-
全球水资源中只有2.5%是由淡水组成的,淡水中只有大约5%或世界总水域的0.15%可供直接利用,其余的则包含在极地冰川或高海拔冰川中. 目前,全球淡水储量正在迅速枯竭,对世界上许多人口稠密的地区将产生严重影响. 随着科技和人类社会的快速发展,当前人类日常生活和工农业生产赖以生存的水资源大量充斥着人类活动而产生的化学污染物,所含有的化学品数量己多达100,000种以上,大多具有强毒性大、含量低、生物富集等特点,其危害已引起了国际环境科学界乃至公众的广泛关注. 但是,药物与个人护理品类作为与人类接触最为频繁、用量最大的化学品,特别是与人们生活及生产密切相关并且广泛应用的抗生素类药物长期被公众所忽视[1-2].
抗生素药物的种类、产量与用量在近年来不断增加,药品管理的混乱和盲目使用致使药物的滥用问题日益凸显,由此造成的基因抗性增强等问题也较为显著[3]. 抗生素类药物多数在人和动物体内不能被完全吸收,大部分以原形和代谢产物通过粪便和尿液直接排入环境,通过城市污水处理厂并经过多年积累,造成环境水体中的抗生素含量急剧增加,最终造成环境的污染. 同时,抗生素可通过饮用水源进入人体,进一步威胁人类的身体健康,如果不加以处理,将会对环境带来严重的后果[4-5]. 传统的水处理方法难以处理完全使之达到排放要求,如抗生素的生物毒性让生物处理手段变得困难,物理吸附方法虽可去除此类物质,但后续的进一步处理仍存在问题,化学氧化法需要投入大量的化学试剂等等问题[6-8]. 因此,越来越多的经济、社会、法律和环境压力要求利用对于环境中的抗生素类药物采用“最佳可用技术”,而不需要过多的成本,并追求“无污染的性能”,即“零污染处理”,因此寻找一种低能耗,高效率的废水处理方法是当前环保工作者的重要课题.
电催化氧化技术是基于传统电化学处理方式,经过国内外学者的进一步改善,由于电力系统的成熟,该技术逐步进入到大众视野. 电催化氧化法的主要原理是在电场的作用下,借助电场产生大量活性极强的•OH,与有机化合物发生加成、取代、电子转移、断键等电子转移反应,将废水中难降解的大分子有机物降解为小分子物质,直到完全矿化为CO2、水和无机离子等[9],因此,国内外研究学者把电催化氧化水处理技术被称为重要的“环境友好”(Environment Friendly Technology)水处理技术[10]. 电催化氧化技术具备易于控制、条件温和、自动化操作、高效低耗能等特点,利用电场作用使污染物分解或者转化来达到水净化的目的,具有明显的技术优势,成为目前水中有机污染物处理的重要处理手段[11-13].
电催化氧化技术降解水中抗生素类污染物研究进展
Recent developments of electrochemical oxidation in degradation of emerging antibiotic pollutants
-
摘要: 医疗行业的快速发展和抗生素的滥用导致的水污染日益严重,水环境中残留的新兴抗生素类污染物已成为当今社会面临的最严峻挑战之一,将对人类健康带来极大危害. 电催化氧化技术作为水处理技术中的绿色环保技术,近年来在国内外受到众多环境保护工作者的关注,越来越多地被广泛地用于处理含新兴抗生素类有机污染物的水体. 本文首先阐述了电催化氧化技术对于有机污染物的电催化反应机理,重点介绍了电催化氧化技术降解水中抗生素类污染物采用的阳极材料的研究进展及发展状况,总结了阳极材料用于处理抗生素类污染物的降解效果及部分改性手段,此外,还对于当前电催化氧化联合技术处理水中抗生素类污染物的情况进行了系统的总结,最后对电催化高级氧化技术在未来抗生素类污染物的发展进行了展望.Abstract: The rapid development of the medical industry and the abuse of antibiotics have led to increasingly serious pollution of water body. Emerging antibiotic residues presented in the water environment have become one of the most severe challenges, which will bring great harm to human health. As a green environmental protective technology in wastewater treatment technologies, electrocatalytic oxidation technique has attracted extensively attentions from many environmental workers at home and abroad in recent years, which has been increasingly adopted to treat wastewater containing emerging antibiotics pollutants. The paper firstly expounds the electrocatalytic reaction mechanism of electrocatalytic oxidation technology for organic pollutants, and focuses on the research progress of anode materials employed in electrocatalytic oxidation technology for elimination of emerging antibiotics pollutants. In addition, the current situation of the combined electrocatalytic oxidation technologies to treat antibiotic pollutants are systematically summarized. Finally, the development of electrocatalytic advanced oxidation technology for elimination of emerging antibiotic pollutants in the future is prospected.
