-
有机污染物中丰富的共价键使其结构极为稳定,偶氮、芳香类共轭单元更是难以处理[1-2],其降解需要消耗大量能量,排入水中的有机物已造成了严重的水体污染问题[3-4],为此,可降低反应活化能的各类催化剂被用于有机物的降解过程,并成为一大热点[5]. 其中,光催化工艺更是以可再生的太阳能为能量来源,具有成本低、安全环保、清洁高效的优势[6-8],表现出巨大的研究与发展潜力.
为解决有机污染物降解难题,各类光催化剂的性能优化研究热度与日俱增. 光降解有机污染物的进行有赖于光生载流子与反应物间的电荷转移[9],但单一光催化剂通常面临着载流子难以激发、寿命过短的困境[10]. 而异质结的构建可对光催化剂的电子结构及形态特性进行调整,有效增强其光吸收能力及载流子迁移效率,并对其氧化还原能力进行调整,是改良光降解有机污染物效率的有效策略之一[11-12].
在众多异质结型光催化剂中,由TiO2与g-C3N4晶体所组成的TCN异质结在光降解领域表现出巨大潜力. TCN异质结性能的高效性来源于以下几个方面:(1)g-C3N4有着2.7 eV的适中带隙[13],光吸收谱带较宽,使TCN异质结具有优异的可见光响应能力;(2)g-C3N4晶体中sp2杂化的碳氮原子间形成共轭结构[14],同时,其良好的柔韧性有助于特殊形貌中紧密界面接触的形成[15-16],可有效促进电荷的分离与转移[17];(3)TiO2价带电势为3.1 eV[18],空穴氧化能力较强,而g-C3N4导带电势为-1.27 eV[19],具有优异的电子还原能力,为高氧化还原性系统的构建提供了基础;(4)TiO2表面丰富的羟基及g-C3N4晶体上丰富的官能团与缺陷位点有助于TCN异质结通过物理或化学作用实现各种有机污染物的捕获[20-21];(5)TiO2与g-C3N4两种晶体均具有良好的结构稳定性,生产成本较低[22-23],使TCN异质结具备工业化应用潜力.
TCN异质结中两晶体间相容的能级结构使载流子可沿Ⅱ型或Z型路径进行定向迁移. 但在Ⅱ型路径中,电子与空穴迁移向弱氧化还原能力的能带结构处,而在Z型路径中,弱氧化还原能力的载流子将在界面处复合[22]. 故而,两种TCN异质结分别存在着氧化还原能力与载流子利用效率方面的限制,且实际废水中成分极为复杂,现有的TCN异质结并不能充分解决各类污染物的降解问题. 鉴于上述问题,国内外学者开展了大量围绕TCN异质结改性策略的研究,而尺寸调控[24-26]、形貌构建[27-29]与缺陷工程[30-32]已被证明是改善TCN异质结性能的有效策略.
为此,本文比较了两种常见TCN异质结的形成机理与特性,从电子结构和微观形态的角度出发,总结了针对异质结光吸收能力、氧化还原能力、载流子迁移效率、表面活性位点及吸附能力的调控策略,讨论了TCN异质结在实际应用中可采取的优化策略,并且就目前TCN异质结在应用进程中存在的挑战进行了分析.
光降解有机污染物用TiO2/g-C3N4异质结的构建策略
Study on the strategy of TiO2/ g-C3N4 heterostructure construction for photodegradable organic pollutants
-
摘要: 由TiO2与g-C3N4晶体所组成的TiO2/g-C3N4异质结(TCN异质结)有着成本低廉、带隙较窄、光响应谱带宽、载流子迁移效率高等优点,可有效解决有机污染物降解过程耗能高的问题. 然而,常见的两种TCN异质结存在着载流子利用率或氧化还原能力上的限制. 为此,需要对TCN异质结的构建策略进行改良以满足实际应用需求. 本文主要围绕影响TCN异质结各项性能的因素,对近年来TCN异质结的构建策略及其在光降解有机污染物领域中的研究进展进行了总结. 最后,对TCN异质结研究中的未来发展方向提出了展望.Abstract: The TiO2/g-C3N4 heterojunction (TCN heterojunction) composed of TiO2 and g-C3N4 crystals has the advantages of low cost, narrow band gap, wide spectral response bandwidth and high carrier migration efficiency, which can effectively solve the problem of high energy consumption in the degradation process of organic pollutants. However, the two common TCN heterojunctions have limitations in carrier utilization or redox ability. Therefore, the construction strategy of TCN heterojunction needs to be improved to meet the practical application requirements. This review mainly focuses on the factors affecting the performance of TCN heterojunction, and summarizes the construction strategies of TCN heterojunction and its research progress in the field of photodegradation of organic pollutants in recent years. Finally, the future development direction of TCN heterojunction research is prospected.
