-
近年来,新兴污染物(ECs)因具有化学结构稳定、难生物降解和潜在风险等特性受到广泛关注[1- 2]. 大部分ECs在常规污水处理技术中难以去除,导致其进入水环境中,对人类健康和环境造成危害[3-4]. 基于硫酸根自由基(
${\rm{SO}}_4^{\cdot -} $ )的高级氧化技术(SR-AOTs)在去除各类EC中展现出优异的性能[5-7]. 一直以来,${\rm{SO}}_4^{\cdot -} $ 的产生方式主要是基于过硫酸盐的活化[7],然而,在实际水处理中,过硫酸盐面临着成本高且可能带来潜在毒性的问题[8]. 近年来,亚硫酸盐作为烟气脱硫的残余产物被认为是一种具有潜力的过硫酸盐替代品,亚硫酸盐可通过不同的活化方式产生活性氧物种(ROS). 目前,亚硫酸盐的活化技术主要有过渡金属活化(如Fe3+/Fe2+[9-10]、Co2+[11])、光生电子活化(如BiVO4[12])和紫外光活化[13]等. 其中,Fe3+或Fe2+活化亚硫酸盐由于成本低、环境友好、设备要求低,被认为是更具应用潜力的活化方式.在Fe3+/Fe2+活化亚硫酸盐的体系中,亚硫酸铁络合物(
${\rm{FeSO}}_3^+ $ )是产生亚硫酸根自由基(${\rm{SO}}_3^{\cdot -} $ )必要的中间体. 当溶解氧(DO)存在时,一方面${\rm{SO}}_3^{\cdot -} $ 可进一步转化为其它氧化能力更强的ROS与污染物反应;另一方面Fe2+与亚硫酸盐的络合物(${\rm{FeHSO}}_3^+ $ )可被氧化生成${\rm{FeSO}}_3^+ $ [9-10, 14]. 因此,DO对于ROS的生成转化和Fe2+/Fe3+的循环是必不可少的,但过量的DO也可能导致亚硫酸盐的快速氧化,从而降低亚硫酸盐的有效利用. Chen等研究了充氧对Fe2+/S(Ⅳ)体系中氯霉素降解的作用,发现充氧难以实现氯霉素的完全去除,过量的溶解氧还加速了亚硫酸盐的无效氧化,并且在实际废水修复中的曝气成本不容忽视[15]. Wang等利用Fe2+活化亚硫酸氢盐降解水中双氯芬酸(DCF),结果发现在pH为4、 Fe2+初始浓度为 10 μmol·L−1、亚硫酸盐初始浓度为200 μmol·L−1时,反应5 分钟DCF去除率最佳可达 90%上,但该研究没有对其中的机理进行深入探讨[10]. 一直以来,${\rm{SO}}_4^{\cdot -} $ 和/或•OH被认为是Fe3+/S(Ⅳ)体系中污染物去除的主要活性物质,但缺乏必要的ROS定性检测,而这对于理解Fe3+/S(Ⅳ)过程中的相关机理至关重要. 此外,目前很少有研究同时比较Fe2+和 Fe3+活化亚硫酸盐体系两者的联系与区别.因此,本文比较了自然复氧条件下Fe3+/S(Ⅳ)和Fe2+/S(Ⅳ)体系对污染物的降解效率,特别是对Fe3+/S(Ⅳ)体系中活性物质进行了深入分析. 由于双酚A(BPA)广泛分布于废水、地表水甚至饮用水中 [16-17],所以本研究选择BPA作为代表性EC进行研究. 通过单因素变量法考察了 Fe2+/Fe3+和亚硫酸盐投加剂量,及溶液初始pH对Fe3+/S(Ⅳ)和Fe2+/S(Ⅳ)两个体系中BPA 降解效率与动力学的影响;通过测定Fe2+的浓度变化,比较Fe3+/S(Ⅳ)和Fe2+/S(Ⅳ)体系的联系与区别. 最后,通过对体系中的活性物质进行分析,结合BPA降解的中间产物分析,提出BPA的降解机理和转化途径.
