-
工业发展过程中产生的危险废物通常具有腐蚀性、毒性、反应性或感染性等一种或多种特性,不仅对当地环境造成影响,严重时可危害人类健康. 目前,危险废物的处理方式有填埋、焚烧、固化和化学处理等,处置过程中难免会产生各种二次污染物,并通过大气和水等环境介质进入到土壤中,对土壤、地下水及周边生态环境造成影响[1-3]. 危险废物处置利用单位对本场地和周边用地的生态环境影响具有长期性和隐蔽性,一旦造成污染后往往影响范围较广、难以修复,且可能通过植物吸收等途径在食物链中积累[4]. 因此,关注危废处置场地环境现状十分必要. 近年来,随着危险废物处置利用技术的不断推广应用,危险废物处置利用企业引起的潜在环境污染问题越来越受到人们的广泛关注,尤其以危废焚烧源的排放、危废填埋源对周边生态环境和人体健康影响、危废收集利用企业运行中的二次污染影响等问题引起国内外学者的极大兴趣[5-7]. 有研究表明,危废处置场周边土壤重金属污染情况与危废处置方式密切相关,其中焚烧造成的污染最为严重[8-10]. 但同时也存在另一种观点认为处置场周边土壤重金属的污染并非主要受处置方式的影响,其它外部影响也较为显著且不同重金属主要污染源也有所差异[11-12].
目前,危废处置相关研究多聚焦于单一处置方式下的影响,对各类处置方式以及多种方式复合影响的对比评估研究较少. 本文以上海市6家4种类型危废处置利用企业周边表层(0—20 cm)土壤为研究对象,采用地累积指数法、内梅罗综合污染指数法、主成分分析和潜在生态风险指数法,对研究区域表层土壤重金属分布累积情况、可能的来源及潜在生态风险进行分析评价,对比分析其累积特征,明确重金属对不同危废处置方式累积响应,分析其潜在生态风险差异,以期为危废处理处置企业污染风险管控提供参考.
典型危废处置利用企业周边土壤重金属分布特征、来源及风险评价
Distribution characteristics, sources analysis and potential ecological risk assessment of heavy metals in soils surrounding typical hazardous waste disposal and utilization plants
-
摘要: 为探讨典型危险废物处置企业周边表层土壤重金属的分布特征和污染来源,以上海市4种典型危险废物处置利用企业周边土壤为研究对象,采集并检测表层土壤中7种重金属(Pb、Hg、Cd、Ni、Sb、Cu、As)的含量. 运用地累积指数法、内梅罗综合污染指数法和潜在生态风险指数法评价重金属污染特征,采用多元统计方法分析重金属来源. 结果表明,研究区域土壤中Cu、Pb和Cd存在不同程度的累积,且Cd的累积程度最大;4种类型危废处置利用企业周边土壤重金属整体上处于轻度污染水平,但填埋焚烧复合处置和危废回收处置企业周边分别有11%和10%的点位达重度污染等级. 潜在生态风险评价结果显示,研究区域7种重金属的综合潜在风险指数均值为118.84,其中Cd和Hg的贡献率最高,危废回收利用处置企业周边土壤潜在生态风险程度最高,其次为填埋焚烧复合处置企业,应予以重视.Abstract: In order to explore the distribution, sources and potential ecological risk in the surface soils surrounding the hazardous waste disposal and utilization plants, four typical hazardous waste disposal and utilization plants in Shanghai were selected in this study, and the contents of seven heavy metals (Pb、Hg、Cd、Ni、Sb、Cu、As) in the surface soils were determined. Geo-accumulation index, Nemerow comprehensive pollution index and potential ecological risk index were used to assess the pollution characteristics. Multivariate statistical analysis was used to investigate the pollution sources in the study area. The results showed that Cd was the primary pollutant, followed by Cu and Pb. The heavy metals in the soil surrounding the four types of hazardous waste disposal and utilization plants were at the level of slight pollution as a whole. However, 11% and 10% of the points around landfill incineration complex treatment plant and hazardous waste recycling plant reached the level of heavy pollution, respectively. The mean value of the potential ecological risk index of the seven heavy metals was 118.48, among which Cd and Hg contributed more. The potential ecological risk assessment showed that the risk of soils surrounding the hazardous waste recycling plant was the highest, followed by landfill incineration complex treatment plant, deserving much attention.
