-
污染物在非饱和带的迁移过程受介质场、渗流场、化学场、生物场等多场控制,致使非饱和带中污染物分布具有高度非均质性和时空变异性[1-3]. 其中影响污染物在非饱和带迁移的重要因素有土壤机械组成、含水量、降雨量以及pH值等[4-7],解析非饱和带污染物迁移影响因素是场地土壤污染控制与修复的理论基础[8-9]. 因此,国内外学者通过模拟柱淋滤试验、室内静态试验和数值模拟等方法,从物理、化学、生物等多角度探究污染物在非饱和带中迁移规律. 刘明遥等通过渗流柱模拟实验探讨了石油烃在非饱和带中迁移规律,发现土壤机械组成对石油烃在非饱和带中迁移的重要影响[10];任璇等从室内模拟实验结果中阐述含水量对非饱和带截留柴油能力的影响[11];潘峰等采用新式模拟柱法探究石油类污染物在陇东黄土塬区土壤中的迁移特征,发现降水量是污染物迁移规律决定因素之一[12];潘敏等在土壤环境因子对有机污染物迁移转化的影响中强调pH对污染物迁移的重要影响[5]. 从目前研究成果与进展来看,现阶段针对污染物在非饱和带迁移规律中的研究已经比较完善,但仍有一定不足. 首先针对焦化场地非饱和带特征污染物在土壤中迁移特性的研究相对较少[12-17],尤其是有着“世界焦炭王国”之称的山西. 随着城市化进程及“退二进三”政策的实施,焦化行业遗留的场地土壤污染问题日渐突出[18-19],污染行为呈现多污染物复合态势[20-21],已成为山西区域环境治理亟待解决的重要问题之一;再者以往研究中多以柴油或石油作为有机污染源,进入模拟体系的是柴油或石油溶液,这会一定程度高估焦化场地污染物排放量,焦化场地污染途径主要由生产过程中污染物遗撒和渗漏以及大气污染物干湿沉降造成地表土污染,继而在降雨淋滤作用下迁移至非饱和带[22-25],造成非饱和带和地下水污染,这与柴油或石油溶液直接进入非饱和带迁移造成污染有一定差异;并且以往研究偏重于污染物在非饱和带整体垂向迁移规律[22, 26-28],而忽视环境因素变化对污染物在非饱和带土水介质中的调控作用.
为解决以上问题该研究将按照以下几部分进行:①以山西的一个典型焦化污染场地为研究区,参照该场地污染特征配置“污染土壤”作为非饱和带污染物迁移规律研究中的污染物源;②采集该场地不同土层无污染土壤过筛分类,按照焦化场地非饱和带实际情况等比例装填进行淋滤试验,设计对比试验分析该场地特征污染物在非饱和带中迁移规律;③将模拟柱中不同土层采集样品在密封低温情况下进行土水分离,探究场地特征污染物在土水介质中迁移特征. 以期为山西焦化场地修复理论和土壤污染防控修复提供科学依据.