-
表 1 电催化氧化有机污染采用的阳极材料类型及特点
Table 1. Features and types of anode materials in electrochemical oxidation of organic pollutants
电极材料
Types of anode materials析氧电位
Oxygen evolution potential电催化活性
Electrocatalytic activity特点
FeaturesRuO2-TiO2 1.4—1.7 V vs SHE 使用贵金属,价格高,活性低 IrO2-Ta2O5 1.5—1.8 V vs SHE 使用贵金属,价格高,活性低 Pt 1.7—1.9 V vs SHE 贵金属,价格高,钝化膜生成 PbO2 1.8—2.0 V vs SHE 活性适中,成本低,离子溶出 SnO2-Sb2O5 1.9—2.2 V vs SHE 导电性差,催化活性适中 BDD 2.2—2.6 V vs SHE 催化活性高,大面积制备困难,成本高 亚氧化钛 ~2.6 V vs SHE 催化活性高,原料丰富,制作成本高 -
[1] dos SANTOS A J, KRONKA M S, FORTUNATO G V, et al. Recent advances in electrochemical water technologies for the treatment of antibiotics: A short review [J]. Current Opinion in Electrochemistry, 2021, 26: 100674. doi: 10.1016/j.coelec.2020.100674 [2] 刘玉灿, 朱玉良, 纪现国, 等. 水中药物和个人护理品分析方法研究进展 [J]. 化学通报, 2022, 85(2): 228-234. LIU Y C, ZHU Y L, JI X G, et al. Research progress in determination methods of pharmaceutical and personal care products in water [J]. Chemistry, 2022, 85(2): 228-234(in Chinese).
[3] CHENG D L, NGO H H, GUO W S, et al. A critical review on antibiotics and hormones in swine wastewater: Water pollution problems and control approaches [J]. Journal of Hazardous Materials, 2020, 387: 121682. doi: 10.1016/j.jhazmat.2019.121682 [4] 曲有鹏, 吕江维, 冯玉杰, 等. 硼掺杂金刚石薄膜电极降解青霉素G钠废水机制 [J]. 哈尔滨工业大学学报, 2020, 52(6): 119-125. QU Y P, LU J W, FENG Y J et al. Degradation mechanism of penicillin G sodium wastewater at boron-doped diamond electrodes [J]. Journal of Harbin Institute of Technology, 2020, 52(6): 119-125(in Chinese).
[5] KOVALAKOVA P, CIZMAS L, MCDONALD T J, et al. Occurrence and toxicity of antibiotics in the aquatic environment: A review [J]. Chemosphere, 2020, 251: 126351. doi: 10.1016/j.chemosphere.2020.126351 [6] 姜记威, 张诗轩, 曾文炉, 等. 生物炭基材料在抗生素废水处理中的研究进展[J]. 化工进展, 2021, 40(S2): 389-401. JIANG J W, ZHANG S X, ZENG W L, et al. Research progress on biochar-based materials for the treatment of antibiotic wastewater[J]. Chemical Industry and Engineering Progress, 2021, 40(Sup 2): 389-401(in Chinese).