-
表 1 研究区域基本情况
Table 1. The general situation of disposal plants
研究区域
Study area处置工艺
Disposal method处置类型
Types of hazardous waste年处理量/万t
Annual disposal capacity点位数
Number of sampling pointsTM 填埋 生活垃圾、危废 已封场 9 HH 填埋、焚烧、回收利用 医废、危废、工业固废 15 18 HS 回收再生产 含金属废液、电子元件 2.6(HS1), 1(HS2) 20 FS 焚烧 危废、工业固废 3.4(FS1), 3.58(FS2) 23 表 2 土壤重金属潜在生态风险评价分级标准
Table 2. Classification criterion and potential ecological risk index of heavy metals
级别
Pollution levels$ {\mathit{E}}_{\mathit{r}} $ RI 轻微生态风险 <40$ {E}_{\mathrm{r}} $ RI<150 中度生态风险 40≤ <80$ {E}_{\mathrm{r}} $ 150≤RI<300 强生态风险 80≤ <160$ {E}_{\mathrm{r}} $ 300≤RI<600 强烈生态风险 160≤ <320$ {E}_{\mathrm{r}} $ RI≥600 极强生态风险 ≥320$ {E}_{\mathrm{r}} $ 表 3 危废处置利用企业周边表层土壤重金属含量统计结果(n=70)
Table 3. Descriptive statistics for heavy metals in soil in the study area (n=70)
重金属元素
Elements最小值/ (mg·kg−1)
Minimum最大值/ (mg·kg−1)
Maximum平均值/ (mg·kg−1)
Average中位值/ (mg·kg−1)
Median标准偏差/ (mg·kg−1)
Standard deviation变异系数/%
Coefficient of variation背景值/ (mg·kg−1)
BackgroundCu 16.00 133.00 30.63 29.00 14.17 46 27.83 Pb 14.30 63.90 25.92 25.55 7.96 31 23.83 Cd 0.05 0.40 0.13 0.12 0.07 51 0.11 Ni 28.00 68.00 39.30 38.00 6.72 17 41.33 As 3.59 11.40 5.89 5.69 1.48 25 5.66 Sb 0.23 4.21 0.64 0.53 0.57 89 0.73 Hg 0.02 0.28 0.08 0.07 0.05 65 0.07 表 4 研究区土壤重金属的内梅罗综合污染指数评价特征值统计表
Table 4. Eigenvalue statistics of integrated pollution index of heavy metals in the study area
P综
Integrated pollution index不同污染等级点位占比/% Proportion of each pollution level 清洁
Clean预警
Precautionary轻度污染
Slightly polluted中度污染
Moderately polluted重度污染
Heavily pollutedTM 1.13 0.00 33.33 66.67 0.00 0.00 HH 1.73 0.00 5.56 66.67 16.67 11.11 HS 1.84 0.00 5.00 70.00 15.00 10.00 FS 1.28 0.00 17.39 73.91 8.70 0.00 表 5 重金属之间的相关性关系
Table 5. Pearson correlation coefficients of heavy metals in study area
企业
Plants重金属
ElementsCu Pb Cd Ni As Sb Hg TM
n=9Cu 1 Pb 0.800** 1 Cd 0.814** 0.549 1 Ni 0.898** 0.486 0.805** 1 As 0.945** 0.821** 0.691* 0.832** 1 Sb 0.865** 0.622 0.788* 0.761* 0.824** 1 Hg 0.897** 0.910** 0.667* 0.705* 0.910** 0.730* 1 HH
n=18Cu 1 Pb 0.799** 1 Cd 0.621** 0.664** 1 Ni 0.316 0.381 0.095 1 As 0.535* 0.415 0.361 0.258 1 Sb 0.429 0.686** 0.589* 0.613** 0.245 1 Hg 0.270 0.339 0.569* 0.218 0.018 0.531* 1 HS
n=20Cu 1 Pb 0.896** 1 Cd 0.369 0.554* 1 Ni 0.900** 0.863** 0.349 1 As 0.694** 0.823** 0.503* 0.814** 1 Sb 0.985** 0.977** 0.937** 0.942** 0.868** 1 Hg 0.204 0.572** 0.616** 0.154 0.448* 0.254 1 FS
n=23Cu 1 Pb 0.784** 1 Cd 0.286 0.267 1 Ni 0.454* 0.526** 0.129 1 As 0.453* 0.528** -0.202 0.511* 1 Sb 0.556** 0.750** 0.459* 0.124 0.184 1 Hg 0.003 0.104 -0.046 0.132 -0.073 0.053 1 表 6 研究区表层土壤重金属元素主成分分析结果
Table 6. Principal component analysis for heavy metals in surface soils from the study area
研究区域
Plants项目
ItemsPC1 PC2 PC3 研究区域
Plants项目