-
Key words:
- TiO2 /
- g-C3N4 /
- heterojunction /
- photodegradation /
- organic pollutants /
- reaction mechanism
-
表 1 TCN异质结的构建策略及应用
Table 1. Construction strategy and application of TCN heterojunction
目标
Target策略
Strategy合成方法
Synthetic Method载流子迁移途径
Carrier migration path催化剂用量
Catalyst dosage应用
Application参考
文献
Ref载流子迁移 控制g-C3N4壳层厚度 溶胶凝胶法 II型 50 mg,100 mL(10 mg·L−1) 罗丹明B(93 %,90 min) [102] 表面活性位点载流子迁移 合成超细TiO2纳米颗粒 电化学腐蚀法 Z型 10 mg,40 mL(20 mg·L−1) 盐酸四环素(99.4 %,120 min) [103] 载流子迁移 控制沉积尺寸与位置 原子层沉积技术 II型 20 mg,20 mL(5 mg·L−1) 对硝基苯酚(100 %,180 min) [84] 表面活性位点 在g-C3N4中引入介孔结构 氨气自腐蚀 Z型 10mg,60 mL(10 mg·L−1) 罗丹明B(99.2 %,8 min) [63] 载流子迁移 引入多孔结构 热分解MOF VIS型 20 mg,40 mL(10 mg·L−1) 橙黄II(95 %,3 h) [104] 表面活性位点 构建一维核壳结构 静电纺丝工艺;气相沉积法 VIS型 30mg,30 mL(13.3 mg·L−1) 罗丹明B(96 %,45 min) [40] 光吸收载流子迁移 构建空心核壳结构 模板法 II型 30 mg,100 mL(50 mg·L−1) 四环素(94.5 %,60 min) [16] 表面活性位点载流子迁移 构建三明治结构;引入氧空位 行星研磨和原位还原法 Z型 50 mg,50 mL(10 mg·L−1) 盐酸四环素(87.7 %,60 min) [47] 载流子迁移 构建1D-2D结构 超声混合法 Z型 10 mg,50 mL(15 µmol·L−1) 环丙沙星(93.4 %,60 min) [43] 载流子迁移 增强界面结合力 热缩聚法 II型 30 mg,100 mL(20 mg·L−1) 恩诺沙星(99.6 %,90 min) [38] 载流子迁移 在TiO2中掺杂Y3+ 溶胶凝胶法 Z型 30 mg,30 mL(20 mg·L−1) 罗丹明B(99.5 %,90 min) [105] 光吸收载流子迁移 在TiO2中掺杂Zr4+和N 溶胶凝胶法 Z型 50 mg,50 mL(20 mg·L−1) 罗丹明B(98 %,75 min) [106] 表面活性位点 在TiO2中掺杂C 水热联合煅烧法 Z型 100 mg,100 mL(20 mg·L−1)
100 mg,100 mL(20 mg·L−1)罗丹明B(97 %,90 min)苯酚(92 %,60 min) [107] 光吸收 在TiO2中掺杂C、N、S 水热法 Z型 20 mg,50 mL(20 mg·L−1) 甲基橙(99.8 %,80 min)苯酚(97.6 %,60 min) [108] 光吸收 在TiO2中掺杂N;在VN-g-C3N4中掺杂O 一步法煅烧;溶剂热法 Z型 40 mg,100 mL(30 mg·L−1) 盐酸四环素(79.9 %,120 min) [46] 载流子迁移 在g-C3N4中掺杂C 热缩聚法 II型 100 mg,100 mL(10 mg·L−1)100 mg,100 mL(10 mg·L−1) 双氯芬酸(98.92 %,30 min)卡马西平(99.77 %,6 h) [109] 载流子迁移 在g-C3N4中掺杂B 热缩聚法 type-Z 50 mg,50 mL(10 mg·L−1)
50 mg,50 mL(10 mg·L−1)罗丹明B(99.8 %,40 min)左氧氟沙星(98.2 %,50 min) [110] 载流子迁移 在g-C3N4中掺杂S 溶胶凝胶法 II型 10 mg,100 mL(10 mg·L−1) 盐酸四环素(98.1 %,60 min) [111] 载流子迁移 在g-C3N4中掺杂P和O 溶胶凝胶法 Z型 50 mg,50 mL(10 mg·L−1) 恩诺沙星(98.5 %,60 min) [72] 吸附传质 碱化g-C3N4表面 溶胶凝胶法 - 100 mg,50 mL(20 mg·L−1) 亚甲基蓝(100 %,120 min) [97] 吸附传质 调节表面基团 酸性水热法 VIS型 40 mg,80 mL(20 mg·L−1) 四环素(82 %,60 min) [21] -
[1] LI J, ZHU K M, LI R M, et al. The removal of azo dye from aqueous solution by oxidation with peroxydisulfate in the presence of granular activated carbon: Performance, mechanism and reusability [J]. Chemosphere, 2020, 259: 127400. doi: 10.1016/j.chemosphere.2020.127400 [2] ZHANG Y Y, WANG F, HUDSON-EDWARDS K A, et al. Characterization of mining-related aromatic contaminants in active and abandoned metal(loid) tailings ponds [J]. Environmental Science & Technology, 2020, 54(23): 15097-15107. [3] NARZARY S, ALAMELU K, RAJA V, et al. Visible light active, magnetically retrievable Fe3O4@SiO2@g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants [J]. Journal of Environmental Chemical Engineering, 2020, 8(5): 104373. doi: 10.1016/j.jece.2020.104373 [4] LIU Y C, YU Z X, LI X H, et al. Super hydrophilic composite membrane with photocatalytic degradation and self-cleaning ability based on LDH and g-C3N4 [J]. Journal of Membrane Science, 2021, 617: 118504. doi: 10.1016/j.memsci.2020.118504 [5] PARVULESCU V I, EPRON F, GARCIA H, et al. Recent progress and prospects in catalytic water treatment [J]. Chemical Reviews, 2022, 122(3): 2981-3121. doi: 10.1021/acs.chemrev.1c00527 [6] 陈侣存, 崔雯, 陈鹏, 等. 宽带隙金属氧化物材料光催化降解苯系物: 反应机理和改性策略 [J]. 材料导报, 2021, 35(21): 21001-21011. CHEN L C, CUI W, CHEN P, et al. Photocatalytic degradation for benzene series in wide-band gap metal oxide: Reaction mechanism and modification strategies [J]. Materials Reports, 2021, 35(21): 21001-21011(in Chinese).
