-
微塑料具有粒径小、比表面积大的特点,吸附能力较强,是有机污染物的载体[1]. 目前,关于微塑料吸附有机污染物的研究多集中在单一水质条件对吸附的影响(如pH、盐度、温度和溶解性有机质等)[2]. 然而,环境中水质条件复杂多变,尚缺乏多种条件变化对微塑料吸附有机污染物影响的研究. 溶解性有机质(如腐殖酸)是重要的水质指标,可与有机污染物相互作用影响其水溶解度,还能被微塑料吸附,改变微塑料表面的化学性质,进而影响微塑料对污染物的吸附性能[3-4]. 不仅如此,其他水质条件(如pH和盐度)也会影响腐殖酸在微塑料上的吸附. 当溶液pH值高于微塑料的等电点时,微塑料表面带负电,与腐殖酸之间的静电斥力增加,抑制对腐殖酸的吸附;相反则促进吸附[5-6]. 无机盐还可以通过盐析和架桥等作用影响腐殖酸在微塑料上的吸附[7-8]. 这些都将进一步影响微塑料对污染物的吸附性能. 因此,有必要研究腐殖酸与其他水质条件相互作用对微塑料吸附有机污染物行为的影响与机制. 研究成果对于洞察环境中微塑料与有机污染物相互作用规律以及了解微塑料对环境中有机污染物迁移转化行为的影响具有重要的理论和实际意义.
多环芳烃是环境中普遍存在的典型持久性有机污染物. 菲是最常见的多环芳烃之一,属于非极性化合物. 阿特拉津是由三嗪环组成的有机氯农药,普遍存在于环境中. 无论是陆地动物还是水中的鱼类甚至是人类,长期接触阿特拉津都会有致癌的风险[9]. 因此,笔者选取了新制和老化聚乙烯(PE和APE)和聚苯乙烯(PS和APS)微塑料,两种不同极性的有机污染物(菲和阿特拉津),研究了水质条件(包括pH和水中重要的阳离子Ca2+和Na+)对微塑料吸附腐殖酸的影响,以及腐殖酸与水质(pH和阳离子)相互作用对微塑料吸附菲和阿特拉津的影响. 在此基础上,探究了影响机制.
腐殖酸与pH/阳离子作用对微塑料吸附菲和阿特拉津的影响
Effects of interactions between humic acid and pH/cation on the sorption of phenanthrene and atrazine on microplastics
-
摘要: 为了研究腐殖酸与pH/阳离子相互作用对微塑料吸附水中菲和阿特拉津产生的影响,选取了新制和老化聚乙烯(PE和APE)和聚苯乙烯(PS和APS)微塑料. 吸附等温线结果显示,微塑料对菲和阿特拉津的吸附均符合Freundlich模型(R2>0.96). 同种微塑料吸附菲的能力(lgKf=0.805—1.422)>吸附阿特拉津的能力(0.611—0.688),与污染物水溶性有关;老化微塑料吸附菲和阿特拉津的能力>新制微塑料的吸附能力(APS吸附菲的能力<PS除外),与微塑料表面极性和PE结晶度的变化有关. 相同pH条件下,Ca2+浓度对这4种微塑料吸附腐殖酸的影响显著高于Na+;随Ca2+/Na+浓度的增加,微塑料对腐殖酸的吸附量显著增大(增幅分别可达1个数量级和1.8倍). 相比Ca2+/Na+,pH对微塑料吸附腐殖酸的影响相对较小(随pH增大,降幅分别不超过90%和65%). 而且,相同Ca2+/Na+浓度条件下,离子浓度越低,pH对腐殖酸在微塑料上吸附的影响越显著. 腐殖酸与pH/阳离子相互作用显著影响微塑料对菲和阿特拉津的吸附. 总体上,微塑料对菲的吸附量随Ca2+/Na+浓度的升高而升高,随pH的升高而下降;对阿特拉津的影响则相反. 相关性分析结果显示,微塑料对腐殖酸的吸附量与对菲的吸附量显著正相关,但是与对阿特拉津的吸附量显著负相关. 增溶作用和空间阻力分别是影响微塑料吸附菲和阿特拉津的主要机制.Abstract: In order to study the effects of interactions between humic acid and pH/cation on the sorption of phenanthrene and atrazine on microplastics, virgin and aged polyethylene (PE and APE) and polystyrene (PS and APS) microplastics were selected. The sorption isotherms demonstrated that sorption of phenanthrene and atrazine on the microplastics fitted well with the Freundlich model (R2>0.96). The sorptive ability (lgKf) of the same kind of microplastics for phenanthrene (0.805—1.422) was higher than that for atrazine (0.611—0.688), which is related to their water solubility. The sorptive abilities of aged microplastics for phenanthrene and atrazine were higher than those of virgin microplastics except that sorptive ability of APS for phenanthrene was lower than that of PS. This is related to the changes of surface polarity of microplastics and crystallinity of PE. Under the same pH condition, effect of Ca2+ concentration on the amount of humic acid sorbed by microplastics was more significant than that of Na+. With the increase of Ca2+/ Na+ concentration, the amount of humic acid sorbed by microplastics increased obviously (up to one order of magnitude and 1.8 times increase, respectively). The effect of pH on the amount of humic acid sorbed by microplastics was less significant (no more than 90% and 65% decrease with pH, respectively) as compared to Ca2+/Na+. Under the condition of identical Ca2+/Na+ concentration, the lower the concentration of cation was, the more significant the effect of