-
非甲烷碳氢化合物(non-methane hydrocarbons, NMHCs)是挥发性有机物中重要的一类化合物,其在大气中含量虽微(体积浓度在10-12至10−9数量级),却在大气化学过程中扮演了极其重要的角色[1—2]. NMHCs是近地面臭氧等二次污染物的重要前体物,影响城市或区域空气质量和人体健康[3—4]. 近年来,随着我国社会经济快速发展,近地面臭氧污染问题日益突出,2013—2019年全国74个重点城市臭氧年评价值上升了28.8%,显示臭氧污染呈现快速上升和蔓延态势[5]. 作为臭氧前体物,NMHCs种类繁多、性质各异、来源复杂,既有化石燃料燃烧、工业生产、溶剂挥发等人为源排放,也包括植物等自然源排放[6—8]. 因此,开展NMHCs污染特征及来源分析对有效控制臭氧等二次污染十分必要.
为评价光化学烟雾成因,美国环保署于1994年建立了光化学评价监测网(PAMS),监测分析臭氧及其前体物(NMHCs为重点)的污染特征及来源[9]. 目前,我国学者也开展了一些NMHCs观测研究,主要集中在京津冀[10—12]、长三角[13—14]和珠三角[6,15]等经济发达地区,而在中西部地区进行的相关研究还较少[16—20]. 长沙作为中部地区重要的省会城市之一,2021年污染天气中臭氧超标天数占比45.7%,特别是夏季臭氧污染时有发生[21]. 前期有研究报道了长沙市大气NMHCs污染情况[22—24],但关于不同区域(站点)日变化特征及定量源解析的相关研究还较缺乏.
本研究在长沙市选取了2个代表性点位,采集了夏季不同时间环境空气样品,分析了57种NMHCs化合物的浓度组成、日变化特征,识别了关键活性组分,并利用PMF模型进行了定量来源解析,以期为长沙市精准控制NMHCs排放、改善空气质量提供更为细化的科学依据.
长沙夏季大气非甲烷碳氢污染特征及来源解析
Pollution characteristics and sources apportionments of ambient non-methane hydrocarbons during summer in Changsha
-
摘要: 非甲烷碳氢(NMHCs)是臭氧等二次污染重要前体物. 选择长沙市2个城市站(W和S点)于2017年夏季采集了大气NMHCs样品. 结果显示,观测期间长沙市NMHCs平均体积浓度为(8.67±3.62)×10−9(W)和(12.30±6.01)×10−9(S). 烷烃是最主要组分,贡献了64.7%(W)和60.5%(S);其次是芳香烃,占比21.6%(W)和24.4%(S). 浓度组成及比值日变化特征表明W点NMHCs浓度上午高于下午,主要受机动车排放影响;S点则是早晚高中午低,可能与中午光化学反应强、早高峰机动车排放大等有关. 芳香烃是最重要的活性化合物,贡献了53.9%—56.0%的臭氧生成潜势;异戊二烯和烯烃对等效丙烯浓度的贡献也较大(合计>40%). 长沙市夏季大气NMHCs来源主要有汽油车尾气(25.0%)、工业过程与溶剂使用(20.2%)、生物质燃烧与天然气使用(19.8%)、汽油挥发(17.2%)、柴油车尾气(12.3%)和植物排放(5.5%). 不同站点来源存在差异: W点受汽油车尾气影响最大(30.2%),其次是生物质燃烧与天然气使用(22.6%);而S点主要受工业过程与溶剂使用(23.9%)和汽油车尾气影响(20.2%).Abstract: Non-methane hydrocarbons (NMHCs) are important precursors of ozone and other secondary pollutants. Ambient NMHCs samples were collected at two urban sites (W and S) during summer of 2017 in Changsha. The results showed that average volume concentrations of NMHCs were (8.67±3.62)×10−9 and (12.30±6.01)×10−9 at Site W and Site S, respectively. Alkanes were the most abundant components with contributions of 64.7% (W) and 60.5% (S), followed by aromatics with percentages of 21.6% (W) and 24.4% (S), respectively. The diurnal variations of NMHCs concentrations, compositions and diagnostic ratios illustrated that NMHCs concentrations were higher in the forenoon than those in the afternoon at Site W, which were mainly influenced by vehicle emissions; while, concentrations at Site S were higher in morning and evening but lower in noon, which were probably influenced by strong photochemical reactivity in noon and enhanced vehicle emissions in morning. Aromatics were the most important reactive species and contributed 53.9%—56.0% to ozone formation potentials, while isoprene and alkenes were also contributed largely to propylene-equivalent concentrations (>40%). The main sources of NMHCs in summer air of Changsha were gasoline vehicle exhaust (25.0%), industrial process and solvent use (20.2%), biomass burning and natural gas usage (19.8%), gasoline evaporation (17.2%), diesel vehicle exhaust (12.3%), and plant emission (5.5%). Spatial difference showed that the largest source at Site W was gasoline vehicle exhaust (30.2%), followed by biomass burning and natural gas usage (22.6%), while NMHCs at Site S were mainly influenced by industrial process and solvent use (23.9%) and gasoline vehicle exhaust (20.2%).
