-
因耐用、低成本等特点,塑料制品广泛应用于生产生活中的各个环节. 据统计,2019年全球共产生3.59亿吨的塑料,其中仅10%被回收利用[1]. 绝大部分的塑料被排入环境中,经过风化以及机械力的作用由大颗粒塑料转变为粒径较小的塑料,进一步破碎成微塑料(MPs),增加了对生态环境的危害性. 1971年,Carpenter等[2]在北大西洋马尾藻海的表层水中首次发现MPs的存在,直到2004年“微塑料”这一概念才由Thompson在论文中提出,并在2008年华盛顿举办的第一次国际微塑料研讨会上对其进行了定义,MPs指的是粒径<5 mm的塑料微粒以及纤维. MPs具有比表面积大、迁移性强、疏水性好、难生物降解等特点[3-4]. 研究发现在海洋[3, 5-6]、淡水[7-9]、土壤[10]、大气[11]环境中均存在大量的MPs. 其中,水环境中的MPs污染最为严重. MPs密度小、质量轻的特点使其在水环境中具有很强的漂浮能力和迁移能力[12]. 此外,陆地上的MPs会通过径流、风等的作用迁移至水体中,大气中MPs可能会通过输送和沉降成为水环境中MPs污染的来源之一[11]. 部分研究表明,深海是MPs的最终归宿[6]. 因此,水环境中MPs的分布、组成、理化特性等成为了近些年研究的重点.
暴露在环境中的MPs易受紫外光氧化、热氧化、生物降解等因素的影响,发生老化反应[13],这些因素改变了MPs表面特性、官能团和含氧量等等. 由于自然环境中的阳光(紫外光)、热能、生物老化的效率比较低[14],老化时间通常以月为单位,且受到较多因素的影响,很难系统地对MPs老化进行研究. 因此,近些年来,一些学者逐步开展在实验室中进行MPs的人工模拟老化研究[5],人工模拟老化条件可控、老化效率高,不容易受到其他环境因素的干扰. 常见的MPs人工模拟老化方法包括光辐照、高级氧化、机械磨损、生物降解和热氧化等. 其中,光辐照是最常用的方法,其原理为MPs的化学键断裂,产生具有强氧化性的含氧自由基,进一步破坏MPs结构,起到老化的作用[15]. 虽然光辐照的引发剂与自然条件下的引发剂有所不同,但是这两种过程的老化产物以及其中发生的自由基氧化反应一致[16]. 为了提高光模拟老化的效率,氙灯、汞灯、金卤灯、荧光灯和LED灯都成为了老化光源. 生物降解则是微生物富集在MPs表面达到一定数量后,形成生物膜,进而发生降解作用[17]. 在生物降解中,微生物的多样性以及含量的多少是影响MPs降解速度的关键所在. 因此,多菌种群落存在时MPs的降解效率更高,可作为主要的生物降解方法. 即使经过人工模拟老化的MPs理化性质和表面特性的变化与自然老化一致,但是模拟老化无法真正模拟自然老化时复杂的环境. 水环境中的MPs老化环境更复杂,包括光辐照,化学氧化,风、砂石、水体等的机械磨损,微生物降解. 此外,与大气及土壤中MPs的老化机制不同,水环境中的MPs在长期老化过程中与水中的天然有机物(NOM)、Cl−、Br−、CO32-、NO3−等离子接触,从而直接或间接地参与到MPs的老化过程中[18]. 为了更好地模拟MPs在水环境中的老化特征,揭示老化MPs的水环境行为,人工老化过程中需要根据实际水体中NOM和不同离子的浓度,向反应溶液中加入相应浓度的试剂. 同时,选取商业塑料或自然环境中的塑料制品以模拟有添加剂的析出状态下MPs的老化行为. 值得注意的是,水环境中往往同时存在多种离子,故需要考虑多因素混合状态下MPs老化情况,以此提高人工模拟老化与自然老化的紧密性.
经过老化,MPs的粒径减小,含氧官能团增加以及结晶度发生变化[19]. 小粒径MPs的比表面积更大,吸附点位更多,也更易被生物体摄入[20-21],且含氧官能团的出现使得MPs的亲水性增加,从而改变了与污染物之间的作用方式. 另外,MPs老化后析出的添加剂也增加了其化学毒性[22],老化MPs具有更高的生态风险. 最为严重的是,老化过程促进了表面生物膜的定植,对动物、植物、生态系统产生影响,增加了人类的健康风险.