Fe3+/Fe2+活化亚硫酸盐降解水中双酚A的性能与机理
Mechanistic and performance studies on sulfite activation by Fe3+ or Fe2+ for degrading bisphenol A in water
-
摘要: 文章以典型新兴污染物双酚A (BPA)为研究对象,考察了自然复氧条件下各影响因素对Fe3+/S(Ⅳ)和Fe2+/S(IV)体系降解BPA的影响及二者的区别与联系,重点研究了Fe3+/S(IV)体系中活性物种的贡献和变化. 研究结果表明,Fe2+/S(Ⅳ)和Fe3+/S(Ⅳ)体系均能在一定程度上降解BPA,Fe3+/S(Ⅳ)体系对降解环境要求严格,限于强酸性条件下有较好的降解效能,而Fe2+/S(Ⅳ)体系降解BPA的有效pH可以拓宽至7.58,但是Fe2+/S(Ⅳ)体系对溶解氧需求更高,且BPA的最佳降解率低于Fe3+/S(Ⅳ)体系. Fe2+的浓度变化在Fe3+/S(Ⅳ)和Fe2+/S(Ⅳ)体系中具有指示作用,可用来预测自由基的生成情况及污染物的降解情况,通过对比二者体系中Fe2+浓度变化和BPA降解趋势,确定了两个体系中BPA降解均与
${\rm{FeSO}}_3^+ $ 分解成${\rm{SO}}_3^{\cdot -} $ 和Fe2+这一关键步骤相关. 此外,${\rm{SO}}_3^{\cdot -} $ 和·OH被电磁自旋共振(ESR)检测到,并且通过抑制实验和ESR实验确定了由${\rm{SO}}_3^{\cdot -} $ 衍生而来的${\rm{SO}}_4^{\cdot -} $ 和·OH均是Fe3+/S(Ⅳ)体系中BPA降解的主要贡献者. 除此之外,首次在Fe3+/S(Ⅳ)体系中发现高价态Fe(Ⅳ)的存在. 最后根据LC/MS分析表明,Fe3+/S(Ⅳ)体系中BPA降解途径主要包括苯环的羟基化和BPA分子C—C键的β断裂.Abstract: The influence of different factors on Fe3+/S(Ⅳ) and Fe2+/S(Ⅳ) processes under natural reoxygenation was investigated using a typical emerging contaminant, bisphenol A (BPA), as the target pollutant. The contribution and variation of different reactive species in Fe3+/S(Ⅳ) process were emphatically studied. Results showed that BPA could be degraded in Fe2+/S(Ⅳ) and Fe3+/S(Ⅳ) processes. However, the high efficiency of Fe3+/S(Ⅳ) process for the degradation of BPA was always achieved at strong acidic conditions, while the effective pH range of Fe2+/S(Ⅳ) process could be broadened to 7.58. The demand of dissolved oxygen in Fe2+/S(Ⅳ) process was higher than that in Fe3+/S(Ⅳ) process, leading to the lower BPA removal rate at the optimum condition in Fe2+/S(Ⅳ) process than that in Fe3+/S(Ⅳ) process. The concentration of Fe2+ could be used as an indicator for the effective generation of radical species and the degradation performance of organic pollutants. The degradation of BPA in Fe2+/S(Ⅳ) and Fe3+/S(Ⅳ) processes was closely related to the crucial step of${\rm{FeSO}}_3^+$ formation and decomposition. Both${\rm{SO}}_4^{\cdot -} $ and ·OH derived from${\rm{SO}}_3^{\cdot -} $ were assumed as the main contributors to BPA degradation based on the quenching experiments and electron spin resonance (ESR) examination. High-valent iron was for the first time reported to be present in Fe3+/S(Ⅳ) process, which also contributed to the degradation of BPA. Finally, based on LC/MS analysis, BPA degradation pathways in Fe3+/S(Ⅳ) process were found to mainly include the hydroxylation of the benzene ring and the beta-scission of the C-C bond of BPA molecule.-
Key words:
- sulfite /
- iron /
- high-valence iron /
- sulfate radical /
- hydroxyl radical /
- bisphenol A.
-
-
[1] PETRIE B, BARDEN R, KASPRZYK-HORDERN B. A review on emerging contaminants in wastewaters and the environment: Current knowledge, understudied areas and recommendations for future monitoring [J]. Water Research, 2015, 72: 3-27. doi: 10.1016/j.watres.2014.08.053 [2] 孙红文, 应光国. 环境中的新兴污染物研究 [J]. 环境化学, 2018, 37(8): 1681-1682. SUN H W, YING G G. Research on emerging pollutants in the environment [J]. Environmental Chemistry, 2018, 37(8): 1681-1682(in Chinese).