山西典型焦化场地特征污染物在非饱和带迁移规律及影响因素
Study on the migration law and influencing factors of characteristic pollutants in the unsaturated zone of typical coking sites in Shanxi
-
摘要: 以山西某焦化场地为研究对象,以该场地污染最严重的苯和萘作为焦化行业特征污染物的代表,结合山西不同地区土壤含水量差异明显、年降雨量波动幅度大以及该场地存在碱性废水和酸性废液的无意倾倒导致土壤pH超标严重的特点. 通过柱试验研究特征污染物苯、萘在非饱和带迁移规律及其关键影响因素;通过土水分离实验揭示多要素作用下特征污染物苯萘在土水介质中迁移特征. 柱实验结果表明,苯在重力和淋洗作用下,不断向深层土壤扩散和迁移,越过渗透性差的粉土层,到达更深层的土层;而萘只有少部分不断向深层土壤扩散和迁移,大部分富集表层. 降低土壤初始含水量会降低苯和萘在非饱和带迁移速率但是会促进迁移总量,并且增大降雨量、升高或降低淋滤液pH值会增强苯和萘向下迁移能力;降雨量、淋滤液pH值、土壤初始含水量都会影响非饱和带对苯和萘截留能力,其中土壤初始含水量影响最大,降雨量次之,淋滤液pH值最小;在相同环境因素下,与苯和萘残留量分布相关性最强的变量为采样深度,并且苯和萘残留量分布与采样深度相关系数值会随着环境因素的改变产生显著变化. 土水分离实验结果表明淋滤液pH值是苯在土水介质中迁移的最大影响变量,影响萘在土水介质中迁移最大变量为降雨量.Abstract: This study takes a coking site in Shanxi as the research object, and takes the most seriously polluted benzene and naphthalene as the representative of the characteristic pollutants in the coking industry. Combined with the obvious differences in soil water content in different areas of Shanxi, the large fluctuation of annual rainfall, and the unintentional dumping of alkaline wastewater and acidic wastewater in the site, the soil pH exceeded the standard. Study on the migration law of characteristic pollutants in the unsaturated zone and its key influencing factors by column test. The characteristics of the migration of characteristic pollutants in soil-water medium under the action of multiple factors were revealed through soil-water separation experiments. The results of the column experiments showed that reducing the initial soil water content would reduce the migration rate of benzene and naphthalene in the unsaturated zone but would increase the total amount of migration and increasing rainfall and increasing or decreasing the pH of the leachate would enhance the downward migration of benzene and naphthalene. Rainfall, leachate pH value and soil initial water content all affected the benzene and naphthalene retention capacity of the unsaturated zone. The soil initial water content has the greatest impact, followed by rainfall, and leachate pH value is the smallest. Under the same environmental factors, the variable with the strongest correlation with the distribution of benzene and naphthalene residues was the sampling depth, and the correlation coefficient between the distribution of benzene and naphthalene residues and the sampling depth would change significantly with the change of environmental factors. The results of the soil-water separation experiment showed that the pH value of the leachate was the largest variable affecting the migration of benzene in the soil-water medium, and the largest variable affecting the migration of naphthalene in the soil-water medium was rainfall.
-
Key words:
- coking site /
- vadose zone /
- migration /
- soil-water system.
-
表 1 研究区地层分布
Table 1. Stratigraphic distribution of the study area
成因
Cause地层编号
