-
盐酸四环素(TCH)是一类广谱抗菌剂,能用于治疗畜禽和人类的感染性疾病[1].然而具有低生物降解特性的盐酸四环素已成为养殖业、医疗行业和制药工业污水中常见的有机污染物[2].目前常用的物理处理方法如吸附法、混凝法和沉淀法只能完成污染物的转移和浓缩,并不能对其结构进行彻底破坏[3].高级氧化法中的芬顿(Fenton)通过Fe2+与H2O2反应产生高活性的·OH从而达到去除污染物的目的,对常见的有机污染物具有稳定的降解和矿化能力[4].但是传统的均相Fenton法存在pH限制、Fe3+还原效率不高、容易形成富铁污泥等缺点[5].
固体Fenton催化剂可以克服均相Fenton反应的不足,利用固相界面的Fe3+/Fe2+循环催化H2O2产生·OH,目前用于异相Fenton反应的催化剂如零价铁、针铁矿、赤铁矿、水合氧化铁以及铁酸盐等都具有较好的循环利用性和较宽的pH使用范围[6-7],但是铁氧化物催化剂体系的Fe3+向Fe2+的转换效率较低,限制了异相Fenton催化效能的发挥[8].近年来,研究发现黄铁矿(Pyrite)和磁黄铁矿(Pyrrhotite)等铁硫化合物具有更好的电子传导能力,可以显著提高异相Fenton催化反应的活性.如He[9]和Liu[10]等证实了黄铁矿表面的还原性硫物种和磁黄铁矿表面还原性的S2-和S22-均能介导Fe2+的循环再生,有利于Fe3+向Fe2+的转化.此外,在催化降解2,4-二硝基甲苯的研究中,KIM发现磁黄铁矿比黄铁矿具有更稳定高效的催化活性[11].提高异相Fenton催化剂活性位点的分散性以及催化剂对底物分子的亲和力是改善异相Fenton催化效果的另一种途径.生物炭(BC)是由生物质热解获得的富碳材料,由于其大比表面积、丰富的含氧官能团和孔隙结构,被认为是异相Fenton催化剂的良好载体[12].除此之外,生物炭具有加速电子的转移过程,可以提高H2O2分解产生·OH的效率[13-14].
在异相Fenton反应中引入可见光催化剂构筑光Fenton体系可以进一步提高有机污染物的去除效率,其中石墨氮化碳(g-C3N4)作为一种非金属半导体在光催化领域表现突出[15].但是g-C3N4也有一定的局限性,如比表面积较小、可见光利用率低以及电子空穴湮灭较快.基于g-C3N4构建异质结复合材料可以有效促进光诱导电荷的分离,解决光生电子和空穴重组率高的缺陷[16].
本研究采用浸渍联合原位煅烧方法合成了Fe1-xS-BC/g-C3N4复合光催化材料.在Fe1-xS-BC/g-C3N4光Fenton降解TCH的反应体系中,验证和分析了初始pH、H2O2浓度、不同三聚氰胺加入量、催化剂用量和TCH初始浓度对TCH降解的影响,评价了复合材料的光催化性能和稳定性,提出了Fe1-xS-BC/g-C3N4光Fenton降解TCH的机理.为开发硫铁类固体Fenton催化剂和处理抗生素废水提供新的途径.