[3] GIULIVO M, DE ALDA ML, CAPRI E, et al. Human exposure to endocrine disrupting compounds: Their role in reproductive systems, metabolic syndrome and breast cancer. A review [J]. Environmental Research, 2016, 151: 251-264. doi: 10.1016/j.envres.2016.07.011 [4] MATAMOROS V, RODRÍGUEZ Y, ALBAIGÉS J. A comparative assessment of intensive and extensive wastewater treatment technologies for removing emerging contaminants in small communities [J]. Water Research, 2016, 88: 777-785. doi: 10.1016/j.watres.2015.10.058 [5] WANG J L, WANG S Z. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants [J]. Chemical Engineering Journal, 2018, 334: 1502-1517. doi: 10.1016/j.cej.2017.11.059 [6] ZHOU Z, LIU X T, SUN K, et al. Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review [J]. Chemical Engineering Journal, 2019, 372: 836-851. doi: 10.1016/j.cej.2019.04.213 [7] 谷得明, 郭昌胜, 冯启言, 等. 基于硫酸根自由基的高级氧化技术及其在环境治理中的应用 [J]. 环境化学, 2018, 37(11): 2489-2508. doi: 10.7524/j.issn.0254-6108.2018012102 GU D M, GUO C S, FENG Q Y, et al. Sulfate radical-based advanced oxidation processes and its application in environmental remediation [J]. Environmental Chemistry, 2018, 37(11): 2489-2508(in Chinese). doi: 10.7524/j.issn.0254-6108.2018012102
[8] LIANG C J, WANG C W. Assessing acute toxicity potential of persulfate ISCO treated water [J]. Chemosphere, 2013, 93(11): 2711-2716. doi: 10.1016/j.chemosphere.2013.08.078 [9] DONG H Y, WEI G F, YIN D Q, et al. Mechanistic insight into the generation of reactive oxygen species in sulfite activation with Fe(III) for contaminants degradation [J]. Journal of Hazardous Materials, 2020, 384: 121497. doi: 10.1016/j.jhazmat.2019.121497 [10] WANG H B, WANG S X, LIU Y Q, et al. Degradation of diclofenac by Fe(Ⅱ)-activated bisulfite: Kinetics, mechanism and transformation products [J]. Chemosphere, 2019, 237: 124518. doi: 10.1016/j.chemosphere.2019.124518 [11] YUAN Y N, ZHAO D, LI J J, et al. Rapid oxidation of paracetamol by cobalt(Ⅱ) catalyzed sulfite at alkaline pH [J]. Catalysis Today, 2018, 313: 155-160. doi: 10.1016/j.cattod.2017.12.004 [12] CHEN F, YANG Q, YAO F B, et al. Synergetic transformations of multiple pollutants driven by BiVO4-catalyzed sulfite under visible light irradiation: Reaction kinetics and intrinsic mechanism [J]. Chemical Engineering Journal, 2019, 355: 624-636. doi: 10.1016/j.cej.2018.08.182 [13] CHU Y Y, XU L J, GAN L, et al. Efficient destruction of emerging contaminants in water by UV/S(Ⅳ) process with natural reoxygenation: Effect of pH on reactive species [J]. Water Research, 2021, 198: 117143. doi: 10.1016/j.watres.2021.117143 [14] XIAO Q, YU S L. The role of dissolved oxygen in the sulfite/divalent transition metal ion system: Degradation performances and mechanisms [J]. Chemical Engineering Journal, 2021, 417: 129115. doi: 10.1016/j.cej.2021.129115 [15] CHEN X Y, MIAO W, YANG Y L, et al. Aeration-assisted sulfite activation with ferrous for enhanced chloramphenicol degradation [J]. Chemosphere, 2020, 238: 124599. doi: 10.1016/j.chemosphere.2019.124599 [16] WANG H, LIU Z H, ZHANG J, et al. Insights into removal mechanisms of bisphenol A and its analogues in municipal wastewater treatment plants [J]. Science of the Total Environment, 2019, 692: 107-116. doi: 10.1016/j.scitotenv.2019.07.134 [17] 宋作栋, 仇雁翎, 张华, 等. 水体中双酚类物质的赋存现状及研究进展 [J]. 环境化学, 2020, 39(6): 1496-1503. doi: 10.7524/j.issn.0254-6108.2019081413 SONG Z D, QIU Y L, ZHANG H, et al. The occurrence and research progress of bisphenol analogues in aquatic environment [J]. Environmental Chemistry, 2020, 39(6): 1496-1503(in Chinese). doi: 10.7524/j.issn.0254-6108.2019081413