[7] DOU M M, WANG J, GAO B R, et al. Photocatalytic difference of amoxicillin and cefotaxime under visible light by mesoporous g-C3N4: Mechanism, degradation pathway and DFT calculation [J]. Chemical Engineering Journal, 2020, 383: 123134. doi: 10.1016/j.cej.2019.123134 [8] ZHAO W, YANG X R, LIU C X, et al. Facile construction of all-solid-state Z-scheme g-C3N4/TiO2 thin film for the efficient visible-light degradation of organic pollutant [J]. Nanomaterials (Basel, Switzerland), 2020, 10(4): 600. doi: 10.3390/nano10040600 [9] LIU L C, CORMA A. Structural transformations of solid electrocatalysts and photocatalysts [J]. Nature Reviews Chemistry, 2021, 5(4): 256-276. doi: 10.1038/s41570-021-00255-8 [10] WANG X Y, LIU M Y. Photocatalytic enhancement mechanism of direct Z-scheme heterojunction O-g-C3N4@Fe-TiO2 under visible-light irradiation [J]. Applied Surface Science, 2019, 485: 353-360. doi: 10.1016/j.apsusc.2019.04.207 [11] SHEN S, FU J J, WANG H B. Unravelling the favorable photocatalytic effect of hydrogenation process on the novel g-C3N4-TiO2 catalysts for water purification [J]. Diamond and Related Materials, 2021, 114: 108292. doi: 10.1016/j.diamond.2021.108292 [12] KUMAR D P, RANGAPPA A P, SHIM H S, et al. Nanocavity-assisted single-crystalline Ti3+ self-doped blue TiO2(B) as efficient cocatalyst for high selective CO2 photoreduction of g-C3N4 [J]. Materials Today Chemistry, 2022, 24: 100827. doi: 10.1016/j.mtchem.2022.100827 [13] THANH TRUC N T, GIANG BACH L, THI HANH N, et al. The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels [J]. Journal of Colloid and Interface Science, 2019, 540: 1-8. doi: 10.1016/j.jcis.2019.01.005 [14] YANG X J, ZHAO L, WANG S M, et al. Recent progress of g-C3N4 applied in solar cells [J]. Journal of Materiomics, 2021, 7(3): 728-741. [15] XIA Y, XU L, PENG J H, et al. TiO2@g-C3N4 core/shell spheres with uniform mesoporous structures for high performance visible-light photocatalytic application [J]. Ceramics International, 2019, 45(15): 18844-18851. doi: 10.1016/j.ceramint.2019.06.118 [16] CHEN P R. Rational design of TiO2 hollow nanospheres decorated with ultrathin g-C3N4 nanosheets for enhanced photocatalytic degradation of tetracycline [J]. Journal of Materials Science:Materials in Electronics, 2021, 32(20): 24845-24855. doi: 10.1007/s10854-021-06944-w [17] LI W C, ZHOU L X, XIE L K, et al. N-Fe-Gd co-doped TiO2/g-C3N4 nanosheet hybrid composites with superior photocatalytic dye degradation [J]. Advanced Composites and Hybrid Materials, 2022, 5(1): 481-490. doi: 10.1007/s42114-021-00326-w [18] FANG Z M, XING L, LIU Y B, et al. Ternary heterojunction stabilized photocatalyst of Co-TiO2/g-C3N4 in boosting sulfite oxidation during wet desulfurization [J]. Applied Surface Science, 2021, 551: 149478. doi: 10.1016/j.apsusc.2021.149478 [19] IBRAHIM Y O, GONDAL M A. Visible-light-driven photocatalytic performance of a Z-scheme based TiO2/WO3/g-C3N4 ternary heterojunctions [J]. Molecular Catalysis, 2021, 505: 111494. doi: 10.1016/j.mcat.2021.111494 [20] MAO C C, WANG X, ZHANG W, et al. Super-hydrophilic TiO2-based coating of anion exchange membranes with improved antifouling performance [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 614: 126136. doi: 10.1016/j.colsurfa.2021.126136 [21] WANG Q, ZHANG L X, GUO Y K, et al. Multifunctional 2D porous g-C3N4 nanosheets hybridized with 3D hierarchical TiO2 microflowers for selective dye adsorption, antibiotic degradation and CO2 reduction [J]. Chemical Engineering Journal, 2020, 396: 125347. doi: 10.1016/j.cej.2020.125347 [22] SARI F N I, YEN D T K, TING J M. Enhanced photocatalytic performance of TiO2 through a novel direct dual Z-scheme design [J]. Applied Surface Science, 2020, 533: 147506. doi: 10.1016/j.apsusc.2020.147506 [23] 卫思颖, 马建中, 范倩倩. 量子点/TiO2复合光催化材料的研究进展 [J]. 复合材料学报, 2021, 38(3): 712-721. WEI S Y, MA J Z, FAN Q Q. Research advances on quantum dots/TiO2 composite photocatalytic materials [J]. Acta Materiae Compositae Sinica, 2021, 38(3): 712-721(in Chinese).