Stratum number分层厚度 /m
Layer thickness地层特征
Stratigraphic features人工堆积层
Artificial buildup① 3.07 人工填土:物质组成主要以粉土为主该层场区普遍分布 冲洪积成因
Alluvial origin② 2.90 物质组成主要以中粗砂为主 ③ 5.51 物质组成主要以粉土为主 ④ 6.28 主要由中粗砂及粉土组成,呈互层分布 ⑤ 13.30 物质组成主要以粉质粘土为主 ⑥ 5.50 卵石,物质组成主要以卵石为主 ⑦ 3.10 粉质粘土:该层在调查区域内仅个别孔揭露 表 2 模拟柱淋滤模拟实验设计
Table 2. The experimental design of soil column leaching simulation
柱编号
Column number淋滤水量/mL
Leaching water volume淋滤液pH值
Leachate pH土壤初始含水量/%
Soil initial moisture content模拟降雨量组
Simulated rainfall group柱A1 1380 7.8 9.8—14.5 柱A2 2198 7.8 9.8—14.5 柱A3 3140 7.8 9.8—14.5 不同pH淋滤液组
Different pH leachate groups柱B1 2198 3.8 9.8—14.5 柱B2 2198 7.8 9.8—14.5 柱B3 2198 10.8 9.8—14.5 土壤初始含水量组
Soil initial moisture group柱C1 2198 7.8 9.8—14.5 柱C2 2198 7.8 0.94—1.45 表 3 模拟柱填充参数
Table 3. Filling parameters of soil column
土层
Soil layer介质
Medium粒径/mm
Particle size填充密度/(g·cm−3)
Filling density土层厚度/m
Soil thickness模拟厚度/cm
Simulate thickness有机质含量/%
Organic matter content柱C2土壤
含水量/%
Column C2 soil
moisture content其余模拟柱
土壤含水量/%
Soil moisture content
of the remaining
simulated columns① 粉土 0.002—0.05 1.39 3.07 20 3.28 1.45 14.5 ② 中粗砂 0.25—1 1.49 2.9 20 4.87 0.94 9.8 ③ 粉土 0.002—0.05 1.49 5.91 40 3.28 1.45 14.5 ④ 粉土+中粗砂 0.002—1 1.44 6.18 40 4.08 1.2 13 表 4 垂向迁移规律表征的取样位置
Table 4. Sampling locations characterized by vertical migration law
土层
Soil layer取样层位
Sampling horizon取样口距离顶端位置/cm
Sampling port from the top position“污染土壤” 0 2.5 ① 1—1 7.5 1—2 17.5 ② 2—1 27.5 2—2 37.5 ③ 3—1 47.5 3—2 57.5 3—3 67.5 3—4 77.5 ④ 4—1 87.5 4—2 97.5 4—3 107.5 4—4 117.5 表 5 土水介质迁移规律表征的取样位置
Table 5. Sampling locations for the characterization of the migration law of the soil-water interaction system
土层
Soil layer取样口距离顶端位置/cm
Sampling port from the top position① 15 ② 35 ③ 65 ④ 105 表 6 不同模拟柱淋出液污染物总值以及模拟柱截留能力
Table 6. Total value of pollutants in different soil column leachates
柱A1
Column A1柱A2
Column A2柱A3
Column A3柱B1
Column B1总值/μg
Total value截留率/%
Retention rate总值/μg
Total value截留率/%
Retention rate总值/μg
Total value截留率/%
Retention rate/总值/μg
Total value截留率/%
Retention rate苯 18.37 99.99 509.48 99.77 3719.40 98.30 874.5 99.60 萘 3.46 99.99 4.52 99.99 6.38 99.99 6.18 99.99 柱B2
Column B2柱B3
Column B3柱C1
Column C1柱C2
Column C2总值/μg
Total value截留率/%
Retention rate/总值/μg
Total value截留率/%
Retention rate/总值/μg
Total value截留率/%
Retention rate/总值/μg
Total value截留率/%
Retention rate/苯 509.48 99.77 2916.02 98.67 509.48 99.77 0 100 萘 4.52 99.99 15.42 99.99 4.52 99.99% 0 100 表 7 污染物残留量与各个变量相关性分析结果
Table 7. Correlation analysis results of pollutant residues and various variables
变量
Variable淋滤水量组
Leaching water volume柱A1
Column A1柱A2
Column A2柱A3
Column A3均值
Mean*S变异系数
V*/%苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene1 0.26 0.27 0.1 0.28 0.32 0.3 0.23 0.28 40.97 4.40 2 0.47 0.23 0.11 0.31 0.32 0.31 0.30 0.28 49.22 13.31 3 −0.26 −0.28 −0.09 −0.29 −0.32 −0.3 0.22 0.29 −43.62 −32 4 0.06 0.04 −0.15 −0.18 −0.38 −0.45 0.20 0.22 −114.70 −101.89 5 −0.36 −0.33 0.1 −0.41 −0.12 −0.34 0.19 0.36 −148.31 −9.89 6 −0.26 −0.28 −0.09 −0.28 −0.32 −0.3 0.22 0.29 −43.62 −3.29 7 −0.12 −0.55 0.44 −0.78 0.52 −0.52 0.36 0.62 101.69 −18.83 变量