本文总结了不同MPs人工模拟老化方法,分析了模拟老化对MPs表面特性和理化性质的的影响,阐明了模拟老化的作用机理,厘清了MPs老化过程中的影响因素,并探究了老化对MPs生态风险的影响,为MPs模拟老化过程的研究及其生态风险评价标准的建立提供科学依据.
水环境中微塑料的人工模拟老化及其对生态风险影响研究进展
Research progress on accelerated aging methods of microplastics in the water environment and their impacts on ecological risk
-
摘要: 微塑料(MPs)作为一种新兴的污染物,因其对生态环境具有不良影响,已经成为国内外研究领域的热门话题. MPs在环境压力下的老化作用增加了其在环境中迁移转化的不确定性,而人工模拟老化更适用于研究MPs的老化过程和机制. 因此,本文总结了光辐照、高级氧化、机械磨损、生物降解和热氧化的5种人工模拟老化方法及其作用机理. 其中,光辐照因操作性强、安全性高成为最常用的方法之一,高级氧化法因其效率较高也逐渐成为了研究的重点. 机械磨损仅对MPs产生物理作用,热氧化对温度要求较高且生物降解的耗时较长阻碍了两种方法应用于MPs的老化研究. 另外,本文阐述了MPs的结构特征、天然有机物、离子以及添加剂等因素对MPs老化过程的影响,并深入探究了老化MPs的生态风险变化情况,为MPs老化方法和老化机制研究提供理论依据与技术支撑.Abstract: Microplastics (MPs), as a new sort of pollutants, have become a hot topic in the research field at home and abroad because of their adverse effects on the ecological environment. The aging of MPs under environmental pressure increases the uncertainties of their migration and transformation in the environment. Simulated aging is more suitable for the MPs research of aging process and mechanism, so this study summarized five artificial aging simulation methods and their aging mechanisms including light irradiation, advanced oxidation, mechanical wear, biological degradation and thermal oxidation. Among them, light irradiation has become one of the most commonly used methods due to its high maneuverability and high safety. Advanced oxidation processes have gradually become the research emphasis because of higher aging efficiency. Mechanical wear only has physical effects on MPs. The high-temperature requirement of thermal oxidation and the long-time requirement of biodegradation hinder the application of both methods to aging studies of MPs. In addition, the effect of nature of MPs, natural organic compounds, ions and additives on the aging process of MPs were elucidated, also the change of ecological risks for the aged MPs was deeply explored in this study. The results could provide theoretical basis and technical support for the research on the methods and mechanisms of MPs aging.
-
Key words:
- Microplastics /
- water environment /
- artificial simulated aging /
- ecological risks
-
表 1 MPs人工模拟老化方法及其特点和适用性比较
Table 1. Comparison of artificial simulated aging methods of MPs and their characteristics and applicability
老化方法
Methods时间
Times理化性质变化
Transformations of properties特点
Characteristics适用性
Applicability参考文献
References光辐照 96 h—150 d SSA:0.18—0.21、1.07—1.27
O/C:0.022—0.055、0.055—0.12操作便捷,环境相关性高 ***** [35, 61] 高级氧化 108 h—10 d MPs表面出现O—H和C≡C—H
O/C:0.01—0.12,SSA:0.32—2.03老化周期较短,效率高,消耗氧化剂多 **** [27, 33] 机械磨损 0.5—10 a 层状结构,样品面积损失14%—16.7% 仅引起物理变化,样品分离复杂 *** [16, 51] 生物降解 40—140 d 重量下降1.6%—8.2%,表面细菌量
增加、含氧官能团增加需少选特定微生物,老化周期较长 *** [30, 56, 58] 热氧化 5—90 d 表面出现褶皱,含氧官能团增加,
生成酮类产物操作简单,但所需温度苛刻,环境相关性低 * [33, 59] -
[1] PLASTICS EUROPE. Plastics—the facts 2019. An analysis of European plastics production, demand and waste data [R]. Brussels: Plastics Europe, 2020. [2] CARPENTER E J, SMITH K L J. Plastics on the Sargasso Sea surface [J]. Science, 1972, 175(4027): 1240-1241. doi: 10.1126/science.175.4027.1240 [3] THOMPSON R C, OLSEN Y, MITCHELL R P, et al. Lost at sea: Where is all the plastic? [J]. Science, 2004, 304(5672): 838. doi: 10.1126/science.1094559 [4] AVIO C G, GORBI S, MILAN M, et al. Pollutants bioavailability