[7] OBEROI A S, JIA Y Y, ZHANG H Q, et al. Insights into the fate and removal of antibiotics in engineered biological treatment systems: A critical review [J]. Environmental Science & Technology, 2019, 53(13): 7234-7264. [8] XIANG Y J, XU Z Y, WEI Y Y, et al. Carbon-based materials as adsorbent for antibiotics removal: Mechanisms and influencing factors [J]. Journal of Environmental Management, 2019, 237: 128-138. [9] 李金城, 宋永辉, 汤洁莉. 电化学氧化法去除兰炭废水中COD和NH3-N [J]. 中国环境科学, 2022, 42(2): 697-705. LI J C, SONG Y H, TANG J L. Removing of COD and NH3-N from blue-coke wastewater by electrochemical oxidation [J]. China Environmental Science, 2022, 42(2): 697-705(in Chinese).
[10] COMNINELLIS C. Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment [J]. Electrochimica Acta, 1994, 39(11/12): 1857-1862. [11] 王超, 姚淑美, 彭叶平, 等. 高级氧化法处理抗生素废水研究进展 [J]. 化工环保, 2018, 38(2): 135-140. doi: 10.3969/j.issn.1006-1878.2018.02.002 WANG C, YAO S M, PENG Y P, et al. Research progresses on treatment of antibiotics wastewater by advanced oxidation process [J]. Environmental Protection of Chemical Industry, 2018, 38(2): 135-140(in Chinese). doi: 10.3969/j.issn.1006-1878.2018.02.002
[12] WANG J L, ZHUAN R. Degradation of antibiotics by advanced oxidation processes: An overview [J]. Science of the Total Environment, 2020, 701: 135023. doi: 10.1016/j.scitotenv.2019.135023 [13] CHOUDHARY V, VELLINGIRI K, THAYYIL M I, et al. Removal of antibiotics from aqueous solutions by electrocatalytic degradation [J]. Environmental Science:Nano, 2021, 8(5): 1133-1176. doi: 10.1039/D0EN01276A [14] MARTÍNEZ-HUITLE C A, PANIZZA M. Electrochemical oxidation of organic pollutants for wastewater treatment [J]. Current Opinion in Electrochemistry, 2018, 11: 62-71. doi: 10.1016/j.coelec.2018.07.010 [15] MARTÃNEZ-HUITLE C A, FERRO S. Electrochemical oxidation of organic pollutants for the wastewater treatment: Direct and indirect processes [J]. Chemical Society Reviews, 2006, 35(12): 1324-1340. doi: 10.1039/B517632H [16] QIAO J, XIONG Y Z. Electrochemical oxidation technology: A review of its application in high-efficiency treatment of wastewater containing persistent organic pollutants [J]. Journal of Water Process Engineering, 2021, 44: 102308. doi: 10.1016/j.jwpe.2021.102308 [17] 王慧晴, 李燕, 司友斌, 等. 电催化氧化降解水体中抗生素磺胺 [J]. 环境工程学报, 2018, 12(3): 779-787. WANG H Q, LI Y, SI Y B, et al. Electro-catalytic oxidative degradation of sulfonamide in water [J]. Chinese Journal of Environmental Engineering, 2018, 12(3): 779-787(in Chinese).
[18] JIANG Y Y, ZHAO H T, LIANG J, et al. Anodic oxidation for the degradation of organic pollutants: Anode materials, operating conditions and mechanisms. A mini review [J]. Electrochemistry Communications, 2021, 123: 106912. doi: 10.1016/j.elecom.2020.106912 [19] HE Y P, LIN H B, GUO Z C, et al. Recent developments and advances in boron-doped diamond electrodes for electrochemical oxidation of organic pollutants [J]. Separation and Purification Technology, 2019, 212: 802-821. doi: 10.1016/j.seppur.2018.11.056 [20] SHESTAKOVA M, SILLANPÄÄ M. Electrode materials used for electrochemical oxidation of organic compounds in wastewater [J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(2): 223-238. doi: 10.1007/s11157-017-9426-1 [21] HU Z Z, CAI J J, SONG G, et al. Anodic oxidation of organic pollutants: Anode fabrication, process hybrid and environmental applications [J]. Current Opinion in Electrochemistry, 2021, 26: 100659. doi: 10.1016/j.coelec.2020.100659 [22] WANG J L, WANG S Z. Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism [J]. Chemical Engineering Journal, 2020, 401: 126158. doi: 10.1016/j.cej.2020.126158 [23] SRIVASTAVA V, SURESH KUMAR M, NIDHEESH P V, et al. Electro catalytic generation of reactive species at diamond electrodes and applications in microbial inactivation [J]. Current Opinion in Electrochemistry, 2021, 30: 100849. doi: 10.1016/j.coelec.2021.100849 [24] SANTOS G O S, EGUILUZ K I B, SALAZAR-BANDA G R, et al. Understanding the electrolytic generation of sulfate and chlorine oxidative species with different boron-doped diamond anodes [J]. Journal of Electroanalytical Chemistry, 2020, 857: 113756. doi: 10.1016/j.jelechem.2019.113756 [25] DIVYAPRIYA G, NIDHEESH P V. Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications [J]. Current Opinion in Solid State and Materials Science, 2021, 25(3): 100921. doi: 10.1016/j.cossms.2021.100921 [26] de FREITAS ARAÚJO K C, da SILVA D R, dos SANTOS E V, et al. Investigation of persulfate production on BDD anode by understanding the impact of water concentration [J]. Journal of Electroanalytical Chemistry, 2020, 860: 113927. doi: 10.1016/j.jelechem.2020.113927 [27] SHIN Y U, YOO H Y, AHN Y Y, et al. Electrochemical oxidation of organics in sulfate solutions on boron-doped diamond electrode: Multiple pathways for sulfate radical generation [J]. Applied Catalysis B:Environmental, 2019, 254: 156-165. doi: 10.1016/j.apcatb.2019.04.060 [28] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展 [J]. 材料导报, 2019, 33(7): 1125-1132. ZHAO Y Y, WANG D J, ZHAO C C. Progress in electrode materials for refractory wastewater treatment by electro-catalytic oxidation [J]. Materials Reports, 2019, 33(7): 1125-1132(in Chinese).
[29] 李晓良, 王雪, 邱晓鹏, 等. 高活性阳极制备及阿莫西林降解中的毒性效应 [J]. 中国环境科学, 2021, 41(2): 727-734. LI X L, WANG X, QIU X P, et al. Preparation of high active anode and its toxicity in amoxicillin degradation [J]. China Environmental Science, 2021, 41(2): 727-734(in Chinese).
[30] BRITO L R D, GANIYU S O, dos SANTOS E V, et al. Removal of antibiotic rifampicin from aqueous media by advanced electrochemical oxidation: Role of electrode materials, electrolytes and real water matrices [J]. Electrochimica Acta, 2021, 396: 139254. doi: 10.1016/j.electacta.2021.139254 [31] BRILLAS E, GARCIA-SEGURA S, SKOUMAL M, et al. Electrochemical incineration of diclofenac in neutral aqueous medium by anodic oxidation using Pt and boron-doped diamond anodes [J]. Chemosphere, 2010, 79(6): 605-612. doi: 10.1016/j.chemosphere.2010.03.004 [32] TAN T Y, ZENG Z T, ZENG G M, et al. Electrochemically enhanced simultaneous degradation of sulfamethoxazole, ciprofloxacin and amoxicillin from aqueous solution by multi-walled carbon nanotube filter [J]. Separation and Purification Technology, 2019, 235: 116167. [33] SONG H R, YAN L X, JIANG J, et al. Enhanced degradation of antibiotic sulfamethoxazole by electrochemical activation of PDS using carbon anodes [J]. Chemical Engineering Journal, 2018, 344: 12-20. doi: 10.1016/j.cej.2018.03.050 [34] ZHANG Y Y, WANG A M, REN S Y, et al. Effect of surface properties of activated carbon fiber cathode on mineralization of antibiotic cefalexin by electro-Fenton and photoelectro-Fenton treatments: Mineralization, kinetics and oxidation products [J]. Chemosphere, 2019, 221: 423-432. doi: 10.1016/j.chemosphere.2019.01.016 [35] ORMENO-CANO N, RADJENOVIC J. Electrochemical degradation of antibiotics using flow-through graphene sponge electrodes [J]. Journal of Hazardous Materials, 2022, 431: 128462. doi: 10.1016/j.jhazmat.2022.128462 [36] SHI H M, GAO M, XU Z C, et al. Long-term performance of granular activated carbon electrode system for the removal of amoxicillin [J]. Journal of Water Process Engineering, 2022, 46: 102397. doi: 10.1016/j.jwpe.2021.102397 [37] 程佳鑫, 李荣兴, 杨海涛, 等. 三维电催化氧化处理难生化降解有机废水研究进展 [J]. 环境化学, 2022, 41(1): 288-304. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020082804 CHENG J X, LI R X, YANG H T, et al. Review of three-dimensional electrodes for bio-refractory organic wastewater treatment [J]. Environmental Chemistry, 2022, 41(1): 288-304(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020082804
[38] 石秋俊, 刘安迪, 唐柏彬, 等. Ni掺杂Sb-SnO2瓷环粒子电极电催化氧化磺胺嘧啶 [J]. 环境科学, 2020, 41(4): 1725-1733. SHI Q J, LIU A D, TANG B B, et al. Electrocatalytic oxidation of sulfadiazine with Ni-doped Sb-SnO2 ceramic ring particle electrode [J]. Environmental Science, 2020, 41(4): 1725-1733(in Chinese).