Variable淋滤液pH值组
Leachate pH柱B1
Column B1柱B2
Column B2柱B3
Column B3均值
Mean*变异系数
SV*/%苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene1 −0.21 0.3 0.1 0.28 −0.1 0.29 0.14 0.29 −183.32 32 2 −0.54 0.2 0.11 0.31 −0.34 0.42 0.33 0.31 −105.91 28.97 3 0.22 −0.3 −0.09 −0.29 0.11 −0.29 0.14 0.29 160.40 −1.61 4 0.06 −0.27 −0.15 −0.18 0.26 −0.48 0.16 0.31 295.41 −40.55 5 0.6 −0.35 0.1 −0.41 0.4 −0.41 0.36 0.39 25.63 −7.25 6 0.22 −0.3 −0.09 −0.28 0.11 −0.29 0.14 0.29 160.40 −32 7 0.7 −0.53 0.44 −0.78 0.77 −0.67 0.64 0.66 22.30 −15.50 变量
Variable土壤初始含水量组
Soil initial moisture content柱C1
Column C1柱C2
Column C2均值
Mean*变异系数
SV*/%苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene苯
Benzene萘
Naphthalene1 0.1 0.28 −0.13 0.36 0.12 0.32 −766.67 12.50 2 0.11 0.31 −0.7 0.24 0.41 0.28 −137.29 12.73 3 −0.09 −0.29 0.14 −0.36 0.12 0.33 460.00 −10.77 4 −0.15 −0.18 −0.05 −0.29 0.10 0.24 50.00 −23.40 5 0.1 −0.41 0.44 −0.42 0.27 0.42 62.96 −1.20 6 −0.09 −0.28 0.13 −0.36 0.11 0.32 550.00 −12.50 7 0.44 −0.78 0.6 −0.66 0.52 0.72 15.38 −8.33 注:mean*为相关系数平均绝对值;SV*为相关系数的变异系数;变量1为土壤初始含水量;变量2为淋滤后土壤含水量;变量3为土壤初始有机质含量;变量4为淋滤后土壤有机质含量;变量5为土壤粒径;变量6为填充密度;变量7为采样深度.
Note: mean* is the mean absolute value of the correlation coefficient; SV* is the coefficient of variation of the correlation coefficient; variable 1 is the initial soil water content; variable 2 is the soil water content after leaching; variable 3 is the initial soil organic matter content; variable 4 is the leaching Soil organic matter content after filtration; variable 5 is soil particle size; variable 6 is filling density; variable 7 is sampling depth.表 8 模拟柱不同土层苯和萘的Kd值
Table 8. Kd values of benzene and naphthalene in different soil layers of soil column
土层
Soil layer柱A1
Column A1柱A2
Column A2柱A3
Column A3柱B1
Column B1柱B2
Column B2柱B3
Column B3柱C1
Column C1柱C2
Column C2苯 ① 0.78 0.73 0.56 0.27 0.73 0.09 0.73 7.12 ② 2.31 1.34 0.34 6.94 1.34 0.23 1.34 1.74 ③ 35 0.12 0.43 0.70 0.12 0.17 0.12 0.32 ④ 1.26 0.25 2.52 1.36 0.25 1.77 0.25 0.27 Mean 1.80 0.61 0.96 2.32 0.61 0.57 0.61 2.36 SV 44.45% 69.91% 58.92% 萘 ① 176.83 68.00 15.58 126.08 68.00 287.72 68.00 171.70 ② 25.57 47.14 8.94 69.64 47.14 238.96 47.14 20.88 ③ 10.31 7.82 2.96 6.90 7.82 13.36 7.82 3.14 ④ 12.11 6.48 1.43 13.91 6.48 9.51 6.48 1.49 Mean 56.21 32.36 7.23 54.13 32.36 137.39 32.36 49.30 SV 62.63% 60.65% 20.74% -
[1] 滕应, 骆永明, 沈仁芳, 等. 场地土壤-地下水污染物多介质界面过程与调控研究进展与展望 [J]. 土壤学报, 2020, 57(6): 1333-1340. TENG Y, LUO Y M, SHEN R F, et al. Research progress and perspective of the multi-medium interface process and regulation principle of pollutants in site soil-groundwater [J]. Acta Pedologica Sinica, 2020, 57(6): 1333-1340(in Chinese).