ItemsPC1 PC2 PC3 TM Cu 0.988 − − HH Cu 0.812 −0.368 −0.147 Pb 0.823 − − Pb 0.886 −0.135 −0.049 Cd 0.841 − − Cd 0.803 0.100 −0.468 Ni 0.873 − − Ni 0.538 0.096 0.803 As 0.958 − − As 0.539 −0.667 0.041 Sb 0.888 − − Sb 0.821 0.331 0.268 Hg 0.925 − − Hg 0.575 0.650 −0.235 特征值 5.685 − − 特征值 3.675 1.149 1.018 方差贡献率% 81.210 − − 方差贡献率% 52.498 16.416 14.540 累计贡献率% 81.210 − − 累计贡献率% 52.498 68.914 83.454 HS Cu 0.951 −0.211 − FS Cu 0.864 0.016 −0.081 Pb 0.997 0.071 − Pb 0.946 0.012 0.035 Cd 0.961 0.239 − Cd 0.378 0.759 −0.035 Ni 0.946 −0.249 − Ni 0.640 −0.417 0.149 As 0.922 −0.107 − As 0.603 −0.652 −0.198 Sb 0.984 −0.103 − Sb 0.739 0.476 −0.002 Hg 0.362 0.931 − Hg 0.078 −0.039 0.985 特征值 5.667 1.057 − 特征值 3.109 1.403 1.040 方差贡献率% 80.951 15.102 − 方差贡献率% 44.417 20.038 14.851 累计贡献率% 80.951 96.053 − 累计贡献率% 44.417 64.455 79.306 表 7 研究区域重金属潜在生态风险评价
Table 7. Assessment of the potential ecological risk of heavy metals in soil
Er RI Cu Pb Cd Ni As Sb Hg 最小值 3.23 2.38 15.00 3.54 5.34 1.66 5.50 51.23 最大值 23.89 13.41 150.00 8.23 21.41 27.73 136.64 329.92 平均值 5.75 5.75 42.23 4.86 11.82 8.08 40.35 118.84 标准差 2.58 1.94 26.96 0.89 2.87 5.55 27.03 49.30 对RI贡献率% 4.84 4.84 35.54 4.09 9.95 6.80 33.95 表 8 不同类型危废处置利用企业周边土壤重金属潜在生态风险评价特征值
Table 8. Eigenvalue statistics of potential ecological risk of heavy metals in soil surrounding different types of hazardous waste disposal enterprises
危废处置企业
PlantsEr RI Cu Pb Cd Ni As Sb Hg 平均值 TM 5.34 4.61 34.07 5.02 9.55 8.15 36.08 102.82 HH 5.02 5.78 54.76 4.10 11.14 12.82 24.77 118.39 HS 6.60 7.54 53.72 4.73 14.17 7.83 57.28 151.87 FS 5.73 4.60 25.63 5.51 11.22 4.43 39.49 96.62 生态
风险
等级
比例/%轻度 TM 100 100 66.67 100 100 100 66.67 100 HH 100 100 44.44 100 100 100 94.44 77.78 HS 100 100 40.00 100 100 100 35.00 55.00 FS 100 100 95.65 100 100 100 65.22 95.65 中度 TM 0 0 33.33 0 0 0 33.33 0 HH 0 0 38.89 0 0 0 0 22 HS 0 0 40.00 0 0 0 35.00 45.00 FS 0 0 4.35 0 0 0 26.09 4.35 强 TM 0 0 0 0 0 0 0 0 HH 0 0 16.67 0 0 0 5.56 0 HS 0 0 20.00 0 0 0 30.00 0 FS 0 0 0 0 0 0 8.70 0 -
[1] CHAUDHARY R, NAIN P, KUMAR A. Temporal variation of leachate pollution index of Indian landfill sites and associated human health risk [J]. Environmental Science and Pollution Research International, 2021, 28(22): 28391-28406. doi: 10.1007/s11356-021-12383-1 [2] RIMMER D L, VIZARD C G, PLESS-MULLOLI T, et al. Metal contamination of urban soils in the vicinity of a municipal waste incinerator: One source among many [J]. Science of the Total Environment, 2006, 356(1/2/3): 207-216. [3] ZHANG H, HE P J, SHAO L M. Flow analysis of heavy metals in MSW incinerators for investigating contamination of hazardous components [J]. Environmental Science & Technology, 2008, 42(16): 6211-6217. [4] HUANG J, HUANG B T. Study on the impact of the soil and shallow groundwater quality by a hazardous waste incinerator in Shanghai [J]. IOP Conference Series Earth and Environmental Science, 2020, 569(1): 012031. doi: 10.1088/1755-1315/569/1/012031 [5] 辛宝平, 王佳. 涉重危废概念的提出及其资源化利用 [J]. 环境工程学报, 2022, 16(1): 1-9. doi: 10.12030/j.cjee.202111146 XIN B P, WANG J. Scientific definition of hazardous wastes containing heavy metals and their resource utilization [J]. Chinese Journal of Environmental Engineering, 2022, 16(1): 1-9(in Chinese). doi: 10.12030/j.cjee.202111146