-
表 1 采样期间区域内空气质量和气象数据
Table 1. Air quality and meteorological data in sampling areas during sampling period
参数
Parameter采样点W区域
Site W area采样点S区域
Site S area气温/°C 30.9 ± 2.6 30.7 ± 2.5 气压/kPa 99.9 ± 0.3 99.4 ± 0.3 相对湿度/% 59 ± 10 58 ± 9 风速/(m·s−1) 2.6 ± 0.8 2.6 ± 0.9 主导风向 西北 西北 PM2.5小时浓度/(μg·m−3) 25 ± 13 20 ± 7 臭氧小时浓度/(μg·m−3) 87 ± 39 85 ± 38 表 2 长沙市夏季大气臭氧生成潜势和等效丙烯浓度贡献前十的NMHCs化合物
Table 2. Contributions of TOP 10 NMHCs species to ozone formation potentials and propylene-equivalent concentrations in summer air of Changsha
W-OFP W-PEC S-OFP S-PEC 前十化合物
TOP 10 Species百分比/%
Percentage/%前十化合物
TOP 10 Species百分比/%
Percentage/%前十化合物
TOP 10 Species百分比/%
Percentage/%前十化合物
TOP 10 Species百分比/%
Percentage/%间/对-二甲苯 16.5 异戊二烯 28.8 间/对-二甲苯 19.5 1-丁烯 16.0 异戊二烯 9.3 丙烯 7.6 1-丁烯 11.1 间/对二甲苯 9.5 邻二甲苯 6.7 间/对-二甲苯 7.1 邻二甲苯 7.4 丙烯 8.5 甲苯 6.5 异戊烷 4.1 丙烯 6.3 异戊二烯 6.1 丙烯 6.4 1,2,4-三甲基苯 4.1 1,2,4-三甲基苯 5.3 苯乙烯 4.6 1,2,4-三甲基苯 6.0 苯乙烯 4.1 甲苯 5.0 正十二烷 4.1 异戊烷 5.0 1-丁烯 3.6 1,2,3-三甲基苯 4.2 1,2,4-三甲基苯 4.0 1,2,3-三甲基苯 4.5 反式-2-丁烯 3.0 乙苯 3.3 反式-2-丁烯 3.3 乙苯 3.0 邻二甲苯 2.5 异戊烷 3.0 邻二甲苯 3.1 1-丁烯 2.8 甲苯 2.3 间乙基甲苯 2.7 异戊烷 2.8 前十之和 66.8 前十之和 67.1 前十之和 67.7 前十之和 62.0 -
[1] ZHANG X M, XUE Z G, LI H, et al. Ambient volatile organic compounds pollution in China [J]. Journal of Environmental Sciences, 2017, 55: 69-75. doi: 10.1016/j.jes.2016.05.036 [2] WANG F L, DU W, LV S J, et al. Spatial and temporal distributions and sources of anthropogenic NMVOCs in the atmosphere of China: A review [J]. Advances in Atmospheric Sciences, 2021, 38(7): 1085-1100. doi: 10.1007/s00376-021-0317-6 [3] GU S, GUENTHER A, FAIOLA C. Effects of anthropogenic and biogenic volatile organic compounds on Los Angeles air quality [J]. Environmental Science & Technology, 2021, 55(18): 12191-12201. [4] LI F J, TONG S R, JIA C H, et al. Sources of ambient non-methane hydrocarbon compounds and their impacts on O3 formation during autumn, Beijing [J]. Journal of Environmental Sciences, 2022, 114: 85-97. doi: 10.1016/j.jes.2021.08.008 [5] WANG W J, PARRISH D D, WANG S W, et al. Long-term trend of ozone pollution in China during 2014–2020: Distinct seasonal and spatial characteristics and ozone sensitivity [J]. Atmospheric Chemistry and Physics, 2022, 22(13): 8935-8949. doi: 10.5194/acp-22-8935-2022 [6] ZOU Y, DENG X J, ZHU D, et al. Characteristics of 1 year of observational data of VOCs, NOx and O3 at a suburban