[2] LIU Q Y, WU Y H, ZHOU Y Z, et al. A novel method to analyze the spatial distribution and potential sources of pollutant combinations in the soil of Beijing urban parks [J]. Environmental Pollution, 2021, 284: 117191. doi: 10.1016/j.envpol.2021.117191 [3] CHEN D X, ZHAO H, ZHAO J, et al. Mapping the finer-scale carcinogenic risk of polycyclic aromatic hydrocarbons (PAHs) in urban soil-A case study of Shenzhen City, China [J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6735. doi: 10.3390/ijerph17186735 [4] ZHAO S, WANG J H, FENG S J, et al. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review [J]. Science of the Total Environment, 2022, 804: 150140. doi: 10.1016/j.scitotenv.2021.150140 [5] 潘敏. 土壤环境因子对有机污染物迁移转化的影响 [J]. 现代农业科技, 2010(17): 280-282. doi: 10.3969/j.issn.1007-5739.2010.17.177 PAN M. Effects of soil environmental factors on the migration and transformation of organic pollutants [J]. Modern Agricultural Sciences and Technology, 2010(17): 280-282(in Chinese). doi: 10.3969/j.issn.1007-5739.2010.17.177
[6] ZHAN T L T, GUAN C, XIE H J, et al. Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: A field and theoretical investigation [J]. Science of the Total Environment, 2014, 470/471: 290-298. doi: 10.1016/j.scitotenv.2013.09.081 [7] BOULANGÉ M, LORGEOUX C, BIACHE C, et al. Aging as the main factor controlling PAH and polar-PAC (polycyclic aromatic compound) release mechanisms in historically coal-tar-contaminated soils [J]. Environmental Science and Pollution Research, 2019, 26(2): 1693-1705. doi: 10.1007/s11356-018-3708-1 [8] TOMLINSON D W, RIVETT M O, WEALTHALL G P, et al. Understanding complex LNAPL sites: Illustrated handbook of LNAPL transport and fate in the subsurface [J]. Journal of Environmental Management, 2017, 204: 748-756. doi: 10.1016/j.jenvman.2017.08.015 [9] THOMÉ A, CECCHIN I, REGINATTO C, et al. Biostimulation and rainfall infiltration: Influence on retention of biodiesel in residual clayey soil [J]. Environmental Science and Pollution Research International, 2017, 24(10): 9594-9604. doi: 10.1007/s11356-017-8670-9 [10] 刘明遥. 石油烃在包气带中迁移转化规律与数值模拟研究: 以东北某石油污染场地为例[D]. 长春: 吉林大学, 2014. LIU M Y. Study on migration and transformation, and numerical simulation of petroleum hydrocarbons in aeration zone—for example in a petroleum contaminated site in the northeast[D]. Changchun: Jilin University, 2014(in Chinese).
[11] 任璇. LNAPLs在包气带层状非均质界面迁移规律的研究[D]. 长春: 吉林大学, 2019. REN X. Study on the migration law of LNAPLs at the layered heterogeneous interface in the vadose zone[D]. Changchun: Jilin University, 2019(in Chinese).
[12] 潘峰, 陈丽华, 付素静, 等. 石油类污染物在陇东黄土塬区土壤中迁移的模拟试验研究 [J]. 环境科学学报, 2012, 32(2): 410-418. doi: 10.13671/j.hjkxxb.2012.02.027 PAN F, CHEN L H, FU S J, et al. A study on the transport performance of the petroleum contaminants in soil of the Longdong loess plateau [J]. Acta Scientiae Circumstantiae, 2012, 32(2): 410-418(in Chinese). doi: 10.13671/j.hjkxxb.2012.02.027
[13] 郭蕾蕾. 挥发性有机污染物苯在包气带的运移规律及污防控制初探[D]. 成都: 成都理工大学, 2016. GUO L L. The migration law of volatile organic pollutant benzene in the vadose zone and its pollution prevention control [D]. Chengdu: Chengdu University of Technology, 2016(in Chinese).