[39] JIN H C, ZHANG X J, YU Y, et al. High-performance Ti/IrO2-RhOx-TiO2/α-PbO2/β-PbO2 electrodes for scale inhibitors degradation [J]. Chemical Engineering Journal, 2022, 435: 135167. doi: 10.1016/j.cej.2022.135167 [40] DONG H, CHI W Q, GAO A, et al. Electrochemical degradation of tetracycline using a Ti/Ta2O5-IrO2 anode: Performance, kinetics, and degradation mechanism [J]. Materials, 2021, 14(15): 4325. doi: 10.3390/ma14154325 [41] POINTER MALPASS G R, de JESUS MOTHEO A. Recent advances on the use of active anodes in environmental electrochemistry [J]. Current Opinion in Electrochemistry, 2021, 27: 100689. doi: 10.1016/j.coelec.2021.100689 [42] FENG J Q, TAO Q B, LAN H, et al. Electrochemical oxidation of sulfamethoxazole by nitrogen-doped carbon nanosheets composite PbO 2 electrode: Kinetics and mechanism[J]. Chemosphere, 2022, 286(Pt 2): 131610. [43] YANG C, FAN Y A, SHANG S S, et al. Fabrication of a permeable SnO2-Sb reactive anodic filter for high-efficiency electrochemical oxidation of antibiotics in wastewater [J]. Environment International, 2021, 157: 106827. doi: 10.1016/j.envint.2021.106827 [44] WANG Q, TU S Q, WANG W Y, et al. Optimized Indium modified Ti/PbO2 anode for electrochemical degradation of antibiotic cefalexin in aqueous solutions [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2021, 628: 127244. doi: 10.1016/j.colsurfa.2021.127244 [45] 李晓良, 路思佳, 郑兴, 等. 活性碳纤维修饰PbO2电极的制备及其对阿莫西林的降解解毒研究 [J]. 环境科学学报, 2021, 41(10): 3985-3992. LI X L, LU S J, ZHENG X, et al. Fabrication of PbO2 electrode modified by activated carbon fiber and its degradation and detoxification of amoxicillin [J]. Acta Scientiae Circumstantiae, 2021, 41(10): 3985-3992(in Chinese).
[46] 岳文清, 倪月, 孙则朋, 等. 改性钛基PbO2电极对有机污染物的降解性能: 以甲基橙和4-硝基苯酚为例 [J]. 中国环境科学, 2022, 42(2): 706-716. YUE W Q, NI Y, SUN Z P, et al. Degradation of organic pollutants by modified titanium based PbO2 electrode: Taking methyl orange and 4-nitrophenol as examples [J]. China Environmental Science, 2022, 42(2): 706-716(in Chinese).