pH on the amount of humic acid sorbed by microplastics was. Interactions between humic acid and pH/cation significantly influenced the sorption of phenanthrene and atrazine on microplastics. In general, the amount of phenanthrene sorbed by microplastics increased with increasing Ca2+/Na+ concentration, but decreased with increasing pH. The effect on atrazine was the opposite. Correlation analysis results showed that the amount of humic acid sorbed by microplastics was significantly positively correlated with the amount of phenanthrene sorbed by microplastics, but significantly negatively correlated with the amount of atrazine sorbed by microplastics. Solubilization and steric resistance are the main mechanisms affecting the sorption of phenanthrene and atrazine by microplastics, respectively.
-
Key words:
- microplastics /
- sorption /
- organic pollutant /
- humic acid /
- pH/cation.
-
表 1 Ca2+/Na+浓度和pH值的设置
Table 1. Setting of Ca2+/Na+ concentration and pH value
序号
Number1 2 3 4 5 6 7 8 9 Ca2+/Na+/(mmol·L−1) 0.1 0.1 0.1 10 10 10 25 25 25 pH 3 5 8 3 5 8 3 5 8 表 2 微塑料吸附菲和阿特拉津的Freundlich模型参数
Table 2. Freundlich model parameters of sorption isotherms of phenanthrene and atrazine on microplastics
微塑料
Microplastics菲
Phenanthrene阿特拉津
AtrazineN lgKf R2 N lgKf R2 PE 0.995 1.356 0.992 0.928 0.623 0.968 APE 0.982 1.422 0.991 0.912 0.668 0.970 PS 0.851 1.013 0.970 0.927 0.611 0.969 APS 0.875 0.805 0.977 0.913 0.665 0.971 表 3 微塑料对菲/阿特拉津吸附量与对腐殖酸吸附量的相关性
Table 3. Relationship between sorption amounts of phenanthrene/atrazine and humic acid on microplastics
微塑料
Microplastics菲的r值 r
Value of phenanthrene阿特拉津的r值 r
Value of atrazineCa2+ Na+ Ca2+ Na+ PE 0.5713* 0.6153* −0.6021* −0.6399* APE 0.6571* 0.5948* −0.5166* −0.5364* PS 0.6934* 0.5979* −0.6167* −0.4742* APS 0.7703* 0.4035* −0.5020* −0.7578* 注:样品数n=18;*表示P<0.05. Note: Sample number n=18; * indicates P< 0.05 -
[1] ZHANG F, ZHAO D X, CHI J. Impact of different environmental particles on degradation of dibutyl phthalate in coastal sediments with and without Cylindrotheca closterium [J]. Environmental Pollution, 2020, 261: 114228. doi: 10.1016/j.envpol.2020.114228 [2] YU Y M, MO W Y, LUUKKONEN T. Adsorption behaviour and interaction of organic micropollutants with nano and microplastics - A review [J]. The Science of the Total Environment, 2021, 797: 149140. doi: 10.1016/j.scitotenv.2021.149140 [3] FU H Y, WEI C H, QU X L, et al. Strong binding of apolar hydrophobic organic contaminants by dissolved black carbon released from biochar: A mechanism of pseudomicelle partition and environmental implications [J]. Environmental Pollution, 2018, 232: 402-410. doi: 10.1016/j.envpol.2017.09.053 [4] ZHANG H B, WANG J Q, ZHOU B Y, et al. Enhanced adsorption of oxytetracycline to weathered microplastic polystyrene: Kinetics, isotherms and influencing factors [J]. Environmental Pollution, 2018, 243: 1550-1557. doi: 10.1016/j.envpol.2018.09.122 [5] ZHANG F, WANG Z, WANG S, et al. Aquatic behavior and toxicity of polystyrene nanoplastic particles with different functional groups: Complex roles of pH, dissolved organic carbon and divalent cations [J]. Chemosphere, 2019, 228: 195-203. doi: 10.1016/j.chemosphere.2019.04.115 [6] ABDURAHMAN A, CUI K Y, WU J, et al. Adsorption of dissolved organic matter (DOM) on polystyrene microplastics in aquatic environments: Kinetic, isotherm and site energy distribution analysis [J]. Ecotoxicology and Environmental Safety, 2020, 198: 110658. doi: 10.1016/j.ecoenv.2020.110658 [7] CHEN W, OUYANG Z Y, QIAN C, et al. Induced structural changes of humic acid by exposure of polystyrene microplastics: A spectroscopic insight [J]. Environmental Pollution, 2018, 233: 1-7. doi: 10.1016/j.envpol.2017.10.027 [8] HYUNG H, KIM J H. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: Effect of NOM characteristics and water quality parameters [J]. Environmental Science & Technology, 2008, 42(12): 4416-4421. [9] SINGH S, KUMAR V, CHAUHAN A, et al. Toxicity, degradation and analysis of the herbicide atrazine [J]. Environmental Chemistry Letters, 2018, 16(1): 211-237. doi: 10.1007/s10311-017-0665-8 [10] LIU G Z, ZHU Z L, YANG Y X, et al. Sorption behavior and mechanism of hydrophilic organic chemicals to virgin and aged microplastics in freshwater and seawater [J]. Environmental Pollution, 2019, 246: 26-33. doi: 10.1016/j.envpol.2018.11.100 [11] ANDRADY A L. The plastic in microplastics: A review [J]. Marine Pollution Bulletin, 2017, 119(1): 12-22. doi: 10.1016/j.marpolbul.2017.01.082 [12] ZHAO L F, RONG L L, XU J P, et al. Sorption of five organic compounds by polar and nonpolar microplastics [J]. Chemosphere, 2020, 257: 127206. doi: 10.1016/j.chemosphere.2020.127206 [13] LIU P, ZHAN X, WU X W, et al. Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks [J]. Chemosphere, 2020, 242: 125193. doi: 10.1016/j.chemosphere.2019.125193 [14] LIANG L, LUO L, ZHANG S Z. Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2011, 384(1/2/3): 126-130. [15] ENGEL M, CHEFETZ B. Adsorption and desorption of dissolved organic matter by carbon nanotubes: Effects of solution chemistry [J]. Environmental Pollution, 2016, 213: 90-98. doi: 10.1016/j.envpol.2016.02.009 [16] WANG F, YAO J, CHEN H L, et al. Sorption of humic acid to functionalized multi-walled carbon nanotubes [J]. Environmental Pollution, 2013, 180: 1-6. doi: 10.1016/j.envpol.2013.04.035 [17] LIN D H, LI T T, YANG K, et al. The relationship between humic acid (HA) adsorption on and stabilizing multiwalled carbon nanotubes (MWNTs) in water: Effects of HA, MWNT and solution properties [J]. Journal of Hazardous Materials, 2012, 241/242: 404-410. doi: 10.1016/j.jhazmat.2012.09.060 [18] CAO H M, ZHANG P, JIA W L, et al. Adsorption of phenanthrene onto magnetic multi-walled carbon nanotubes (MMWCNTs) influenced by various fractions of humic acid from a single soil [J]. Chemosphere, 2021, 277: 130259. doi: 10.1016/j.chemosphere.2021.130259 [19] XIAO F, PIGNATELLO J J. Interactions of triazine herbicides with biochar: Steric and electronic effects [J]. Water Research, 2015, 80: 179-188. doi: 10.1016/j.watres.2015.04.040