[14] 王燕河. 有机污染物在包气带中迁移转化模型研究[D]. 长春: 吉林大学, 2013. WANG Y H. Model study on the migration and transformation of organic pollutants in vadose zone[D]. Changchun: Jilin University, 2013(in Chinese).
[15] 夏凤英. 石油类场地典型挥发/半挥发性污染物分布及环境风险研究[D]. 北京: 北京工商大学, 2010. XIA F Y. Research on the distribution and environmental risk of typical volatile/semi-volatile pollutants in petroleum sites [D]. Beijing: Beijing Technology and Business University, 2010(in Chinese).
[16] 王喜龙, 徐福留, 王学军, 等. 天津污灌区苯并(a)芘的分布和迁移通量模型 [J]. 环境科学学报, 2003, 23(1): 88-93. doi: 10.3321/j.issn:0253-2468.2003.01.018 WANG X L, XU F L, WANG X J, et al. Fugacity modeling of benzo(a)Pyrene in wastewater irrigated area of Tianjin [J]. Acta Scientiae Circumstantiae, 2003, 23(1): 88-93(in Chinese). doi: 10.3321/j.issn:0253-2468.2003.01.018
[17] 王卓. 垃圾填埋场地下水有机污染物与胶体的协同迁移机制及其模拟预测研究[D]. 长春: 吉林大学, 2018. WANG Z. Research on the migration and transformition mechenism of organic contaminant with colloids in landfill groundwater[D]. Changchun: Jilin University, 2018(in Chinese).
[18] 骆永明. 中国污染场地修复的研究进展、问题与展望 [J]. 环境监测管理与技术, 2011, 23(3): 1-6. doi: 10.3969/j.issn.1006-2009.2011.03.002 LUO Y M. Contaminated site remediation in China: Progresses, problems and prospects [J]. The Administration and Technique of Environmental Monitoring, 2011, 23(3): 1-6(in Chinese). doi: 10.3969/j.issn.1006-2009.2011.03.002
[19] 马妍, 王盾, 徐竹, 等. 北京市工业污染场地修复现状、问题及对策 [J]. 环境工程, 2017, 35(10): 120-124. doi: 10.13205/j.hjgc.201710025 MA Y, WANG D, XU Z, et al. Current situation, problems and countermeasures of industrial contaminated sites remediation in Beijing [J]. Environmental Engineering, 2017, 35(10): 120-124(in Chinese). doi: 10.13205/j.hjgc.201710025
[20] 杨悦锁, 陈煜, 李盼盼, 等. 土壤、地下水中重金属和多环芳烃复合污染及修复研究进展 [J]. 化工学报, 2017, 68(6): 2219-2232. YANG Y S, CHEN Y, LI P P, et al. Research progress on co-contamination and remediation of heavy metals and polycyclic aromatic hydrocarbons in soil and groundwater [J]. CIESC Journal, 2017, 68(6): 2219-2232(in Chinese).
[21] HU R Y, LIU G J, ZHANG H, et al. Odor pollution due to industrial emission of volatile organic compounds: A case study in Hefei, China [J]. Journal of Cleaner Production, 2020, 246: 119075. doi: 10.1016/j.jclepro.2019.119075 [22] 楼春, 钟茜. 焦化厂场地土壤污染分布特征分析 [J]. 中国资源综合利用, 2019, 37(4): 177-179. LOU C, ZHONG X. Analysis on distribution characteristics of soil pollution in coking plant site [J]. China Resources Comprehensive Utilization, 2019, 37(4): 177-179(in Chinese).
[23] 冯嫣, 吕永龙, 焦文涛, 等. 北京市某废弃焦化厂不同车间土壤中多环芳烃(PAHs)的分布特征及风险评价 [J]. 生态毒理学报, 2009, 4(3): 399-407. FENG Y, LYU Y L, JIAO W T, et al. Distribution and risk of polycyclic aromatic hydrocarbons in soils from different workshops of an abandoned coking factory in Beijing [J]. Asian Journal of Ecotoxicology, 2009, 4(3): 399-407(in Chinese).