site in Guangzhou, China [J]. Atmospheric Chemistry and Physics, 2015, 15(12): 6625-6636. doi: 10.5194/acp-15-6625-2015 [7] LIU Y, SHAO M, FU L L, et al. Source profiles of volatile organic compounds (VOCs) measured in China: Part I [J]. Atmospheric Environment, 2008, 42(25): 6247-6260. doi: 10.1016/j.atmosenv.2008.01.070 [8] ZHENG J Y, ZHENG Z Y, YU Y F, et al. Temporal, spatial characteristics and uncertainty of biogenic VOC emissions in the Pearl River Delta region, China [J]. Atmospheric Environment, 2010, 44(16): 1960-1969. doi: 10.1016/j.atmosenv.2010.03.001 [9] UNITED STATES ENVIRONMENTAL PROTECTION AGENCY, Office of Air Quality Planning and Standards. SLAMS/NAMS/PAMS Network Review Guidance [R]. 1998, EPA-454/R-98-003, Research Triangle Park, NC 27711. [10] 李斌, 张鑫, 李娜, 等. 北京市春夏挥发性有机物的污染特征及源解析 [J]. 环境化学, 2018, 37(11): 2410-2418. doi: 10.7524/j.issn.0254-6108.2018011706 LI B, ZHANG X, LI N, et al. Pollution characteristics and source analysis of volatile organic compounds in spring and summer in Beijing [J]. Environmental Chemistry, 2018, 37(11): 2410-2418(in Chinese). doi: 10.7524/j.issn.0254-6108.2018011706
[11] 张利慧, 毋振海, 李斌, 等. 北京市城区春季大气挥发性有机物污染特征 [J]. 环境科学研究, 2020, 33(3): 526-535. ZHANG L H, WU Z H, LI B, et al. Pollution characterizations of atmospheric volatile organic compounds in Spring of Beijing urban area [J]. Research of Environmental Sciences, 2020, 33(3): 526-535(in Chinese).
[12] YAO D, TANG G Q, SUN J, et al. Annual nonmethane hydrocarbon trends in Beijing from 2000 to 2019 [J]. Journal of Environmental Sciences, 2022, 112: 210-217. doi: 10.1016/j.jes.2021.04.017 [13] CAI C J, GENG F H, TIE X X, et al. Characteristics and source apportionment of VOCs measured in Shanghai, China [J]. Atmospheric Environment, 2010, 44(38): 5005-5014. doi: 10.1016/j.atmosenv.2010.07.059 [14] LIU Y H, WANG H L, JING S G, et al. Characteristics and sources of volatile organic compounds (VOCs) in Shanghai during summer: Implications of regional transport [J]. Atmospheric Environment, 2019, 215: 116902. doi: 10.1016/j.atmosenv.2019.116902 [15] 虞小芳, 程鹏, 古颖纲, 等. 广州市夏季VOCs对臭氧及SOA生成潜势的研究 [J]. 中国环境科学, 2018, 38(3): 830-837. YU X F, CHENG P, GU Y G, et al. Formation potential of ozone and secondary organic aerosol from VOCs oxidation in summer in Guangzhou, China [J]. China Environmental Science, 2018, 38(3): 830-837(in Chinese).