[6] DUTTA D, GOEL S, KUMAR S. Health risk assessment for exposure to heavy metals in soils in and around E-waste dumping site [J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107269. doi: 10.1016/j.jece.2022.107269 [7] WANG C, SHAO N N, XU J Y, et al. Pollution emission characteristics, distribution of heavy metals, and particle morphologies in a hazardous waste incinerator processing phenolic waste [J]. Journal of Hazardous Materials, 2020, 388: 121751. doi: 10.1016/j.jhazmat.2019.121751 [8] 倪晓坤, 封雪, 于勇, 等. 典型固废处理处置场周边土壤重金属污染特征和成因分析 [J]. 农业环境科学学报, 2019, 38(9): 2146-2156. doi: 10.11654/jaes.2019-0504 NI X K, FENG X, YU Y, et al. Pollution characteristics and source analysis of heavy metals in soils surrounding a typical solid waste disposal plant [J]. Journal of Agro-Environment Science, 2019, 38(9): 2146-2156(in Chinese). doi: 10.11654/jaes.2019-0504
[9] 吕占禄, 张金良, 陆少游, 等. 某区生活垃圾焚烧发电厂周边及厂区内土壤中重金属元素的污染特征及评价 [J]. 环境科学, 2019, 40(5): 2483-2492. doi: 10.13227/j.hjkx.201810030 LÜ Z L, ZHANG J L, LU S Y, et al. Pollution characteristics and evaluation of heavy metal pollution in surface soil around a municipal solid waste incineration power plant [J]. Environmental Science, 2019, 40(5): 2483-2492(in Chinese). doi: 10.13227/j.hjkx.201810030
[10] FERRÉ-HUGUET N, NADAL M, MARI M, et al. Monitoring metals near a hazardous waste incinerator. Temporal trend in soils and herbage [J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(2): 130-134. doi: 10.1007/s00128-007-9086-x [11] 冯经昆, 钟山, 孙立文, 等. 重庆某垃圾焚烧厂周边土壤重金属污染分布特征及来源解析 [J]. 环境化学, 2014, 33(6): 969-975. doi: 10.7524/j.issn.0254-6108.2014.06.005 FENG J K, ZHONG S, SUN L W, et al. Spatial distribution and source analysis of heavy metal contamination in soil surrounding a municipal solid waste incineration plant in Chongqing [J]. Environmental Chemistry, 2014, 33(6): 969-975(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.06.005
[12] WEI J X, LI H, LIU J G. Heavy metal pollution in the soil around municipal solid waste incinerators and its health risks in China [J]. Environmental Research, 2022, 203: 111871. doi: 10.1016/j.envres.2021.111871 [13] MÜLLER G. Index of geoaccumulation in sediments of the Rhine River [J]. Geology Journal, 1969, 2: 108-118. [14] ĆUJIĆ M, DRAGOVIĆ S, ĐORĐEVIĆ M, et al. Environmental assessment of heavy metals around the largest coal fired power plant in Serbia [J]. CATENA, 2016, 139: 44-52. doi: 10.1016/j.catena.2015.12.001 [15] MOR S, VIG N, RAVINDRA K. Distribution of heavy metals in surface soil near a coal power production unit: Potential risk to ecology and human health [J]. Environmental Monitoring and Assessment, 2022, 194(4): 1-20. [16] 彭驰, 何亚磊, 郭朝晖, 等. 