[47] XIA Y J, YAN Y, HU L B, et al. Enhanced mechanism of electrochemical oxidation of antibiotic norfloxacin using a Ti/SnO2-Sb2O3/α, β-Co-PbO2 electrode [J]. Journal of the Electrochemical Society, 2021, 168(10): 106510. doi: 10.1149/1945-7111/ac2927 [48] DAVIDE C, MARCO P. Application of boron-doped diamond electrodes for electrochemical oxidation of real wastewaters [J]. Current Opinion in Electrochemistry, 2021, 30: 100844. doi: 10.1016/j.coelec.2021.100844 [49] NIDHEESH D P V, DIVYAPRIYA D G, OTURAN D N, et al. Environmental applications of boron-doped diamond electrodes: 1. applications in water and wastewater treatment [J]. ChemElectroChem, 2019, 6(8): 2124-2142. doi: 10.1002/celc.201801876 [50] HE Y P, ZHAO D D, LIN H B, et al. Design of diamond anodes in electrochemical degradation of organic pollutants [J]. Current Opinion in Electrochemistry, 2022, 32: 100878. doi: 10.1016/j.coelec.2021.100878 [51] dos SANTOS A J, FORTUNATO G V, KRONKA M S, et al. Electrochemical oxidation of ciprofloxacin in different aqueous matrices using synthesized boron-doped micro and nano-diamond anodes [J]. Environmental Research, 2022, 204: 112027. doi: 10.1016/j.envres.2021.112027 [52] YANG W L, TAN J L, CHEN Y H, et al. Relationship between substrate type and BDD electrode structure, performance and antibiotic tetracycline mineralization [J]. Journal of Alloys and Compounds, 2022, 890: 161760. doi: 10.1016/j.jallcom.2021.161760 [53] SCIALDONE O, GALIA A, SABATINO S. Abatement of Acid Orange 7 in macro and micro reactors. Effect of the electrocatalytic route [J]. Applied Catalysis B:Environmental, 2014, 148/149: 473-483. doi: 10.1016/j.apcatb.2013.11.005 [54] SEIBERT D, ZORZO C F, BORBA F H, et al. Occurrence, statutory guideline values and removal of contaminants of emerging concern by Electrochemical Advanced Oxidation Processes: A review [J]. Science of the Total Environment, 2020, 748: 141527. doi: 10.1016/j.scitotenv.2020.141527 [55] GENG P, SU J Y, MILES C, et al. Highly-ordered magnéli Ti4O7 nanotube arrays as effective anodic material for electro-oxidation [J]. Electrochimica Acta, 2015, 153: 316-324. doi: 10.1016/j.electacta.2014.11.178 [56] HUANG D H, WANG K X, NIU J F, et al. Amorphous Pd-loaded Ti4O7 electrode for direct anodic destruction of perfluorooctanoic acid [J]. Environmental Science & Technology, 2020, 54(17): 10954-10963. [57] LIU S Q, WANG Y, ZHOU X Z, et al. Improved degradation of the aqueous flutriafol using a nanostructure macroporous PbO2 as reactive electrochemical membrane [J]. Electrochimica Acta, 2017, 253: 357-367. doi: 10.1016/j.electacta.2017.09.055 [58] MONTEIL H, PECHAUD Y, OTURAN N, et al. Pilot scale continuous reactor for water treatment by electrochemical advanced oxidation processes: Development of a new hydrodynamic/reactive combined model [J]. Chemical Engineering Journal, 2021, 404: 127048. doi: 10.1016/j.cej.2020.127048 [59] ZENG W C, LIANG H, ZHANG H, et al. Efficient electrochemical oxidation of sulfamethoxazole by a novel reduced TiO2 nanotube arrays-based flow-through electrocatalytic membrane [J]. Separation and Purification Technology, 2022, 289: 120720. doi: 10.1016/j.seppur.2022.120720 [60] GANESAN S, AMIRTHALINGAM M, ARIVALAGAN P, et al. Absolute removal of ciprofloxacin and its degraded byproducts in aqueous solution using an efficient electrochemical oxidation process coupled with adsorption treatment technique [J]. Journal of Environmental Management, 2019, 245: 409-417. doi: 10.1016/j.jenvman.2019.05.092 [61] 张腾云, 范洪波, 廖世军. 联合电催化氧化处理难降解有机废水研究进展 [J]. 工业水处理, 2009, 29(6): 1-4. ZHANG T Y, FAN H B, LIAO S J. Research progress in the combined electro-catalytic oxidation technologies for treating refractory organic wastewater [J]. Industrial Water Treatment, 2009, 29(6): 1-4(in Chinese).
