: 126124. doi: 10.1016/j.jhazmat.2021.126124 [96] CHEN Q Q, GAO J N, YU H R, et al. An emerging role of microplastics in the etiology of lung ground glass nodules s [J]. Environmental Sciences Europe, 2022, 34: 25. doi: 10.1186/s12302-022-00605-3 [97] AMATO-LOURENÇO L F, dos SANTOS GALVÃO L, de WEGER L A, et al. An emerging class of air pollutants: Potential effects of microplastics to respiratory human health? [J]. Science of the Total Environment, 2020, 749: 141676. doi: 10.1016/j.scitotenv.2020.141676 [98] DONG C D, CHEN C W, CHEN Y C, et al. Polystyrene microplastic particles: In vitro pulmonary toxicity assessment [J]. Journal of Hazardous Materials, 2020, 385: 121575. doi: 10.1016/j.jhazmat.2019.121575 [99] XU M K, HALIMU G, ZHANG Q R, et al. Internalization and toxicity: A preliminary study of effects of nanoplastic particles on human lung epithelial cell [J]. Science of the Total Environment, 2019, 694: 133794. doi: 10.1016/j.scitotenv.2019.133794 [100] YANG S, CHENG Y P, CHEN Z Z, et al. In vitro evaluation of nanoplastics using human lung epithelial cells, microarray analysis and co-culture model [J]. Ecotoxicology and Environmental Safety, 2021, 226: 112837. doi: 10.1016/j.ecoenv.2021.112837 [101] PRATA J C. Airborne microplastics: Consequences to human health? [J]. Environmental Pollution, 2018, 234: 115-126. doi: 10.1016/j.envpol.2017.11.043 [102] UMCES. Media library · Integration and application network [EB/OL]. [2022-7-20].