[24] WANG Y Y, YANG W J, CHEN X J, et al. Photocatalytic activity enhancement of core-shell structure g-C3N4@TiO2 via controlled ultrathin g-C3N4 layer [J]. Applied Catalysis B:Environmental, 2018, 220: 337-347. doi: 10.1016/j.apcatb.2017.08.004 [25] LI J, ZHANG M, LI X, et al. Effect of the calcination temperature on the visible light photocatalytic activity of direct contact Z-scheme g-C3N4-TiO2 heterojunction [J]. Applied Catalysis B:Environmental, 2017, 212: 106-114. doi: 10.1016/j.apcatb.2017.04.061 [26] ZHANG G H, ZHANG T Y, LI B, et al. An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: In situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method [J]. Applied Surface Science, 2018, 433: 963-974. doi: 10.1016/j.apsusc.2017.10.135 [27] LI F X, XIAO X D, ZHAO C, et al. TiO2-on-C3N4 double-shell microtubes: In-situ fabricated heterostructures toward enhanced photocatalytic hydrogen evolution [J]. Journal of Colloid and Interface Science, 2020, 572: 22-30. doi: 10.1016/j.jcis.2020.03.071 [28] PAN J Q, DONG Z J, WANG B B, et al. The enhancement of photocatalytic hydrogen production via Ti3+ self-doping black TiO2/g-C3N4 hollow core-shell nano-heterojunction [J]. Applied Catalysis B:Environmental, 2019, 242: 92-99. doi: 10.1016/j.apcatb.2018.09.079 [29] LI Y L, WANG J S, YANG Y L, et al. Seed-induced growing various TiO2 nanostructures on g-C3N4 nanosheets with much enhanced photocatalytic activity under visible light [J]. Journal of Hazardous Materials, 2015, 292: 79-89. doi: 10.1016/j.jhazmat.2015.03.006 [30] LI Z L, YANG Y, WANG S X, et al. High-density ruthenium single atoms anchored on oxygen-vacancy-rich g-C3N4-C-TiO2 heterostructural nanosphere for efficient electrocatalytic hydrogen evolution reaction [J]. ACS Applied Materials & Interfaces, 2021, 13(39): 46608-46619. [31] MOHAMED M A, JAAFAR J, M ZAIN M F, et al. In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C, N co-doped anatase/rutile: Efficient charge separation and enhanced visible-light photocatalytic performance [J]. Applied Surface Science, 2018, 436: 302-318. doi: 10.1016/j.apsusc.2017.11.229 [32] XIAO L M, LIU T F, ZHANG M, et al. Interfacial construction of 0D/1D g-C3N4 nanoparticles/TiO2 nanotube arrays with Z-scheme heterostructure for improved photoelectrochemical water splitting [J]. ACS Sustainable Chemistry & Engineering, 2018, 7(2): 2483-2491. [33] YU X H, XIE J, LIU Q Q, et al. The origin of enhanced photocatalytic activity in g-C3N4/TiO2 heterostructure revealed by DFT calculations [J]. Journal of Colloid and Interface Science, 2021, 593: 133-141. doi: 10.1016/j.jcis.2021.02.103 [34] LIN Y M, WANG Q, MA M T, et al. Enhanced optical absorption and photocatalytic water splitting of g-C3N4/TiO2 heterostructure through C&B codoping: A hybrid DFT study [J]. International Journal of Hydrogen Energy, 2021, 46(14): 9417-9432. doi: 10.1016/j.ijhydene.2020.12.114 [35] YAN M Y, JIANG Z Y, ZHENG J M, et al. Theoretical study on transport-scheme conversion of g-C3N4/TiO2 heterojunctions by oxygen vacancies [J]. Applied Surface Science, 2020, 531: 147318. doi: 10.1016/j.apsusc.2020.147318 [36] WU Y X, LIU L M, AN X Q, et al. New insights into interfacial photocharge transfer in TiO2/C3N4 heterostructures: Effects of facets and defects [J]. New Journal of Chemistry, 2019, 43(11): 4511-4517. doi: 10.1039/C9NJ00027E [37] LIANG D, HUANG Y L, WU F, et al. In situ synthesis of g-C3N4/TiO2 with{001}and{101}facets coexposed for water remediation [J]. Applied Surface Science, 2019, 487: 322-334. doi: 10.1016/j.apsusc.2019.05.088 [38] ZHANG R, YU Y Q, WANG H B, et al. Mesoporous TiO2/g- C3N4 composites with O-Ti-N bridge for improved visible-light photodegradation of enrofloxacin [J]. The Science of the Total Environment, 2020, 724: 138280. doi: 10.1016/j.scitotenv.2020.138280 [39] QI F, AN W J, WANG H, et al. Combing oxygen vacancies on TiO2 nanorod arrays with g-C3N4 nanosheets for enhancing photoelectrochemical degradation of phenol [J]. Materials Science in Semiconductor Processing, 2020, 109: 104954. doi: 10.1016/j.mssp.2020.104954 [40] CUI L, LIU S L, WANG F K, et al. Growth of uniform g-C3N4 shells on 1D TiO2 nanofibers via vapor deposition approach with enhanced visible light photocatalytic activity [J]. Journal of Alloys and Compounds, 2020, 826: 154001. doi: 10.1016/j.jallcom.2020.154001 [41] JANG E, KIM W J, KIM D W, et al. Atomic layer deposition with rotary reactor for uniform hetero-junction photocatalyst, g-C3N4@TiO2 core-shell structures [J]. RSC Advances, 2019, 9(57): 33180-33186. doi: 10.1039/C9RA05958J [42] WANG C L, HU L M, CHAI B, et al. Enhanced photocatalytic activity of electrospun nanofibrous TiO2/g-C3N4 heterojunction photocatalyst under simulated solar light [J]. Applied Surface Science, 2018, 430: 243-252. doi: 10.1016/j.apsusc.2017.08.036 [43] HU K, LI R Q, YE C L, et al. Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin [J]. Journal of Cleaner Production, 2020, 253: 120055. doi: 10.1016/j.jclepro.2020.120055 [44] MEI P, WANG H H, GUO H, et al. The enhanced photodegradation of bisphenol A by TiO 2/C3N4 composites [J]. Environmental Research, 2020, 182: 109090. doi: 10.1016/j.envres.2019.109090 [45] RAJA V, JAFFAR ALI B M. Synergy of photon up-conversion and Z-scheme mechanism in graphitic carbon nitride nanoparticles decorated g-C3N4-TiO2 [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 611: 125862. doi: 10.1016/j.colsurfa.2020.125862 [46] WANG Y X, RAO L, WANG P F, et al. Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment [J]. Applied Catalysis B:Environmental, 2020, 262: 118308. doi: 10.1016/j.apcatb.2019.118308 [47] NI J X, WANG W, LIU D M, et al. Oxygen vacancy-mediated sandwich-structural TiO2−x/ultrathin g-C3N4/TiO2−x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics [J]. Journal of Hazardous Materials, 2021, 408: 124432. doi: 10.1016/j.jhazmat.2020.124432 [48] KıLıÇ D, SEVIM M, EROĞLU Z, et al. Strontium oxide modified mesoporous graphitic carbon nitride/titanium dioxide nanocomposites (SrO-mpg-CN/TiO2) as efficient heterojunction photocatalysts for the degradation of tetracycline in water [J]. Advanced Powder Technology, 2021, 32(8): 2743-2757. doi: 10.1016/j.apt.2021.05.043 [49] PATNAIK S, SAHOO D P, PARIDA K. Recent advances in anion doped g-C3N4 photocatalysts: A review [J]. Carbon, 2021, 172: 682-711. doi: 10.1016/j.carbon.2020.10.073 [50] ZHANG W, HE H L, LI H Z, et al. Visible‐light responsive TiO2‐based materials for efficient solar energy utilization [J]. Advanced Energy Materials, 2021, 11(15): 2003303. doi: 10.1002/aenm.202003303 [51] OUYANG L K, ZHANG Y, WANG Y, et al. Insights into the adsorption and photocatalytic oxidation behaviors of boron-doped TiO2/g-C3N4 nanocomposites toward As(III) in aqueous solution [J]. Industrial & Engineering Chemistry Research, 2021, 60(19): 7003-7013. [52] ZHOU S H, LIU S K, SU K, et al. Graphite carbon nitride coupled S-doped hydrogenated TiO2 nanotube arrays with improved photoelectrochemical performance [J]. Journal of Electroanalytical Chemistry, 2020, 862: 114008. doi: 10.1016/j.jelechem.2020.114008 [53] ZHAO Z Y, ZHAO X, YI J, et al. Effects of nonmetal doping on electronic structures and optical property of anatase TiO2 from first-principles calculations [J]. Rare Metal Materials and Engineering, 2015, 44(7): 1568-1574. doi: 10.1016/S1875-5372(15)30094-1 [54] YUAN X J, SUN M X, YAO Y, et al. N/Ti3+-codoped triphasic TiO2/g-C3N4 heterojunctions as visible-light photocatalysts for the degradation of organic contaminants [J]. New Journal of Chemistry, 2019, 43(6): 2665-2675. doi: 10.1039/C8NJ04595J [55] KUMAR A, RAIZADA P, HOSSEINI-BANDEGHARAEI A, et al. C-, N-Vacancy defect engineered polymeric carbon nitride towards photocatalysis: viewpoints and challenges [J]. Journal of Materials Chemistry A, 2021, 9(1): 111-153. doi: 10.1039/D0TA08384D [56] KANG S, IM T, KOH M, et al. Facile fabrication of electrospun black titania nanofibers decorated with graphitic carbon nitride for the application of photocatalytic CO2 reduction [J]. Journal of CO2 Utilization, 2020, 41: 101230. doi: 10.1016/j.jcou.2020.101230 [57] GAO H H, CAO R Y, XU X T, et al. Construction of dual defect mediated Z-scheme photocatalysts for enhanced photocatalytic hydrogen evolution [J]. Applied Catalysis B:Environmental, 2019, 245: 399-409. doi: 10.1016/j.apcatb.2019.01.004 [58] YAN J Q, LI P, BIAN H, et al. Synthesis of a nano-sized hybrid C3N4/TiO2 sample for enhanced and steady solar energy absorption and utilization [J]. Sustainable Energy & Fuels, 2017, 1(1): 95-102. [59] EFROS A L, BRUS L E. Nanocrystal quantum dots: From discovery to modern development [J]. ACS Nano, 2021, 15(4): 6192-6210. doi: 10.1021/acsnano.1c01399 [60] OLADEMEHIN O P, ELLINGTON T L, SHUFORD K L. Toward quantum confinement in graphitic carbon nitride-based polymeric monolayers [J]. The Journal of Physical Chemistry A, 2021, 125(35): 7597-7606. doi: 10.1021/acs.jpca.1c04597 [61] LIU X L, MA R, ZHUANG L, et al. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants [J]. Critical Reviews in Environmental Science and Technology, 2021, 51(8): 751-790. doi: 10.1080/10643389.2020.1734433 [62] WU W B, LI X, RUAN Z H, et al. Fabrication of a TiO2 trapped meso/macroporous g-C3N4 heterojunction photocatalyst and understanding its enhanced photocatalytic activity based on optical simulation analysis [J]. Inorganic Chemistry Frontiers, 2018, 5(2): 481-489. doi: 10.1039/C7QI00751E [63] ZHENG L C, SUN X J, ZHANG R, et al. Enhanced photocatalytic performance of ammonia self-etched holely g-C3N4 decorated with anatase nanoflakes by a facile synthesis process [J]. Applied Surface Science, 2021, 542: 148580. doi: 10.1016/j.apsusc.2020.148580 [64] LI Z X, GE K, YANG K, et al. Z-scheme 3 D g-C3N4/TiO2−x heterojunctions with high photocatalytic efficiency [J]. ChemistrySelect, 2020, 5(36): 11159-11169. doi: 10.1002/slct.202003150 [65] YANG L, PENG Y T, LUO X D, et al. Beyond C3N4 π-conjugated metal-free polymeric semiconductors for photocatalytic chemical transformations [J]. Chemical Society Reviews, 2021, 50(3): 2147-2172. doi: 10.1039/D0CS00445F [66] SHARMA K, RAIZADA P, HASIJA V, et al. ZnS-based quantum dots as photocatalysts for water purification [J]. Journal of Water Process Engineering, 2021, 43: 102217. doi: 10.1016/j.jwpe.2021.102217 [67] GROMMET A B, FELLER M, KLAJN R. Chemical reactivity under nanoconfinement [J]. Nature Nanotechnology, 2020, 15(4): 256-271. doi: 10.1038/s41565-020-0652-2 [68] SONG X H, WANG M, LIU W T, et al. Thickness regulation of graphitic carbon nitride and its influence on the photocatalytic performance towards CO2 reduction [J]. Applied Surface Science, 2022, 577: 151810. doi: 10.1016/j.apsusc.2021.151810 [69] ZHANG B, PENG X F, WANG Z. Noble metal-free TiO2-coated carbon nitride layers for enhanced visible light-driven photocatalysis [J]. Nanomaterials, 2020, 10(4): 805. doi: 10.3390/nano10040805 [70] YANG X J, LIU T F, ZHANG M, et al. Interfacial dual vacancies modulating electronic structure to promote the separation of photogenerated carriers for efficient CO2 photoreduction [J]. Applied Surface Science, 2021, 551: 149305. doi: 10.1016/j.apsusc.2021.149305 [71] WONG K T, KIM S C, YUN K, et al. Understanding the potential band position and e-/ h+ separation lifetime for Z-scheme and type-II heterojunction mechanisms for effective micropollutant mineralization: Comparative experimental and DFT studies [J]. Applied Catalysis B:Environmental, 2020, 273: 119034. doi: 10.1016/j.apcatb.2020.119034 [72] HUANG J X, LI D G, LI R B, et al. One-step synthesis of phosphorus/oxygen co-doped g-C3N4/anatase TiO2 Z-scheme photocatalyst for significantly enhanced visible-light photocatalysis degradation of enrofloxacin [J]. Journal of Hazardous Materials, 2020, 386: 121634. doi: 10.1016/j.jhazmat.2019.121634 [73] NING P, CHEN H Y, PAN J H, et al. Surface defect-rich g-C3N4/TiO2 Z-scheme heterojunction for efficient photocatalytic antibiotic removal: Rational regulation of free radicals and photocatalytic mechanism [J]. Catalysis Science & Technology, 2020, 10(24): 8295-8304. [74] ZHANG B, MA X H, MA J, et al. Fabrication of rGO and g-C3N4 co-modified TiO2 nanotube arrays photoelectrodes with enhanced photocatalytic performance [J]. Journal of Colloid and Interface Science, 2020, 577: 75-85. doi: 10.1016/j.jcis.2020.05.031 [75] SHI H N, DU J, HOU J G, et al. Solar-driven CO2 conversion over Co2+ doped 0D/2D TiO2/g-C3N4 heterostructure: Insights into the role of Co2+ and cocatalyst [J]. Journal of CO2 Utilization, 2020, 38: 16-23. doi: 10.1016/j.jcou.2020.01.005 [76] LI J, LI B W, LI Q Y, et al. The effect of N-doped form on visible light photoactivity of Z-scheme g-C3N4/TiO2 photocatalyst [J]. Applied Surface Science, 2019, 466: 268-273. doi: 10.1016/j.apsusc.2018.10.035 [77] LIU X Q, KANG W, ZENG W, et al. Structural, electronic and