[16] 李颖慧, 李如梅, 胡冬梅, 等. 太原市不同功能区环境空气中挥发性有机物特征与来源解析 [J]. 环境化学, 2020, 39(4): 920-930. doi: 10.7524/j.issn.0254-6108.2019110804 LI Y H, LI R M, HU D M, et al. Characteristics and source apportionment of ambient volatile organic compounds of different functional areas in Taiyuan City [J]. Environmental Chemistry, 2020, 39(4): 920-930(in Chinese). doi: 10.7524/j.issn.0254-6108.2019110804
[17] 齐安安, 周小平, 雷春妮, 等. 兰州市功能区环境空气中挥发性有机物关键活性组分与来源解析 [J]. 环境化学, 2020, 39(11): 3083-3093. doi: 10.7524/j.issn.0254-6108.2019080402 QI A A, ZHOU X P, LEI C N, et al. Key active components and sources of volatile organic compounds in ambient air of Lanzhou City [J]. Environmental Chemistry, 2020, 39(11): 3083-3093(in Chinese). doi: 10.7524/j.issn.0254-6108.2019080402
[18] HUI L R, LIU X G, TAN Q W, et al. Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China [J]. Atmospheric Environment, 2018, 192: 55-71. doi: 10.1016/j.atmosenv.2018.08.042 [19] 徐晨曦, 陈军辉, 韩丽, 等. 成都市2017年夏季大气VOCs污染特征、臭氧生成潜势及来源分析 [J]. 环境科学研究, 2019, 32(4): 619-626. XU C X, CHEN J H, HAN L, et al. Analyses of pollution characteristics, ozone formation potential and sources of VOCs atmosphere in Chengdu City in summer 2017 [J]. Research of Environmental Sciences, 2019, 32(4): 619-626(in Chinese).
[20] 李陵, 李振亮, 张丹, 等. 重庆市主城区O3污染时期大气VOCs污染特征及来源解析 [J]. 环境科学, 2021, 42(8): 3595-3603. LI L, LI Z L, ZHANG D, et al. Pollution characteristics and source apportionment of atmospheric VOCs during ozone pollution period in the main urban area of Chongqing [J]. Environmental Science, 2021, 42(8): 3595-3603(in Chinese).
[21] 伏志强, 戴春皓, 王章玮, 等. 长沙市夏季大气臭氧生成对前体物的敏感性分析 [J]. 环境化学, 2019, 38(3): 531-538. doi: 10.7524/j.issn.0254-6108.2018042503 FU Z Q, DAI C H, WANG Z W, et al. Sensitivity analysis of atmospheric ozone formation to its precursors in summer of Changsha [J]. Environmental Chemistry, 2019, 38(3): 531-538(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042503
[22] 刘全, 王跃思, 吴方堃, 等. 长沙大气中VOCs研究 [J]. 环境科学, 2011, 32(12): 3543-3548. LIU Q, WANG Y S, WU F K, et al. Observation and study on atmospheric VOCs in Changsha City [J]. Environmental Science, 2011, 32(12): 3543-3548(in Chinese).
[23] 黄海梅, 戴春皓, 王章玮, 等. 长沙市大气挥发性有机物的组成与来源 [J]. 环境化学, 2019, 38(3): 539-547. doi: 10.7524/j.issn.0254-6108.2018042501 HUANG H M, DAI C H, WANG Z W, et al. Composition and source apportionment of ambient volatile organic compounds in Changsha, China [J]. Environmental Chemistry, 2019, 38(3): 539-547(in Chinese). doi: 10.7524/j.issn.0254-6108.2018042501
[24] ZHANG J G, WANG Y S, WU F K, et al. Nonmethane hydrocarbon measurements at a suburban site in Changsha City, China [J]. Science of the Total Environment, 2009, 408(2): 312-317. doi: 10.1016/j.scitotenv.2009.07.010 [25] 邹利林, 姚运先, 蒋利华, 等. 长沙市环境空气中BTEX的污染特征及健康风险 [J]. 环境工程, 2022, 40(1): 102-109. ZOU L L, YAO Y X, JIANG L H, et al. Pollution characteristics and health risks of BTEX in ambient air of Changsha [J]. Environmental Engineering, 2022, 40(1): 102-109(in Chinese).