and toxicological risk from microplastics to marine mussels [J]. Environmental Pollution, 2015, 198: 211-222. doi: 10.1016/j.envpol.2014.12.021 [5] COLE M, LINDEQUE P, HALSBAND C, et al. Microplastics as contaminants in the marine environment: A review [J]. Marine Pollution Bulletin, 2011, 62(12): 2588-2597. doi: 10.1016/j.marpolbul.2011.09.025 [6] GOLDBERG E D. Plasticizing the seafloor: An overview [J]. Environmental Technology, 1997, 18(2): 195-201. doi: 10.1080/09593331808616527 [7] EIBES P M, GABEL F. Floating microplastic debris in a rural river in Germany: Distribution, types and potential sources and sinks [J]. Science of the Total Environment, 2022, 816: 151641. doi: 10.1016/j.scitotenv.2021.151641 [8] ZHANG K, XIONG X, HU H J, et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China [J]. Environmental Science & Technology, 2017, 51(7): 3794-3801. [9] WANG G L, LU J J, TONG Y B, et al. Occurrence and pollution characteristics of microplastics in surface water of the Manas River Basin, China [J]. Science of the Total Environment, 2020, 710(C): 136099. [10] MAYNARD I F N, BORTOLUZZI P C, NASCIMENTO L M, et al. Analysis of the occurrence of microplastics in beach sand on the Brazilian coast [J]. Science of the Total Environment, 2021, 771: 144777. doi: 10.1016/j.scitotenv.2020.144777 [11] DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment? [J]. Marine Pollution Bulletin, 2016, 104(1/2): 290-293. [12] LECHNER A, KECKEIS H, LUMESBERGER-LOISL F, et al. The Danube so colourful: A potpourri of plastic litter outnumbers fish larvae in Europe's second largest river [J]. Environmental Pollution, 2014, 188: 177-181. doi: 10.1016/j.envpol.2014.02.006 [13] WRIGHT S L, THOMPSON R C, GALLOWAY T S. The physical impacts of microplastics on marine organisms: A review [J]. Environmental Pollution, 2013, 178: 483-492. doi: 10.1016/j.envpol.2013.02.031 [14] SUN Y R, YUAN J H, ZHOU T, et al. Laboratory simulation of microplastics weathering and its adsorption behaviors in an aqueous environment: A systematic review [J]. Environmental Pollution, 2020, 265: 114864. doi: 10.1016/j.envpol.2020.114864 [15] GEWERT B, PLASSMANN M M, MACLEOD M. Pathways for degradation of plastic polymers floating in the marine environment [J]. Environmental Science:Processes & Impacts, 2015, 17(9): 1513-1521. [16] KALOGERAKIS N, KARKANORACHAKI K, KALOGERAKIS G, et al. Microplastics generation: Onset of fragmentation of polyethylene films in marine environment mesocosms [J]. Frontiers in Marine Science, 2017, 4: 84. [17] RUMMEL C D, ANNIKA J, ELENA G, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment [J]. Environmental Science & Technology Letters, 2017, 4(7): 258-267. [18] 吴小伟, 黄何欣悦, 石妍琦, 等. 水环境中微塑料的光老化过程及影响因素研究进展 [J]. 科学通报, 2021, 66(36): 4619-4632. doi: 10.1360/TB-2021-0376 WU X W, HUANG H, SHI Y Q, et al. Progress on the photo aging mechanism of microplastics and related impact factors in water environment [J]. Chinese Science Bulletin, 2021, 66(36): 4619-4632(in Chinese). doi: 10.1360/TB-2021-0376
[19] 陈雅兰, 孙可, 高博. 微塑料吸附机制研究进展 [J]. 环境化学, 2021, 40(8): 2271-2287. CHEN Y L, SUN K, GAO B. Sorption behavior, mechanisms, and models of organic pollutants and metals on microplastics: A review [J]. Environmental Chemistry, 2021, 40(8): 2271-2287(in Chinese).