Fe1-xS-BC/g-C3N4的制备及其光芬顿降解盐酸四环素的性能
Fabrication of Fe1-xS-BC/g-C3N4 and its heterogeneous photo-Fenton degradation effect of tetracycline hydrochloride
-
摘要: 通过浸渍联合原位煅烧方法成功制备了Fe1-xS-BC/g-C3N4复合光催化材料,采用 SEM、XRD、FTIR和XPS对Fe1-xS-BC/g-C3N4催化剂的结构进行表征分析,并将其用于盐酸四环素(TCH)的光芬顿催化降解,考察了三聚氰胺加入量、催化剂投加量、TCH初始浓度、H2O2浓度和初始pH对TCH降解率的影响.结果表明,最佳反应条件为pH=3.0、H2O2=10 mmol·L−1、催化剂投加量为1.0 g·L−1,光照1 h后,Fe1-xS-BC/g-C3N4-2对40 mg·L−1的TCH降解率达到98.5%,且铁溶出量仅为0.5 mg·L−1.对照实验显示,Fe1-xS-BC/g-C3N4-2的光芬顿催化反应速率常数分别是其光催化反应和非均相芬顿反应的66.6倍和2.9倍.杂离子干扰实验表明Fe1-xS-BC/g-C3N4-2对常见的阴离子有良好的耐受性,经过5次循环使用后,TCH的解率仍有87.1%.活性物种猝灭实验证实·OH和·O2−为主要的活性物种.
-
关键词:
- Fe1-xS-BC/g-C3N4 /
- 盐酸四环素 /
- 光芬顿 /
- 催化机理.
Abstract: In this study, pyrrhotite impregnated biochar which modified by g-C3N4 (Fe1-xS-BC/g-C3N4) was prepared by one-step pyrolysis process.The structures of the photo-Fenton catalysts were characterized by SEM, XRD, FTIR and XPS, and their removal performance of tetracycline hydrochloride (TCH) were studied.The single factor experiments were carried out to evaluate the effects of melamine addition, catalyst dosage, initial concentration of TCH, H2O2 concentration and initial pH on the degradation efficiency of TCH.The results showed that the optimal photo-Fenton reaction conditions were pH=3.0, concentration of H2O2 is 10 mmol·L−1, and the catalyst dosage is 1.0 g·L−1, then the degradation rate of 40 mg·L−1 TCH by Fe1-xS-BC/g-C3N4-2 in 1 hour was up to 98.5%, and the leached iron was only 0.5 mg·L−1.Control experiments showed that the rate constant of Fe1-xS-BC/g-C3N4-2 in the photo-Fenton catalytic reaction were 66.6 and 2.9 times higher than those in its photocatalytic and heterogeneous Fenton reactions, respectively.The interference experiments indicated that Fe1-xS-BC/g-C3N4-2 had good tolerance to common anions, and the degradation rate of TCH could still reach to 87.1% after 5 cycles of catalytic reaction.The radical trapping experiments proved that ·OH and ·O2− were the main active species in the photo-Fenton catalytic reaction.-
Key words:
- Fe1-xS-BC/g-C3N4 /
- tetracycline hydrochloride /
- photo-Fenton /
- catalytic mechanism.
-
-
[1] WU G, LI P, XU D, et al. Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO3nanocubes [J]. Applied Surface Science, 2015, 333: 39-47. doi: 10.1016/j.apsusc.2015.02.008 [2] CAO Y, LEI X, CHEN Q, et al. Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4 [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2018, 364: 794-800. doi: 10.1016/j.jphotochem.2018.07.023 [3] 胡瑞. 竹基生物炭的制备及其净化有机废水的性能研究[D]. 武汉: 武汉轻工大学, 2021. HU R. Preparation of bamboo based biochar and its performance in organic wastewater[D]. Wuhan: Wuhan Polytechnic University, 2021(in Chinese).