[26] ZHANG Z, ZHANG Y L, WANG X M, et al. Spatiotemporal patterns and source implications of aromatic hydrocarbons at six rural sites across China's developed coastal regions [J]. Journal of Geophysical Research:Atmospheres, 2016, 121(11): 6669-6687. doi: 10.1002/2016JD025115 [27] YANG W Q, ZHANG Y L, WANG X M, et al. Volatile organic compounds at a rural site in Beijing: Influence of temporary emission control and wintertime heating [J]. Atmospheric Chemistry and Physics, 2018, 18(17): 12663-12682. doi: 10.5194/acp-18-12663-2018 [28] CARTER W P L. Development of the SAPRC-07 chemical mechanism [J]. Atmospheric Environment, 2010, 44(40): 5324-5335. doi: 10.1016/j.atmosenv.2010.01.026 [29] ATKINSON R, AREY J. Atmospheric degradation of volatile organic compounds [J]. Chemical Reviews, 2003, 103(12): 4605-4638. doi: 10.1021/cr0206420 [30] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values [J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [31] ZHANG Y L, WANG X M, BARLETTA B, et al. Source attributions of hazardous aromatic hydrocarbons in urban, suburban and rural areas in the Pearl River Delta (PRD) region [J]. Journal of Hazardous Materials, 2013, 250/251: 403-411. doi: 10.1016/j.jhazmat.2013.02.023 [32] SHAO P, AN J L, XIN J Y, et al. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China [J]. Atmospheric Research, 2016, 176/177: 64-74. doi: 10.1016/j.atmosres.2016.02.015 [33] BARLETTA B, MEINARDI S, SIMPSON I J, et al. Ambient mixing ratios of nonmethane hydrocarbons (NMHCs) in two major urban centers of the Pearl River Delta (PRD) region: Guangzhou and Dongguan [J]. Atmospheric Environment, 2008, 42(18): 4393-4408. doi: 10.1016/j.atmosenv.2008.01.028 [34] FENG J J, ZHANG Y L, SONG W, et al. Emissions of nitrogen oxides and volatile organic compounds from liquefied petroleum gas-fueled taxis under idle and cruising modes [J]. Environmental Pollution, 2020, 267: 115623. doi: 10.1016/j.envpol.2020.115623 [35] SUTHAWAREE J, KATO S, OKUZAWA K, et al. Measurements of volatile organic compounds in the middle of Central East China during Mount Tai Experiment 2006 (MTX2006): Observation of regional background and impact of biomass burning [J]. Atmospheric Chemistry and Physics, 2010, 10(3): 1269-1285. doi: 10.5194/acp-10-1269-2010 [36] MO Z W, LU S H, SHAO M. Volatile organic compound (VOC) emissions and health risk assessment in paint and coatings industry in the Yangtze River Delta, China [J]. Environmental Pollution, 2021, 269: 115740. doi: 10.1016/j.envpol.2020.115740 [37] CHANG C C, LO S J, LO J G, et al. Analysis of methyl tert-butyl ether in the atmosphere and implications as an exclusive indicator of automobile exhaust [J]. Atmospheric Environment, 2003, 37(34): 4747-4755. doi: 10.1016/j.atmosenv.2003.08.017 [38] CHANG C C, WANG J L, LIU S C, et al. Assessment of vehicular and non-vehicular contributions to hydrocarbons using exclusive vehicular indicators [J]. Atmospheric Environment, 2006, 40(33): 6349-6361. doi: 10.1016/j.atmosenv.2006.05.043 [39] YUAN Z B, LAU A K H, SHAO M, et al. Source analysis of volatile organic compounds by positive matrix factorization in urban and rural environments in Beijing [J]. Journal of Geophysical Research Atmospheres, 2009, 114: D00G15. [40] ZHANG Y L, WANG X M, ZHANG Z, et al. Species profiles and normalized reactivity of volatile organic compounds from gasoline evaporation in China [J]. Atmospheric Environment, 2013, 79: 110-118. doi: 10.1016/j.atmosenv.2013.06.029 [41] BARLETTA B, MEINARDI S, ROWLAND F S, et al. Volatile organic compounds in 43 Chinese cities [J]. Atmospheric Environment, 2005, 39(32): 5979-5990. doi: 10.1016/j.atmosenv.2005.06.029