[20] 王亚新, 范江涛, 贡艺, 等. 大洋性头足类胃和肠道中的微塑料: 以秘鲁外海茎柔鱼为例 [J]. 应用生态学报, 2022, 33(1): 255-260. WANG Y X, FAN J T, GONG Y, et al. Microplastics in the stomach and intestine of pelagic squid: A case study of Dosidicus gigas in open sea of Peru [J]. Chinese Journal of Applied Ecology, 2022, 33(1): 255-260(in Chinese).
[21] 陈涛, 徐晓平, 李彬彬, 等. 聚苯乙烯微塑料和纳米塑料对萼花臂尾轮虫有性生殖的毒性影响 [J]. 环境科学研究, 2022, 35(5): 1306-1314. CHEN T, XU X P, LI B B, et al. Effects of polystyrene microplastics and nanoplastics on sexual reproduction of rotifer Brachionus calyciflorus [J]. Research of Environmental Sciences, 2022, 35(5): 1306-1314(in Chinese).
[22] 单威, 张正豪, 黄大伟, 等. 聚酰胺微塑料对大肠杆菌和脱氮副球菌的毒性 [J]. 环境科学学报, 2022(2): 468-475. SHAN W, ZHANG Z H, HUANG D W, et al. Toxicities of polyamide microplastics toward Escherichia coli and Paracoccus denitrificans [J]. Acta Scientiae Circumstantiae, 2022(2): 468-475(in Chinese).
[23] YAN X Y, YANG X Y, TANG Z, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes [J]. Environmental Pollution, 2020, 262: 114270. doi: 10.1016/j.envpol.2020.114270 [24] ZHANG W, LIU Y G, TAN X F, et al. Enhancement of detoxification of petroleum hydrocarbons and heavy metals in oil-contaminated soil by using Glycine-β-cyclodextrin [J]. International Journal of Environmental Research and Public Health, 2019, 16(7): 1155. doi: 10.3390/ijerph16071155 [25] WHITE J R, TURNBULL A. Weathering of polymers: Mechanisms of degradation and stabilization, testing strategies and modelling [J]. Journal of Materials Science, 1994, 29(3): 584-613. doi: 10.1007/BF00445969 [26] OUYANG Z Z, LI S X, ZHAO M Y, et al. The aging behavior of polyvinyl chloride microplastics promoted by UV-activated persulfate process [J]. Journal of Hazardous Materials, 2022, 424: 127461. doi: 10.1016/j.jhazmat.2021.127461 [27] KANG J, ZHOU L, DUAN X G, et al. Degradation of cosmetic microplastics via functionalized carbon nanosprings [J]. Matter, 2019, 1(3): 745-758. doi: 10.1016/j.matt.2019.06.004 [28] 张晨捷, 涂晨, 周倩, 等. 低密度聚乙烯薄膜微塑料在黄河口海岸带环境中的风化特征 [J]. 土壤学报, 2021, 58(2): 456-463. ZHANG C J, TU C, ZHOU Q, et al. Weathering characteristics of microplastics of low density polyethylene film in the coastal environment of the Yellow River Estuary [J]. Acta Pedologica Sinica, 2021, 58(2): 456-463(in Chinese).
[29] ZURIER H S, GODDARD J M. Biodegradation of microplastics in food and agriculture [J]. Current Opinion in Food Science, 2021, 37: 37-44. doi: 10.1016/j.cofs.2020.09.001 [30] YOSHIDA S, HIRAGA K, TAKEHANA T, et al. A bacterium that degrades and assimilates poly(ethylene terephthalate) [J]. Science, 2016, 351(6278): 1196-1199. doi: 10.1126/science.aad6359 [31] LIU P, QIAN L, WANG H Y, et al. New insights into the aging behavior of microplastics accelerated by advanced oxidation processes [J]. Environmental Science & Technology, 2019, 53(7): 3579-3588. [32] ZHU K C, JIA H Z, ZHAO S, et al. Formation of environmentally persistent free radicals on microplastics under light irradiation [J]. Environmental Science & Technology, 2019, 53(14): 8177-8186. [33] GARDETTE M, PERTHUE A, GARDETTE J L, et al. Photo- and thermal-oxidation of polyethylene: Comparison of mechanisms and influence of unsaturation content [J]. Polymer Degradation and Stability, 2013, 98(11): 2383-2390. doi: 10.1016/j.polymdegradstab.2013.07.017 [34] SONG Y K, HONG S H, JANG M, et al. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type [J]. Environmental Science & Technology, 2017, 51(8): 4368-4376. [35] ZHU K C, JIA H Z, SUN Y J, et al. Long-term phototransformation of microplastics under simulated sunlight irradiation in aquatic environments: Roles of reactive oxygen species [J]. Water Research, 2020, 173: 115564. doi: 10.1016/j.watres.2020.115564 [36] 胡晋博, 李梦凯, 蔡恒文, 等. 不同光源UV/H2O2工艺降解四环素动力学 [J]. 环境工程学报, 2021, 15(8): 2618-2626. HU J B, LI M K, CAI H W, et al. Degradation kinetics of tetracycline by UV/H2O2 process with various light sources [J]. Chinese Journal of Environmental Engineering, 2021, 15(8): 2618-2626(in Chinese).