photocatalytic properties of g-C3N4 with intrinsic defects: A first-principles hybrid functional investigation [J]. Applied Surface Science, 2020, 499: 143994. doi: 10.1016/j.apsusc.2019.143994 [78] ZHANG Y C, AFZAL N, PAN L, et al. Structure-activity relationship of defective metal-based photocatalysts for water splitting: Experimental and theoretical perspectives [J]. Advanced Science, 2019, 6(10): 1900053. doi: 10.1002/advs.201900053 [79] SHI H N, LONG S R, HU S, et al. Interfacial charge transfer in 0D/2D defect-rich heterostructures for efficient solar-driven CO2 reduction [J]. Applied Catalysis B:Environmental, 2019, 245: 760-769. doi: 10.1016/j.apcatb.2019.01.036 [80] SARKAR A, KHAN G G. The formation and detection techniques of oxygen vacancies in titanium oxide-based nanostructures [J]. Nanoscale, 2019, 11(8): 3414-3444. doi: 10.1039/C8NR09666J [81] LI Y N, CHEN Z Y, WANG M Q, et al. Interface engineered construction of porous g-C3N4/TiO2 heterostructure for enhanced photocatalysis of organic pollutants [J]. Applied Surface Science, 2018, 440: 229-236. doi: 10.1016/j.apsusc.2018.01.106 [82] XIAO L M, ZHU H H, ZHANG M, et al. Enhanced photoelectrochemical performance of g-C3N4/TiO2 heterostructure by the cooperation of oxygen vacancy and protonation treatment [J]. Journal of the Electrochemical Society, 2020, 167(6): 066513. doi: 10.1149/1945-7111/ab84f7 [83] MAI H X, CHEN D H, TACHIBANA Y, et al. Developing sustainable, high-performance perovskites in photocatalysis: design strategies and applications [J]. Chemical Society Reviews, 2021, 50(24): 13692-13729. doi: 10.1039/D1CS00684C [84] LV P, ZHAO C Y, LEE W J, et al. Less is more: Enhancement of photocatalytic activity of g-C3N4 nanosheets by site-selective atomic layer deposition of TiO2 [J]. Applied Surface Science, 2019, 494: 508-518. doi: 10.1016/j.apsusc.2019.07.131 [85] ZHOU B X, DING S S, WANG Y, et al. Type-II/type-II band alignment to boost spatial charge separation: A case study of g-C3 N4 quantum dots/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution [J]. Nanoscale, 2020, 12(10): 6037-6046. doi: 10.1039/D0NR00176G [86] GUO R B, ZENG D D, XIE Y, et al. Carbon nitride quantum dots (CNQDs)/TiO2 nanoparticle heterojunction photocatalysts for enhanced ultraviolet-visible-light-driven bisphenol a degradation and H2 production [J]. International Journal of Hydrogen Energy, 2020, 45(43): 22534-22544. doi: 10.1016/j.ijhydene.2020.06.096 [87] HAO Q, JIA G H, WEI W, et al. Graphitic carbon nitride with different dimensionalities for energy and environmental applications [J]. Nano Research, 2020, 13(1): 18-37. doi: 10.1007/s12274-019-2589-z [88] XU C Q, LI D Z, LIU X L, et al. Direct Z-scheme construction of g-C3N4 quantum dots/TiO2 nanoflakes for efficient photocatalysis [J]. Chemical Engineering Journal, 2022, 430: 132861. doi: 10.1016/j.cej.2021.132861 [89] PANDEY B, RANI S, ROY S C. A scalable approach for functionalization of TiO2 nanotube arrays with g-C3N4 for enhanced photo-electrochemical performance [J]. Journal of Alloys and Compounds, 2020, 846: 155881. doi: 10.1016/j.jallcom.2020.155881 [90] LUAN S L, QU D, AN L, et al. Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment [J]. Science Bulletin, 2018, 63(11): 683-690. doi: 10.1016/j.scib.2018.04.002 [91] NASIR M S, YANG G R, AYUB I, et al. Hybridization of g-C3N4 quantum dots with 1D branched TiO2 fiber for efficient visible light-driven photocatalytic hydrogen generation [J]. International Journal of Hydrogen Energy, 2020, 45(27): 13994-14005. doi: 10.1016/j.ijhydene.2020.03.129 [92] VIDYASAGAR D, BALAPURE A, GHUGAL S G, et al. Template‐free macro‐mesoporous TiO2/carbon nitride interface for visible‐light‐driven photocatalysis [J]. Physica Status Solidi (a), 2019, 216(20): 1900212. doi: 10.1002/pssa.201900212 [93] WANG B, LIU J W, YAO S, et al. Vacancy engineering in nanostructured semiconductors for enhancing photocatalysis [J]. Journal of Materials Chemistry A, 2021, 9(32): 17143-17172. doi: 10.1039/D1TA03895H [94] 陈鹏, 周莹, 董帆. 二维光催化材料电子结构和性能调控策略研究进展 [J]. 物理化学学报, 2021, 37(8): 43-57. CHEN P, ZHOU Y, DONG F. Advances in regulation strategies for electronic structure and performance of two-dimensional photocatalytic materials [J]. Acta Physico-Chimica Sinica, 2021, 37(8): 43-57(in Chinese).