[4] 林爱秋, 程和发. 芬顿及光芬顿法降解氟喹诺酮类抗生素研究进展 [J]. 环境化学, 2021, 40(5): 1305-1318. doi: 10.7524/j.issn.0254-6108.2021011401 LIN A Q, CHENG H F. Recent development in the degradation of fluoroquinolones by Fenton and photo-Fenton processes [J]. Environmental Chemistry, 2021, 40(5): 1305-1318(in Chinese). doi: 10.7524/j.issn.0254-6108.2021011401
[5] CHENG S, PAN X, ZHANG C, et al. UV-assisted ultrafast construction of robust Fe3O4/polydopamine/Ag Fenton-like catalysts for highly efficient micropollutant decomposition [J]. Science of The Total Environment, 2022, 810: 151182. doi: 10.1016/j.scitotenv.2021.151182 [6] ZHAO L, LIN Z, MA X, et al. Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems [J]. Chemical Engineering Journal, 2018, 352: 343-351. doi: 10.1016/j.cej.2018.07.035 [7] OLADIPO A A, IFEBAJO A O, GAZI M. Magnetic LDH-based CoO–NiFe2O4 catalyst with enhanced performance and recyclability for efficient decolorization of azo dye via Fenton-like reactions [J]. Applied Catalysis B:Environmental, 2019, 243: 243-252. doi: 10.1016/j.apcatb.2018.10.050 [8] 侯晓静. 异相Fenton体系铁循环调控及其污染物降解性能增强[D]. 武汉: 华中师范大学, 2018. HOU X J. The mediation of Fe(III)/Fe(II) cycle in the heterogenous Fenton system and their enhanced contaminants degradation performance[D]. Wuhan: Central China Normal University, 2018 (in Chinese).
[9] HE P, ZHU J, CHEN Y, et al. Pyrite-activated persulfate for simultaneous 2, 4-DCP oxidation and Cr (VI) reduction [J]. Chemical Engineering Journal, 2021, 406: 126758. doi: 10.1016/j.cej.2020.126758 [10] FAN J, GU L, WU D, et al. Mackinawite (FeS) activation of persulfate for the degradation of p-chloroaniline: surface reaction mechanism and sulfur-mediated cycling of iron species [J]. Chemical Engineering Journal, 2018, 333: 657-664. doi: 10.1016/j.cej.2017.09.175 [11] OH S Y, KANG S G, KIM D W, et al. Degradation of 2, 4-dinitrotoluene by persulfate activated with iron sulfides [J]. Chemical Engineering Journal, 2011, 172(2-3): 641-646. doi: 10.1016/j.cej.2011.06.023 [12] PAN X, GU Z, CHEN W, et al. Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: A review [J]. Science of the Total Environment, 2021, 754: 142104. doi: 10.1016/j.scitotenv.2020.142104 [13] LYU H, ZHANG Q, SHEN B. Application of biochar and its composites in catalysis [J]. Chemosphere, 2020, 240: 124842. doi: 10.1016/j.chemosphere.2019.124842 [14] DENG J, DONG H, ZHANG C, et al. Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine [J]. Separation and Purification Technology, 2018, 202: 130-137. doi: 10.1016/j.seppur.2018.03.048 [15] 郭桂全, 胡巧红, 王承林, 等. g-C3N4/RGO的制备、光催化降解性能及其降解机理 [J]. 环境化学, 2021, 40(3): 808-817. doi: 10.7524/j.issn.0254-6108.2019092605 GUO G Q, HU Q H, WANG C L, et al. Preparation, photocatalytic degradation performance and degradation mechanism of g-C3N4/RGO [J]. Environmental Chemistry, 2021, 40(3): 808-817(in Chinese). doi: 10.7524/j.issn.0254-6108.2019092605
[16] ZHAO L, GUO L, TANG Y, et al. Novel g-C3N4/C/Fe2O3 Composite for Efficient Photocatalytic Reduction of Aqueous Cr(VI) under Light Irradiation [J]. Industrial & Engineering Chemistry Research, 2021, 60(37): 13594-13603. [17] 刘梦, 王汉林, 刘海波, 等. 热分解黄铁矿制备单斜磁黄铁矿活化PDS降解土霉素 [J]. 硅酸盐学报, 2021, 49(07): 1403-1411. doi: 10.14062/j.issn.0454-5648.20210035 LIU M, WANG H L, LIU H B, et al. Monoclinic pyrrhotite derived from pyrite through thermal decomposition to activate PDS for the degradation of oxytetracycline [J]. Journal of the Chinese Ceramic Society, 2021, 49(07): 1403-1411(in Chinese). doi: 10.14062/j.issn.0454-5648.20210035