[37] TIAN L L, CHEN Q Q, JIANG W, et al. A carbon-14 radiotracer-based study on the phototransformation of polystyrene nanoplastics in water versus in air [J]. Environmental Science:Nano, 2019, 6(9): 2907-2917. doi: 10.1039/C9EN00662A [38] QIAO R X, LU K, DENG Y F, et al. Combined effects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish [J]. Science of the Total Environment, 2019, 682: 128-137. doi: 10.1016/j.scitotenv.2019.05.163 [39] LIN J L, YAN D Y, FU J W, et al. Ultraviolet-C and vacuum ultraviolet inducing surface degradation of microplastics [J]. Water Research, 2020, 186: 116360. doi: 10.1016/j.watres.2020.116360 [40] CHEN J, LOEB S, KIM J H. LED revolution: Fundamentals and prospects for UV disinfection applications [J]. Environmental Science:Water Research & Technology, 2017, 3(2): 188-202. [41] 张楠, 徐一卢, 来嘉熙, 等. 微塑料光老化的研究进展 [J]. 应用化工, 2021, 50(6): 1663-1666. ZHANG N, XU Y L, LAI J X, et al. Research progress of photo-aging of microplastics [J]. Applied Chemical Industry, 2021, 50(6): 1663-1666(in Chinese).
[42] LV Y D, HUANG Y J, YANG J L, et al. Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study [J]. Polymer Degradation and Stability, 2015, 112: 145-159. doi: 10.1016/j.polymdegradstab.2014.12.023 [43] KELKAR V P, ROLSKY C B, PANT A, et al. Chemical and physical changes of microplastics during sterilization by chlorination [J]. Water Research, 2019, 163: 114871. doi: 10.1016/j.watres.2019.114871 [44] WANG J C, WANG H. Fenton treatment for flotation separation of polyvinyl chloride from plastic mixtures [J]. Separation and Purification Technology, 2017, 187: 415-425. doi: 10.1016/j.seppur.2017.06.076 [45] 张瑞昌, 李泽林, 魏学锋, 等. 模拟环境老化对PE微塑料吸附Zn(Ⅱ)的影响 [J]. 中国环境科学, 2020, 40(7): 3135-3142. ZHANG R C, LI Z L, WEI X F, et al. Effects of simulated environmental aging on the adsorption of Zn(Ⅱ) onto PE microplastics [J]. China Environmental Science, 2020, 40(7): 3135-3142(in Chinese).
[46] CASEY R. Plastics and environmental sustainability [J]. Chemistry in Australia, 2016(Dec./Jan.): 33. [47] 刘鹏. 微塑料的加速老化过程及其与药物和铁红颜料的相互作用研究[D]. 南京: 南京大学, 2020. LIU P. Study on the accelerated aging of microplastics and the interaction of aged microplastics with pharmaceuticals and iron red pigment[D]. Nanjing: Nanjing University, 2020(in Chinese).
[48] LIU P, LU K, LI J L, et al. Effect of aging on adsorption behavior of polystyrene microplastics for pharmaceuticals: Adsorption mechanism and role of aging intermediates [J]. Journal of Hazardous Materials, 2020, 384: 121193. doi: 10.1016/j.jhazmat.2019.121193 [49] WU X W, LIU P, SHI H H, et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater [J]. Water Research, 2021, 188: 116456. doi: 10.1016/j.watres.2020.116456 [50] 胡瑞. UV/电化学高级氧化降解DEET的动力学与机理探究[D]. 武汉: 华中科技大学, 2020. HU R. Kinetics and mechanism of DEET degradation using UV combined electrochemical advanced oxidation technology[D]. Wuhan: Huazhong University of Science and Technology, 2020(in Chinese).