[62] 蒋宗宏, 陈淼, 李心清, 等. 改性生物炭对水体中抗生素的去除研究进展 [J]. 环境化学, 2021, 40(12): 3846-3860. doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020080202 JIANG Z H, CHEN M, LI X Q, et al. Research progress on the removal of antibiotics in water by modified biochar [J]. Environmental Chemistry, 2021, 40(12): 3846-3860(in Chinese). doi: http://dx.doi.org/10.7524/j.issn.0254-6108.2020080202
[63] WANG X Y, LI F X, HU X M, et al. Electrochemical advanced oxidation processes coupled with membrane filtration for degrading antibiotic residues: A review on its potential applications, advances, and challenges [J]. Science of the Total Environment, 2021, 784: 146912. doi: 10.1016/j.scitotenv.2021.146912 [64] DU X, YANG W P, ZHAO J, et al. Peroxymonosulfate-assisted electrolytic oxidation/coagulation combined with ceramic ultrafiltration for surface water treatment: Membrane fouling and sulfamethazine degradation [J]. Journal of Cleaner Production, 2019, 235: 779-788. doi: 10.1016/j.jclepro.2019.07.035 [65] SONG Y, XIAO M Y, LI Z Y, et al. Degradation of antibiotics, organic matters and ammonia during secondary wastewater treatment using boron-doped diamond electro-oxidation combined with ceramic ultrafiltration [J]. Chemosphere, 2022, 286: 131680. doi: 10.1016/j.chemosphere.2021.131680 [66] DU X, MO Z Y, LI Z Y, et al. Boron-doped diamond (BDD) electro-oxidation coupled with nanofiltration for secondary wastewater treatment: Antibiotics degradation and biofouling [J]. Environment International, 2021, 146: 106291. doi: 10.1016/j.envint.2020.106291 [67] RAWDHA E, ROBERTO L, ANTONIO Z, et al. Degradation of chloramphenicol in water by oxidation on a boron-doped diamond electrode under UV irradiation [J]. Journal of Water Process Engineering, 2021, 41: 101995. doi: 10.1016/j.jwpe.2021.101995 [68] GUO H, LI D S, LI Z, et al. Promoted elimination of antibiotic sulfamethoxazole in water using sodium percarbonate activated by ozone: Mechanism, degradation pathway and toxicity assessment [J]. Separation and Purification Technology, 2021, 266: 118543. doi: 10.1016/j.seppur.2021.118543 [69] PATIDAR R, SRIVASTAVA V C. Mechanistic insight into ultrasound-induced enhancement of electrochemical oxidation of ofloxacin: Multi-response optimization and cost analysis [J]. Chemosphere, 2020, 257: 127121. doi: 10.1016/j.chemosphere.2020.127121 [70] HASSANI A, MALHOTRA M, KARIM A V, et al. Recent progress on ultrasound-assisted electrochemical processes: A review on mechanism, reactor strategies, and applications for wastewater treatment [J]. Environmental Research, 2022, 205: 112463. doi: 10.1016/j.envres.2021.112463 [71] 刘晨, 梁吉艳, 孟静, 等. 光助电催化氧化降解水体中甲硝唑的实验研究 [J]. 环境保护科学, 2020, 46(5): 93-98. LIU C, LIANG J Y, MENG J, et al. Experimental study on degradation of metronidazole in water by photoassisted electrocatalytic oxidation [J]. Environmental Protection Science, 2020, 46(5): 93-98(in Chinese).