[18] HU J, ZHANG P, AN W, et al. In-situ Fe-doped g-C3N4 heterogeneous catalyst via photocatalysis-Fenton reaction with enriched photocatalytic performance for removal of complex wastewater [J]. Applied Catalysis B:Environmental, 2019, 245: 130-142. doi: 10.1016/j.apcatb.2018.12.029 [19] LI C, GUO Y, YANG F, et al. One-pot-solid preparation of novel three-dimensional FexS1-x/g-C3N4 heterostructures for efficient photocatalytic mixed-pollutants removal [J]. Ceramics International, 2020, 46(14): 22683-22691. doi: 10.1016/j.ceramint.2020.06.031 [20] MA J, ZHOU B, ZHANG H, et al. Fe/S modified sludge-based biochar for tetracycline removal from water [J]. Powder Technology, 2020, 364: 889-900. doi: 10.1016/j.powtec.2019.10.107 [21] SUN Y, LV D, ZHOU J, et al. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study [J]. Chemosphere, 2017, 185: 452-461. doi: 10.1016/j.chemosphere.2017.07.047 [22] LIU L, QI Y, LU J, et al. A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation [J]. Applied Catalysis B:Environmental, 2016, 183: 133-141. doi: 10.1016/j.apcatb.2015.10.035 [23] MENG L, YIN W, WANG S, et al. Photocatalytic behavior of biochar-modified carbon nitride with enriched visible-light reactivity [J]. Chemosphere, 2020, 239: 124713. doi: 10.1016/j.chemosphere.2019.124713 [24] LI Y, ZHANG H, LIU P, et al. Cross‐linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity [J]. Small, 2013, 9(19): 3336-3344. [25] 许亚楠. 改性铁基复合物的制备及其光助催化降解橙II的性能[D]. 兰州: 西北师范大学, 2020. XU Y N. Preparation of modified iron-based composites and their photo-assisted catalytic degradation properties of Orange II. Lanzhou: Northwest Normal University, 2020 (in Chinese).
[26] JIANG J, GAO J, LI T, et al. Visible-light-driven photo-Fenton reaction with α-Fe2O3/BiOI at near neutral pH: Boosted photogenerated charge separation, optimum operating parameters and mechanism insight [J]. Journal of colloid and interface science, 2019, 554: 531-543. doi: 10.1016/j.jcis.2019.07.038 [27] SUN B, LI H, LI X, et al. Degradation of organic dyes over Fenton-like Cu2O-Cu/C catalysts [J]. Industrial & Engineering Chemistry Research, 2018, 57(42): 14011-14021. [28] SONG Y, QI J, TIAN J, et al. Construction of Ag/g-C3N4 photocatalysts with visible-light photocatalytic activity for sulfamethoxazole degradation [J]. Chemical Engineering Journal, 2018, 341: 547-555. doi: 10.1016/j.cej.2018.02.063 [29] 宋思扬, 吴丹, 赵焕新, 等. Co-FeOOH/g-C3N4的制备及其在非均相光芬顿反应中的催化性能 [J]. 环境工程学报, 2020, 14(12): 3262-3269. doi: 10.12030/j.cjee.201912147 SONG S Y, WU D, ZHAO H X, et al. Fabrication of Co-FeOOH/g-C3N4 composite and its catalytic performance on heterogeneous photo-Fenton [J]. Chinese Journal of Environmental Engineering, 2020, 14(12): 3262-3269(in Chinese). doi: 10.12030/j.cjee.201912147
[30] WANG L, SHI X, JIA Y, et al. Recent advances in bismuth vanadate-based photocatalysts for photoelectrochemical water splitting [J]. Chinese Chemical Letters, 2021, 32(6): 1869-1878. doi: 10.1016/j.cclet.2020.11.065 [31] CUI K P, YANG T T, CHEN Y H, et al. Magnetic recyclable heterogeneous catalyst Fe3O4/g-C3N4 for tetracycline hydrochloride degradation via photo-Fenton process under visible light[J]. Environmental Technology, 2021: 1-14,DOI: 10.1080/09593330.2021.1921052.