[18] TAMURA H, GOTO K, YOTSUYANAGI T, et al. Spectrophotometric determination of iron(Ⅱ) with 1, 10-phenanthroline in the presence of large amounts of iron(Ⅲ) [J]. Talanta, 1974, 21(4): 314-318. doi: 10.1016/0039-9140(74)80012-3 [19] LI X C, FANG J Y, LIU G F, et al. Kinetics and efficiency of the hydrated electron-induced dehalogenation by the sulfite/UV process [J]. Water Research, 2014, 62: 220-228. doi: 10.1016/j.watres.2014.05.051 [20] GUO Y G, LOU X Y, FANG C L, et al. Novel photo-sulfite system: Toward simultaneous transformations of inorganic and organic pollutants [J]. Environmental Science & Technology, 2013, 47(19): 11174-11181. [21] KUO D T F, KIRK D W, JIA C Q. The chemistry of aqueous S(Ⅳ)-Fe-O2 system: State of the art [J]. Journal of Sulfur Chemistry, 2006, 27(5): 461-530. doi: 10.1080/17415990600945153 [22] REDDY K B, VANELDIK R. Kinetics and mechanism of the sulfite-induced autoxidation of Fe(II) in acidic aqueous solution [J]. Atmospheric Environment. Part A. General Topics, 1992, 26(4): 661-665. doi: 10.1016/0960-1686(92)90177-M [23] ABDELHALEEM A, CHU W, LIANG X L. Diphenamid degradation via sulfite activation under visible LED using Fe (III) impregnated N-doped TiO2 photocatalyst [J]. Applied Catalysis B:Environmental, 2019, 244: 823-835. doi: 10.1016/j.apcatb.2018.11.085 [24] YUAN Y N, LUO T, XU J, et al. Enhanced oxidation of aniline using Fe(III)-S(Ⅳ) system: Role of different oxysulfur radicals [J]. Chemical Engineering Journal, 2019, 362: 183-189. doi: 10.1016/j.cej.2019.01.010 [25] ZHANG L, CHEN L, XIAO M, et al. Enhanced decolorization of orange II solutions by the Fe(Ⅱ)–sulfite system under xenon lamp irradiation [J]. Industrial & Engineering Chemistry Research, 2013, 52(30): 10089-10094. [26] BUXTON G V, MCGOWAN S, SALMON G A, et al. A study of the spectra and reactivity of oxysulphur-radical anions involved in the chain oxidation of S(Ⅳ): A pulse and γ-radiolysis study [J]. Atmospheric Environment, 1996, 30(14): 2483-2493. doi: 10.1016/1352-2310(95)00473-4 [27] 熊龙. Fe(Ⅱ)/亚硫酸盐氧化体系的构建及其转化As(Ⅲ)机理研究[D]. 东营: 中国石油大学(华东), 2016. XIONG L. Construction of Fe(Ⅱ)/sulfite oxidation system and investigation of the transformation mechanisms of as(Ⅲ)[D]. Dongying: China University of Petroleum (Huadong), 2016(in Chinese).
[28] 李健欣, 汤一桢, 徐立杰, 等. Fe2+/S2O82-体系对双酚A的降解性能及优化 [J]. 环境化学, 2021, 40(11): 3580-3589. doi: 10.7524/j.issn.0254-6108.2020070905 LI J X, TANG Y Z, XU L J, et al. The performance and optimization of Fe2+/S2O82- process for bisphenol A degradation [J]. Environmental Chemistry, 2021, 40(11): 3580-3589(in Chinese). doi: 10.7524/j.issn.0254-6108.2020070905
[29] 刘颖, 郭依玮, 乔俊莲, 等. 环境pH条件下Fe2+活化过二硫酸盐降解有机污染物的效能与影响因素 [J]. 环境科学, 2022, 43(8): 4146-4153. LIU Y, GUO Y W, QIAO J L, et al. Investigation on the performance of organic contaminants degradation by Fe2+/PDS at environmentally relevant pH conditions [J]. Environmental Science, 2022, 43(8): 4146-4153(in Chinese).