[51] NAPPER I E, WRIGHT L S, BARRETT A C, et al. Potential microplastic release from the maritime industry: Abrasion of rope [J]. Science of the Total Environment, 2022, 804: 150155. doi: 10.1016/j.scitotenv.2021.150155 [52] YANG T, LUO J L, NOWACK B. Characterization of nanoplastics, fibrils, and microplastics released during washing and abrasion of polyester textiles [J]. Environmental Science & Technology, 2021, 55(23): 15873-15881. [53] CASSONE B J, GROVE H C, ELEBUTE O, et al. Role of the intestinal microbiome in low-density polyethylene degradation by caterpillar larvae of the greater wax moth, Galleria mellonella [J]. Proceedings. Biological Sciences, 2020, 287(1922): 20200112. [54] ZETTLER E R, MINCER T J, AMARAL-ZETTLER L A. Life in the “plastisphere”: Microbial communities on plastic marine debris [J]. Environmental Science & Technology, 2013, 47(13): 7137-7146. [55] FLEMMING H C. Relevance of biofilms for the biodeterioration of surfaces of polymeric materials [J]. Polymer Degradation and Stability, 1998, 59(1/2/3): 309-315. [56] AUTA H S, EMENIKE C U, FAUZIAH S H. Screening of Bacillus strains isolated from mangrove ecosystems in Peninsular Malaysia for microplastic degradation [J]. Environmental Pollution, 2017, 231: 1552-1559. doi: 10.1016/j.envpol.2017.09.043 [57] 李红羽, 郑永杰, 田景芝. 多种微塑料降解菌的分离及效能研究 [J]. 齐齐哈尔大学学报(自然科学版), 2022, 38(1): 56-61,86. LI H Y, ZHENG Y J, TIAN J Z. Study on the separation and efficiency of various microplastic degradation bacteria [J]. Journal of Qiqihar University (Natural Science Edition), 2022, 38(1): 56-61,86(in Chinese).
[58] SKARIYACHAN S, PATIL A A, SHANKAR A, et al. Enhanced polymer degradation of polyethylene and polypropylene by novel thermophilic consortia of Brevibacillus sps. and Aneurinibacillus sp. screened from waste management landfills and sewage treatment plants [J]. Polymer Degradation and Stability, 2018, 149: 52-68. doi: 10.1016/j.polymdegradstab.2018.01.018 [59] DING L, MAO R F, MA S R, et al. High temperature depended on the ageing mechanism of microplastics under different environmental conditions and its effect on the distribution of organic pollutants [J]. Water Research, 2020, 174: 115634. doi: 10.1016/j.watres.2020.115634 [60] CHAMAS A, MOON H, ZHENG J J, et al. Degradation rates of plastics in the environment [J]. ACS Sustainable Chemistry and Engineering, 2020, 8(9): 3494-3511. doi: 10.1021/acssuschemeng.9b06635 [61] 孔凡星, 许霞, 薛银刚, 等. 微塑料老化对四环素吸附行为的影响 [J]. 环境科学研究, 2021, 34(9): 2182-2190. doi: 10.13198/j.issn.1001-6929.2021.05.04 KONG F X, XU X, XUE Y G, et al. Effect of aging on adsorption of tetracycline by microplastics [J]. Research of Environmental Sciences, 2021, 34(9): 2182-2190(in Chinese). doi: 10.13198/j.issn.1001-6929.2021.05.04
[62] MIRI S B, SAINI R, DAVOODI S M, et al. Biodegradation of microplastics: Better late than never [J]. Chemosphere, 2022, 286: 131670. doi: 10.1016/j.chemosphere.2021.131670 [63] OMASTOVÁ M, PODHRADSKÁ S, PROKEŠ J, et al. Thermal ageing of conducting polymeric composites [J]. Polymer Degradation and Stability, 2003, 82(2): 251-256. doi: 10.1016/S0141-3910(03)00218-0 [64] WENK J, von GUNTEN U, CANONICA S. Effect of dissolved organic matter on the transformation of contaminants induced by excited triplet states and the hydroxyl radical [J]. Environmental Science & Technology, 2011, 45(4): 1334-1340. [65] CANONICA S, SCHÖNENBERGER U. Inhibitory effect of dissolved organic matter on the transformation of selected anilines and sulfonamide antibiotics induced by the sulfate radical [J]. Environmental Science & Technology, 2019, 53(20): 11783-11791. [66] 骆媛媛. 渭河流域DOM的光谱学特性及与聚苯乙烯微塑料的交互作用[D]. 杨凌: 西北农林科技大学, 2021. LUO Y Y. Spectroscopic properties of DOM in the Wei River and the interaction between DOM and polystyrene microplastics[D]. Yangling: Northwest A & F University, 2021(in Chinese).