[72] YU S, ZHANG R R, DANG Y, et al. Electrochemical activation of peroxymonosulfate at Ti/La2O3-PbO2 anode to enhance the degradation of typical antibiotic wastewater [J]. Separation and Purification Technology, 2022, 294: 121164. doi: 10.1016/j.seppur.2022.121164 [73] CHEN M, XU J, DAI R B, et al. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater [J]. Bioresource Technology, 2019, 293: 122022. doi: 10.1016/j.biortech.2019.122022 [74] MOUSSET E, TRELLU C, OLVERA-VARGAS H, et al. Electrochemical technologies coupled with biological treatments [J]. Current Opinion in Electrochemistry, 2021, 26: 100668. doi: 10.1016/j.coelec.2020.100668 [75] CHENG D L, NGO H H, GUO W S, et al. Removal process of antibiotics during anaerobic treatment of swine wastewater [J]. Bioresource Technology, 2020, 300: 122707. doi: 10.1016/j.biortech.2019.122707 [76] GANZENKO O, HUGUENOT D, van HULLEBUSCH E D, et al. Electrochemical advanced oxidation and biological processes for wastewater treatment: A review of the combined approaches [J]. Environmental Science and Pollution Research, 2014, 21(14): 8493-8524. doi: 10.1007/s11356-014-2770-6 [77] 曲有鹏, 吕江维, 董跃, 等. 电催化-生物电化学耦合系统处理青霉素废水的机制 [J]. 环境科学, 2021, 42(5): 2378-2384. QU Y P, LÜ J W, DONG Y, et al. Mechanisms of penicillin wastewater treatment by coupled electrocatalytic and bioelectrochemical systems [J]. Environmental Science, 2021, 42(5): 2378-2384(in Chinese).
[78] LI Z Y, DAI R B, YANG B C, et al. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms [J]. Journal of Hazardous Materials, 2021, 404: 124198. doi: 10.1016/j.jhazmat.2020.124198 [79] ZHANG Y, ZHOU M H. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values [J]. Journal of Hazardous Materials, 2019, 362: 436-450. doi: 10.1016/j.jhazmat.2018.09.035 [80] SIRÉS I, BRILLAS E. Upgrading and expanding the electro-Fenton and related processes [J]. Current Opinion in Electrochemistry, 2021, 27: 100686. doi: 10.1016/j.coelec.2020.100686 [81] BRILLAS E, GARCIA-SEGURA S. Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: A review on the relevance of phenol as model molecule [J]. Separation and Purification Technology, 2020, 237: 116337. doi: 10.1016/j.seppur.2019.116337 [82] EL-GHENYMY A, GARRIDO J A, CENTELLAS F, et al. Electro-Fenton and photoelectro-Fenton degradation of sulfanilic acid using a boron-doped diamond anode and an air diffusion cathode [J]. The Journal of Physical Chemistry. A, 2012, 116(13): 3404-3412. doi: 10.1021/jp300442y [83] ZAZOU H, OTURAN N, SÖNMEZ-ÇELEBI M, et al. Mineralization of chlorobenzene in aqueous medium by anodic oxidation and electro-Fenton processes using Pt or BDD anode and carbon felt cathode [J]. Journal of Electroanalytical Chemistry, 2016, 774: 22-30. doi: 10.1016/j.jelechem.2016.04.051 [84] OZCAN A, ÖZCAN A, DEMIRCI Y. Evaluation of mineralization kinetics and pathway of norfloxacin removal from water by electro-Fenton treatment [J]. Chemical Engineering Journal, 2016, 304: 518-526. doi: 10.1016/j.cej.2016.06.105 [85] WANG A M, ZHANG Y Y, HAN S S, et al. Electro-Fenton oxidation of a β-lactam antibiotic cefoperazone: Mineralization, biodegradability and degradation mechanism [J]. Chemosphere, 2021, 270: 129486. [86] AHMAD D, IGNASI S, NIHAL O, et al. Electrochemical treatment of the antibiotic sulfachloropyridazine: Kinetics, reaction pathways, and toxicity evolution [J]. Environmental Science & Technology, 2012, 46(7): 4074-4082. [87] DENG F X, OLVERA-VARGAS H, GARCIA-RODRIGUEZ O, et al. Waste-wood-derived biochar cathode and its application in electro-Fenton for sulfathiazole treatment at alkaline pH with pyrophosphate electrolyte [J]. Journal of Hazardous Materials, 2019, 377: 249-258. doi: 10.1016/j.jhazmat.2019.05.077