[95] SHENG Y Q, WEI Z, MIAO H, et al. Enhanced organic pollutant photodegradation via adsorption/photocatalysis synergy using a 3D g-C3N4/TiO2 free-separation photocatalyst [J]. Chemical Engineering Journal, 2019, 370: 287-294. doi: 10.1016/j.cej.2019.03.197 [96] LI J, XIONG Y, WAN H Q, et al. In-situ investigation of dye pollutant adsorption performance on graphitic carbon nitride surface: ATR spectroscopy experiment and MD simulation insight [J]. Journal of Hazardous Materials, 2021, 418: 126297. doi: 10.1016/j.jhazmat.2021.126297 [97] LIU H, YU D Q, SUN T B, et al. Fabrication of surface alkalinized g-C3N4 and TiO2 composite for the synergistic adsorption-photocatalytic degradation of methylene blue [J]. Applied Surface Science, 2019, 473: 855-863. doi: 10.1016/j.apsusc.2018.12.162 [98] LIU Y, ZHU Q, LI X Y, et al. Combining high photocatalytic activity and stability via subsurface defects in TiO2 [J]. The Journal of Physical Chemistry, 2018, 122(30): 17221-17227. [99] ZHANG Y J, XU Z F, LI G Y, et al. Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting [J]. Angewandte Chemie, 2019, 58(40): 14229-14233. doi: 10.1002/anie.201907954 [100] HU K K, LEI E, HU C Y, et al. G-C3N4/TiO2 composite microspheres: in situ growth and high visible light catalytic activity [J]. CrystEngComm, 2020, 22(42): 7104-7112. doi: 10.1039/D0CE01154A [101] ZOU X X, YANG Y L, CHEN H J, et al. Hierarchical meso/macro-porous TiO2/graphitic carbon nitride nanofibers with enhanced hydrogen evolution [J]. Materials & Design, 2021, 202: 109542. [102] AR S R, WILSON H M, MOMIN B M, et al. TiO2 nanosheet/ultra-thin layer g-C3N4 core-shell structure: Bifunctional visible-light photocatalyst for H2 evolution and removal of organic pollutants from water [J]. Applied Surface Science, 2020, 528: 146930. doi: 10.1016/j.apsusc.2020.146930 [103] ZHANG B, HE X, MA X H, et al. In situ synthesis of ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst with enhanced photocatalytic activity [J]. Separation and Purification Technology, 2020, 247: 116932. doi: 10.1016/j.seppur.2020.116932 [104] TATYKAYEV B, CHOUCHENE B, BALAN L, et al. Heterostructured g-CN/TiO2 photocatalysts prepared by thermolysis of g-CN/MIL-125(Ti) composites for efficient pollutant degradation and hydrogen production [J]. Nanomaterials, 2020, 10(7): 1387. doi: 10.3390/nano10071387 [105] PAK S, RI K, XU C M, et al. Fabrication of g-C3N4/Y-TiO2 Z-scheme heterojunction photocatalysts for enhanced photocatalytic activity [J]. New Journal of Chemistry, 2021, 45(42): 19903-19916. doi: 10.1039/D1NJ03691B [106] PAHI S, SAHU S, SINGH S K, et al. Visible light active Zr- and N-doped TiO2 coupled g-C3N4 heterojunction nanosheets as a photocatalyst for the degradation of bromoxynil and Rh B along with the H2 evolution process [J]. Nanoscale Advances, 2021, 3(22): 6468-6481. doi: 10.1039/D1NA00460C [107] LI X B, XIONG J, XU Y, et al. Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions [J]. Chinese Journal of Catalysis, 2019, 40(3): 424-433. doi: 10.1016/S1872-2067(18)63183-3 [108] HUANG Z, JIA S, WEI J, et al. A visible light active, carbon-nitrogen -sulfur co-doped TiO2/g-C3N4 Z-scheme heterojunction as an effective photocatalyst to remove dye pollutants [J]. RSC Advances, 2021, 11(27): 16747-16754. doi: 10.1039/D1RA01890F [109] HU Z Z, CAI X W, WANG Z R, et al. Construction of carbon-doped supramolecule-based g-C3N4/TiO2 composites for removal of diclofenac and carbamazepine: A comparative study of operating parameters, mechanisms, degradation pathways [J]. Journal of Hazardous Materials, 2019, 380: 120812. doi: 10.1016/j.jhazmat.2019.120812 [110] BALAKUMAR V, SELVARAJAN S, BAISHNISHA A, et al. In-situ growth of TiO2@B-doped g-C3N4 core-shell nanospheres for boosts the photocatalytic detoxification of emerging pollutants with mechanistic insight [J]. Applied Surface Science, 2022, 577: 151924. doi: 10.1016/j.apsusc.2021.151924 [111] DIVAKARAN K, BAISHNISHA A, BALAKUMAR V, et al. Photocatalytic degradation of tetracycline under visible light using TiO2@sulfur doped carbon nitride nanocomposite synthesized via in situ method [J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105560. doi: 10.1016/j.jece.2021.105560 [112] ALI I, PARK S, KIM J O. Modeling the photocatalytic reactions of g-C3N4-TiO2 nanocomposites in a recirculating semi-batch reactor [J]. Journal of Alloys and Compounds, 2020, 821: 153498. doi: 10.1016/j.jallcom.2019.153498 [113] ZHANG Q, QUAN X, WANG H, et al. Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment [J]. Scientific Reports, 2017, 7: 3128. doi: 10.1038/s41598-017-03347-y