[67] WU X W, LIU P, GONG Z M, et al. Humic acid and fulvic acid hinder long-term weathering of microplastics in lake water [J]. Environmental Science & Technology, 2021, 55(23): 15810-15820. [68] TANG S, LIN L J, WANG X S, et al. Adsorption of fulvic acid onto polyamide 6 microplastics: Influencing factors, kinetics modeling, site energy distribution and interaction mechanisms [J]. Chemosphere, 2021, 272: 129638. doi: 10.1016/j.chemosphere.2021.129638 [69] WU X W, LIU P, WANG H Y, et al. Photo aging of polypropylene microplastics in estuary water and coastal seawater: Important role of chlorine ion [J]. Water Research, 2021, 202: 117396. doi: 10.1016/j.watres.2021.117396 [70] CHEN C Z, CHEN L, YAO Y, et al. Organotin release from polyvinyl chloride microplastics and concurrent photodegradation in water: Impacts from salinity, dissolved organic matter, and light exposure [J]. Environmental Science & Technology, 2019, 53(18): 10741-10752. [71] CHEN F Y, XIA L G, ZHANG Y, et al. Efficient degradation of refractory organics for carbonate-containing wastewater via generation carbonate radical based on a photoelectrocatalytic TNA-MCF system [J]. Applied Catalysis B:Environmental, 2019, 259: 118071. doi: 10.1016/j.apcatb.2019.118071 [72] YU X Q, XU Y B, LANG M F, et al. New insights on metal ions accelerating the aging behavior of polystyrene microplastics: Effects of different excess reactive oxygen species [J]. Science of the Total Environment, 2022, 821: 153457. doi: 10.1016/j.scitotenv.2022.153457 [73] KUTZ M. Applied Plastics Engineering Handbook[M]. William Andrew, 2011 [74] 吕莹, 杨晓敏, 陈思, 等. 舟山水产市场海产品中微塑料的污染特征分析 [J]. 农村经济与科技, 2021, 32(13): 58-61,128. LYU Y, YANG X M, CHEN S, et al. Analysis on the pollution characteristics of microplastics in seafood in Zhoushan aquatic market [J]. Rural Economy and Science-Technology, 2021, 32(13): 58-61,128(in Chinese).
[75] ZHANG C, CHEN X H, WANG J T, et al. Toxic effects of microplastic on marine microalgae Skeletonema costatum: Interactions between microplastic and algae [J]. Environmental Pollution, 2017, 220: 1282-1288. doi: 10.1016/j.envpol.2016.11.005 [76] HANNA S K, MONTORO BUSTOS A R, PETERSON A W, et al. Agglomeration of Escherichia coli with positively charged nanoparticles can lead to artifacts in a standard Caenorhabditis elegans toxicity assay [J]. Environmental Science & Technology, 2018, 52(10): 5968-5978. [77] JEMEC KOKALJ A, KUEHNEL D, PUNTAR B, et al. An exploratory ecotoxicity study of primary microplastics versus aged in natural waters and wastewaters [J]. Environmental Pollution, 2019, 254: 112980. doi: 10.1016/j.envpol.2019.112980 [78] ELIZALDE-VELÁZQUEZ G A, GÓMEZ-OLIVÁN L M. Microplastics in aquatic environments: A review on occurrence, distribution, toxic effects, and implications for human health [J]. Science of the Total Environment, 2021, 780: 146551. doi: 10.1016/j.scitotenv.2021.146551 [79] FRIAS J P G L, SOBRAL P, FERREIRA A M. Organic pollutants in microplastics from two beaches of the Portuguese coast [J]. Marine Pollution Bulletin, 2010, 60(11): 1988-1992. doi: 10.1016/j.marpolbul.2010.07.030 [80] LEE H, SHIM W J, KWON J H. Sorption capacity of plastic debris for hydrophobic organic chemicals [J]. Science of the Total Environment, 2014, 470/471: 1545-1552. doi: 10.1016/j.scitotenv.2013.08.023 [81] LUO H W, LIU C Y, HE D Q, et al. Environmental behaviors of microplastics in aquatic systems: A systematic review on degradation, adsorption, toxicity and biofilm under aging conditions [J]. Journal of Hazardous Materials, 2022, 423: 126915. doi: 10.1016/j.jhazmat.2021.126915 [82] 宋亚丽, 俞娅, 郑磊, 等. 