[24] 王培俊, 刘俐, 李发生, 等. 西南某焦化场地土壤中典型污染物的特征分布 [J]. 煤炭学报, 2011, 36(9): 1587-1592. doi: 10.13225/j.cnki.jccs.2011.09.036 WANG P J, LIU L, LI F S, et al. Characteristic distribution of typical contaminants in the soil of a coking plant site in the southwest of China [J]. Journal of China Coal Society, 2011, 36(9): 1587-1592(in Chinese). doi: 10.13225/j.cnki.jccs.2011.09.036
[25] ZHANG R H, JIANG L, JIANG D D, et al. Peculiar attenuation of soil toluene at contaminated coking sites [J]. Chemosphere, 2020, 255: 126957. doi: 10.1016/j.chemosphere.2020.126957 [26] 李群, 李梅, 李杨, 等. 某大型焦化厂地块土壤中PAHs分布特征 [J]. 生态与农村环境学报, 2021, 37(12): 1623-1632. doi: 10.19741/j.issn.1673-4831.2021.0564 LI Q, LI M, LI Y, et al. Analysis on distribution characteristics of soil polycyclic aromatic hydrocarbons (PHAs) in a large coking plant site [J]. Journal of Ecology and Rural Environment, 2021, 37(12): 1623-1632(in Chinese). doi: 10.19741/j.issn.1673-4831.2021.0564
[27] MENG X P, CHEN H H, WU M M. Pollution characteristics of polycyclic aromatic hydrocarbons in unsaturated zone of the different workshops at a large iron and steel industria site of Beijing, China [J]. Polish Journal of Environmental Studies, 2020, 30: 781-792. doi: 10.15244/pjoes/123920 [28] 付向明. 多环芳烃菲在包气带中的迁移转化规律研究[D]. 长春: 吉林大学, 2007. FU X M. Study on the migration and transformation law of polycyclic aromatic phenanthrenes in the vadose zone [D]. Changchun: Jilin University, 2007(in Chinese).
[29] 田文杰. 模拟酸雨作用下红壤中多环芳烃的稳定性及释放机制研究[D]. 北京: 中国矿业大学(北京), 2012. TIAN W J. Study on stability and release mechanism of polycyclic aromatic hydrocarbons from red soil under simulated acid rain[D]. Beijing: China University of Mining & Technology, Beijing, 2012(in Chinese).
[30] 乔肖翠, 何江涛, 杨蕾, 等. DOM及pH对典型PAHs在土壤中迁移影响模拟实验研究 [J]. 农业环境科学学报, 2014, 33(5): 943-950. doi: 10.11654/jaes.2014.05.017 QIAO X C, HE J T, YANG L, et al. Influences of DOM and pH on PAHs migrations in soil columns [J]. Journal of Agro-Environment Science, 2014, 33(5): 943-950(in Chinese). doi: 10.11654/jaes.2014.05.017
[31] 裴丽欣. 粘性土的不同特征对多环芳烃阻隔能力影响研究[D]. 武汉: 中国地质大学, 2011. PEI L X. Blocking ability analysis for cochesive soil of different characteristics to PAHs[D]. Wuhan: China University of Geosciences, 2011(in Chinese).
[32] 薛镇坤, 左锐, 王金生, 等. 石油烃在非均质包气带中的吸附作用及迁移规律 [J]. 环境科学研究, 2020, 33(4): 1028-1036. doi: 10.13198/j.issn.1001-6929.2019.09.05 XUE Z K, ZUO R, WANG J S, et al. Migration of petroleum pollutants in strong heterogeneous vadose zones [J]. Research of Environmental Sciences, 2020, 33(4): 1028-1036(in Chinese). doi: 10.13198/j.issn.1001-6929.2019.09.05
[33] 中华人民共和国环境保护部. 土壤和沉积物 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 605—2011[S]. 2011 Ministry of Environmental Protection of the People's Republic of China . Soil and sediment-Determination of volatile organic compounds-Purge and trap gas chromatography/mass spectrometry method: HJ 605—2011[S]. 2011(in Chinese).