中国主要城市土壤重金属累积特征与风险评价 [J]. 环境科学, 2022, 43(1): 1-10. PENG C, HE Y L, GUO Z H, et al. Characteristics and risk assessment of heavy metals in urban soils of major cities in China [J]. Environmental Science, 2022, 43(1): 1-10(in Chinese).
[17] QIN J Q, HUANG X L. Heavy metal pollution and ecological risk assessment in sediments of the Xiling channel inland waterway Guangdong Province [J]. Asian Agricultural Research, 2019, 11: 40-49. [18] 邓海, 王锐, 严明书, 等. 矿区周边农田土壤重金属污染风险评价 [J]. 环境化学, 2021, 40(4): 1127-1137. doi: 10.7524/j.issn.0254-6108.2020071601 DENG H, WANG R, YAN M S, et al. Risk assessment of heavy metal pollution in farmland soil around mining area [J]. Environmental Chemistry, 2021, 40(4): 1127-1137(in Chinese). doi: 10.7524/j.issn.0254-6108.2020071601
[19] HAKANSON L. An ecological risk index for aquatic pollution control. a sedimentological approach [J]. Water Research, 1980, 14(8): 975-1001. doi: 10.1016/0043-1354(80)90143-8 [20] KE X, GUI S F, HUANG H, et al. Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China [J]. Chemosphere, 2017, 175: 473-481. doi: 10.1016/j.chemosphere.2017.02.029 [21] JIANG Y X, CHAO S H, LIU J W, et al. Source apportionment and health risk assessment of heavy metals in soil for a township in Jiangsu Province, China [J]. Chemosphere, 2017, 168: 1658-1668. doi: 10.1016/j.chemosphere.2016.11.088 [22] WANG Y Z, DUAN X J, WANG L. Spatial distribution and source analysis of heavy metals in soils influenced by industrial enterprise distribution: Case study in Jiangsu Province [J]. Science of the Total Environment, 2020, 710: 134953. doi: 10.1016/j.scitotenv.2019.134953 [23] 钟山, 高慧, 张漓衫, 等. 平原典型垃圾焚烧厂周边土壤重金属分布特征及污染评价 [J]. 生态环境学报, 2014, 23(1): 164-169. doi: 10.3969/j.issn.1674-5906.2014.01.024 ZHONG S, GAO H, ZHANG L S, et al. Spatial distribution and pollution evaluation of heavy metal in soils surrounding a typical municipal solid waste incineration plant [J]. Ecology and Environmental Sciences, 2014, 23(1): 164-169(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.01.024
[24] CHEN H R, WANG L, HU B F, et al. Potential driving forces and probabilistic health risks of heavy metal accumulation in the soils from an e-waste area, southeast China [J]. Chemosphere, 2022, 289: 133182. doi: 10.1016/j.chemosphere.2021.133182 [25] ZHANG Q, YE J J, CHEN J Y, et al. Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China [J]. Environmental Pollution, 2014, 185: 258-265. doi: 10.1016/j.envpol.2013.11.003 [26] WONG M H, WU S C, DENG W J, et al. Export of toxic chemicals - A review of the case of uncontrolled electronic-waste recycling [J]. Environmental Pollution, 2007, 149(2): 131-140. doi: 10.1016/j.envpol.2007.01.044 [27] LI W L, A CHAL V. Environmental and health impacts due to e-waste disposal in China - A review [J]. Science of the Total Environment, 2020, 737: 139745. doi: 10.1016/j.scitotenv.2020.139745 [28] LV J S, LIU Y, ZHANG Z L, et al. Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multi-scale variability of heavy metals in soils [J]. Journal of Hazardous Materials, 2013, 261: 387-397. doi: 10.1016/j.jhazmat.2013.07.065 [29] 韩玉丽, 邱尔发, 王亚飞, 等. 北京市土壤和TSP中重金属分布特征及相关性研究 [J]. 生态环境学报, 2015, 24(1): 146-155. doi: 10.16258/j.cnki.1674-5906.2015.01.022 HAN Y L, QIU E F, WANG Y F, et al. Study on heavy metals distribution and correlation in soil and TSP of Beijing [J]. Ecology and Environmental Sciences, 2015, 24(1): 146-155(in Chinese). doi: 10.16258/j.cnki.1674-5906.2015.01.022
[30] 赵曦, 黄艺, 李娟, 等. 大型垃圾焚烧厂周边土壤重金属含量水平、空间分布、来源及潜在生态风险评价 [J]. 生态环境学报, 2015, 24(6): 1013-1021. doi: 10.16258/j.cnki.1674-5906.2015.06.016 ZHAO X, HUANG Y, LI J, et al. Environmental levels, spatial distribution, sources and potential ecological risk of heavy metals in soils surrounding a large solid waste incinerator [J]. Ecology and Environmental Sciences, 2015, 24(6): 1013-1021(in Chinese). doi: 10.16258/j.cnki.1674-5906.2015.06.016
[31] 戚洁, 王美娥, 汪自强, 等. 北京市近郊区土壤砷累积特征 [J]. 环境科学, 2012, 33(8): 2849-2854. doi: 10.13227/j.hjkx.2012.08.048 QI J, WANG M E, WANG Z Q, et al. Accumulation characteristics of arsenic in suburban soils of Beijing [J]. Environmental Science, 2012, 33(8): 2849-2854(in Chinese). doi: 10.13227/j.hjkx.2012.08.048
[32] 万千, 赵静, 韦旭, 等. 电子废弃物拆解车间灰尘中重金属污染特征及职业人群健康风险评价 [J]. 环境化学, 2022, 41(3): 883-892. doi: 10.7524/j.issn.0254-6108.2020110901 WAN Q, ZHAO J, WEI X, et al. Pollution characteristics of heavy metals in the dust from e-waste dismantling workshop and health risk assessment of occupational population [J]. Environmental Chemistry, 2022, 41(3): 883-892(in Chinese). doi: 10.7524/j.issn.0254-6108.2020110901
[33] LEUNG A O W, DUZGOREN-AYDIN N S, CHEUNG K C, et al. Heavy metals concentrations of surface dust from e-waste recycling and its human health implications in southeast China [J]. Environmental Science & Technology, 2008, 42(7): 2674-2680. [34] WU Y Y, LI Y Y, KANG D, et al. Tetrabromobisphenol A and heavy metal exposure via dust ingestion in an e-waste recycling region in Southeast China [J]. Science of the Total Environment, 2016, 541: 356-364. doi: 10.1016/j.scitotenv.2015.09.038 [35] TZORAKI O, ZKERI E, LASITHIOTAKIS M, et al. Trace metals’ contamination in water and soils in the vicinity of a small-medium waste electrical and electronic equipment recycling plant [J]. Environmental Progress & Sustainable Energy, 2020, 39(3): e13343.