[30] WANG Y B, ZHAO X, CAO D, et al. Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid [J]. Applied Catalysis B:Environmental, 2017, 211: 79-88. doi: 10.1016/j.apcatb.2017.03.079 [31] NETA P, HUIE R E, ROSS A B. Rate constants for reactions of inorganic radicals in aqueous solution [J]. Journal of Physical and Chemical Reference Data, 1988, 17(3): 1027-1284. doi: 10.1063/1.555808 [32] KIRINO Y, OHKUMA T, KWAN T. Spin trapping with 5, 5-dimethylpyrroline-N-oxide in aqueous solution [J]. Chemical and Pharmaceutical Bulletin, 1981, 29(1): 29-34. doi: 10.1248/cpb.29.29 [33] ZAMORA P L, VILLAMENA F A. Theoretical and experimental studies of the spin trapping of inorganic radicals by 5, 5-dimethyl-1-pyrroline N-oxide (DMPO). 3. Sulfur dioxide, sulfite, and sulfate radical anions [J]. The Journal of Physical Chemistry. A, 2012, 116(26): 7210-7218. doi: 10.1021/jp3039169 [34] FINKELSTEIN E, ROSEN G M, RAUCKMAN E J. Spin trapping of superoxide and hydroxyl radical: Practical aspects [J]. Archives of Biochemistry and Biophysics, 1980, 200(1): 1-16. doi: 10.1016/0003-9861(80)90323-9 [35] GUAN Y H, MA J, LI X C, et al. Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system [J]. Environmental Science & Technology, 2011, 45(21): 9308-9314. [36] CHEN L, TANG M, CHEN C, et al. Efficient bacterial inactivation by transition metal catalyzed auto-oxidation of sulfite [J]. Environmental Science & Technology, 2017, 51(21): 12663-12671. [37] DONG H Y, LI Y, WANG S C, et al. Both Fe(Ⅳ) and radicals are active oxidants in the Fe(II)/peroxydisulfate process [J]. Environmental Science & Technology Letters, 2020, 7(3): 219-224. [38] WANG Z, JIANG J, PANG S Y, et al. Is sulfate radical really generated from peroxydisulfate activated by iron(II) for environmental decontamination? [J]. Environmental Science & Technology, 2018, 52(19): 11276-11284. [39] DAS T N. Reactivity and role of SO5•- radical in aqueous medium chain oxidation of sulfite to sulfate and atmospheric sulfuric acid generation [J]. The Journal of Physical Chemistry A, 2001, 105(40): 9142-9155. doi: 10.1021/jp011255h [40] BRANDT C, van ELDIK R. Transition metal-catalyzed oxidation of sulfur(Ⅳ) oxides. Atmospheric-relevant processes and mechanisms [J]. Chemical Reviews, 1995, 95(1): 119-190. doi: 10.1021/cr00033a006 [41] LIANG J, DUAN X G, XU X Y, et al. Biomass-derived pyrolytic carbons accelerated Fe(Ⅲ)/Fe(Ⅱ) redox cycle for persulfate activation: Pyrolysis temperature-depended performance and mechanisms [J]. Applied Catalysis B:Environmental, 2021, 297: 120446. doi: 10.1016/j.apcatb.2021.120446 [42] WANG Z, QIU W, PANG S Y, et al. Further understanding the involvement of Fe(Ⅳ) in peroxydisulfate and peroxymonosulfate activation by Fe(II) for oxidative water treatment [J]. Chemical Engineering Journal, 2019, 371: 842-847. doi: 10.1016/j.cej.2019.04.101 [43] DARSINOU B, FRONTISTIS Z, ANTONOPOULOU M, et al. Sono-activated persulfate oxidation of bisphenol A: Kinetics, pathways and the controversial role of temperature [J]. Chemical Engineering Journal, 2015, 280: 623-633. doi: 10.1016/j.cej.2015.06.061 [44] LI X N, WANG Z H, ZHANG B, et al. FexCo3xO4 nanocages derived from nanoscale metal-organic frameworks for removal of bisphenol A by activation of peroxymonosulfate [J]. Applied Catalysis B:Environmental, 2016, 181: 788-799. doi: 10.1016/j.apcatb.2015.08.050