[34] 中华人民共和国环境保护部. 水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法: HJ 639—2012[S]. 北京: 中国环境科学出版社, 2013. Ministry of Environmental Protection of the People's Republic of China. Water quality-Determination of volatile organic compounds-Purge and trap/gas chromatography-mass spectrometer: HJ 639—2012[S]. Beijing: China Environment Science Press, 2013(in Chinese).
[35] QI W X, QU J H, LIU H J, et al. Partitioning and sources of PAHs in wastewater receiving streams of Tianjin, China [J]. Environmental Monitoring and Assessment, 2012, 184(4): 1847-1855. doi: 10.1007/s10661-011-2083-x [36] 岳钧. 基于柱实验的农田土壤有机质吸附解吸动态研究[D]. 北京: 中国地质科学院, 2021. YUE J. Adsorption and desorption dynamics of organic carbon in farmland soil based on column experiment[D]. Beijing: Chinese Academy of Geological Sciences, 2021(in Chinese).
[37] DETWILER R P, HALL C A S. The global carbon-cycle - response [J]. Science, 1988, 241(4874): 1738-1739. doi: 10.1126/science.241.4874.1738 [38] 霍丽娟, 王美玲, 赵慧超, 等. 不同组成有机质对土壤中砷迁移行为的影响 [J]. 地球与环境, 2022, 50(2): 184-191. HUO L J, WANG M L, ZHAO H C, et al. Effects of natural organic matter with different composition on the mobility of arsenic in soil [J]. Earth and Environment, 2022, 50(2): 184-191(in Chinese).
[39] 陈记文, 薛强, 刘磊, 等. 非平衡吸附模型在研究渗滤液对土壤污染影响中的应用 [J]. 岩土力学, 2006, 27(12): 2186-2190. doi: 10.3969/j.issn.1000-7598.2006.12.019 CHEN J W, XUE Q, LIU L, et al. Application of non-equilibrium adsorption model to study of influence of waste landfill leachate on soil pollution [J]. Rock and Soil Mechanics, 2006, 27(12): 2186-2190(in Chinese). doi: 10.3969/j.issn.1000-7598.2006.12.019
[40] GUGGENBERGER G, ZECH W. Dissolved organic carbon control in acid forest soils of the Fichtelgebirge (Germany) as revealed by distribution patterns and structural composition analyses [J]. Geoderma, 1993, 59(1/2/3/4): 109-129. [41] KALBITZ K, SCHWESIG D, RETHEMEYER J, et al. Stabilization of dissolved organic matter by sorption to the mineral soil [J]. Soil Biology and Biochemistry, 2005, 37(7): 1319-1331. doi: 10.1016/j.soilbio.2004.11.028 [42] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review [J]. Soil Science, 2000, 165(4): 277-304. doi: 10.1097/00010694-200004000-00001 [43] 王伟. 疏水性有机污染物在水-土/沉积物体系中的环境行为与归趋[D]. 杭州: 浙江大学, 2011. WANG W. Environmental fate and behavior of hydrophobic organic compounds (HOCs) in water-sediment/soil system[D]. Hangzhou: Zhejiang University, 2011(in Chinese).
[44] 雷沛, 张洪, 王超, 等. 沉积物水界面污染物迁移扩散的研究进展 [J]. 湖泊科学, 2018, 30(6): 1489-1508. doi: 10.18307/2018.0602 LEI P, ZHANG H, WANG C, et al. Migration and diffusion for pollutants across the sediment-water interface in lakes: A review [J]. Journal of Lake Sciences, 2018, 30(6): 1489-1508(in Chinese). doi: 10.18307/2018.0602