老化前后微塑料对富里酸的吸附 [J]. 环境科学, 2022, 43(3): 1472-1480. doi: 10.13227/j.hjkx.202107034 SONG Y L, YU Y, ZHENG L, et al. Adsorption of fulvic acid on virgin and aging microplastics [J]. Environmental Science, 2022, 43(3): 1472-1480(in Chinese). doi: 10.13227/j.hjkx.202107034
[83] WU X W, LIU P, HUANG H, et al. Adsorption of triclosan onto different aged polypropylene microplastics: Critical effect of cations [J]. Science of the Total Environment, 2020, 717: 137033. doi: 10.1016/j.scitotenv.2020.137033 [84] RANI M, SHIM W J, JANG M, et al. Releasing of hexabromocyclododecanes from expanded polystyrenes in seawater-field and laboratory experiments [J]. Chemosphere, 2017, 185: 798-805. doi: 10.1016/j.chemosphere.2017.07.042 [85] RODRIGUES M O, ABRANTES N, GONÇALVES F J M, et al. Impacts of plastic products used in daily life on the environment and human health: What is known? [J]. Environmental Toxicology and Pharmacology, 2019, 72: 103239. doi: 10.1016/j.etap.2019.103239 [86] 吴新华. 食品包装中酞酸酯及双酚物质检测方法研究[D]. 长沙: 中南林业科技大学, 2011. WU X H. Study on the determination method of plasticizer and bisphenol in food contact materials[D]. Changsha: Central South University of Forestry & Technology, 2011(in Chinese).
[87] PECHT M G, ALI I, CARLSON A. Phthalates in electronics: The risks and the alternatives [J]. IEEE Access, 2017, 6: 6232-6242. [88] BOGDANOVIČOVÁ S, JAROŠOVÁ A. Phthalate migration from packaging materials into food [J]. Potravinarstvo, 2015, 9(1): 275-279. doi: 10.5219/479 [89] DEANIN R D. Plastics additives handbook, second edition, R. Gächter and H. Müller, eds., hanser publishers, Macmillan, 1988, 754 pp [J]. Journal of Polymer Science Part C:Polymer Letters, 1989, 27(5): 178-179. doi: 10.1002/pol.1989.140270508 [90] LIU H T, LIU K, FU H Y, et al. Sunlight mediated cadmium release from colored microplastics containing cadmium pigment in aqueous phase [J]. Environmental Pollution, 2020, 263: 114484. doi: 10.1016/j.envpol.2020.114484 [91] AMARAL-ZETTLER L A, ZETTLER E R, MINCER T J. Ecology of the plastisphere [J]. Nature Reviews Microbiology, 2020, 18(3): 139-151. doi: 10.1038/s41579-019-0308-0 [92] GALLOWAY T S, COLE M, LEWIS C. Interactions of microplastic debris throughout the marine ecosystem [J]. Nature Ecology & Evolution, 2017, 1: 116. [93] KALČÍKOVÁ G, SKALAR T, MAROLT G, et al. An environmental concentration of aged microplastics with adsorbed silver significantly affects aquatic organisms [J]. Water Research, 2020, 175: 115644. doi: 10.1016/j.watres.2020.115644 [94] WU N, ZHANG Y, ZHAO Z, et al. Colonization characteristics of bacterial communities on microplastics compared with ambient environments (water and sediment) in Haihe Estuary [J]. Science of the Total Environment, 2020, 708: 134876. doi: 10.1016/j.scitotenv.2019.134876 [95] MCCORMICK A, HOELLEIN T J, MASON S A, et al. Microplastic is an abundant and distinct microbial habitat in an urban river [J]. Environmental Science & Technology, 2014, 48(20): 11863-11871.