-
全氟/多氟烷基化合物(perfluoroalkyl and polyfluoroalkyl substances,以下简称PFASs)是一类人工合成的脂肪族有机化合物,这类化合物包含一个或多个特殊的碳原子,特征为与该碳原子相连的氢原子被氟原子取代,形成全氟烷基团 [CnF2n+1]−1. 当全部碳原子上的氢原子都被取代时称作全氟烷基化合物(perfluoroalkyl substances),若部分碳原子上的氢原子被取代则称作多氟烷基化合物(polyfluoroalkyl substances). PFASs主要可以分为离子型和中性,离子型PFASs主要包括全氟烷基磺酸(perfluoroalkane sulfonic acids,PFSAs)和全氟烷基羧酸(perfluoroalkyl carboxylic acids,PFCAs);中性PFASs则涵盖氟调醇(fluorotelomer alcohols,FTOHs),氟调丙烯酸酯(fluorotelomer acrylates,FTACs),全氟烷基磺酰胺(perfluoroalkyl sulfonamides,FASAs)和全氟烷基磺酰胺基乙醇(perfluoroalkyl sulfonamidoethanols,FASEs)等.
由于PFASs具有优良的化学稳定性、热稳定性、疏水疏油性能和高表面活性等特点,被广泛应用于不粘涂层、表面活性剂、食品包装材料、灭火泡沫等[1-2]. 在这些化合物的生产、污水处理或垃圾填埋过程中,PFASs可通过渗滤液排放到江河、湖泊中,也可通过土壤迁移至地下水并长时间存在于其中,研究者们已在多个地区的地下水中检测到PFASs[2-6]. 作为人类重要的饮用水源,地下水的水质安全至关重要,当具有生物富集性和毒性的PFASs通过饮用水等途径进入人体后,能够在体内富集并且极难分解,还会诱发多种疾病[7-8]. 考虑到PFAS对环境及人体造成的巨大危害,自20世纪初以来,北美和欧洲的许多国家已经限制了几种长链PFASs的生产.
鉴于其分布广、毒性大,PFASs逐渐成为了国内外环境科学领域研究的焦点. 由于PFASs可溶解于降水、灌溉、径流等带来的水溶液中,通过淋滤进入地下水,越来越多的研究开始关注PFASs在地下水中的运移机制,包括扩散和吸附过程等. 在非均匀体系中,扩散传质对污染物溶质输运与污染羽衰减的影响已获较多关注[9-11],因此研究者们对于地下水中PFASs运移研究开始逐渐关注以吸附为主的相分配过程,具体包括固-水、空气-水、NAPL-水等界面吸附(如图1).
表1列举了近5年来针对地下水中PFASs界面吸附研究的部分重要文献,可以看出,虽然固-水界面一直是研究重点,但近年来部分研究者已经将目光逐渐转移到空气-水界面与NAPL-水界面. 有关PFASs在地下水中运移的模型也在不断改进,Brusseau等[21]提出了包括固相吸附、空气-水界面吸附、吸附到NAPL中及NAPL-水界面吸附在内的多过程综合滞留模型. Guo等[26]开发了一种新的数学模型,该模型涵盖了包气带中PFAS在瞬变饱和流下的一系列迁移滞留过程,考虑了固-水、空气-水界面在活性剂诱导下的非线性限速吸附. Zeng等[27]提供了一种用于研究非均质包气带中优先流和活性剂诱导流动对PFAS影响的三维数学模型.
本文聚焦目前国内外对地下水中PFASs多界面过程的研究成果,针对地下水中PFASs在固-水界面、空气-水界面和NAPL-水界面过程进行了综述,明确了现有研究存在的不足,并对今后的研究工作进行了展望.
PFASs在地下水中的界面吸附行为研究进展
Research advances on interphase adsorption of perfluoroalkyl and polyfluoroalkyl substances (PFASs) in groundwater
-
摘要: 全氟及多氟烷基化合物(PFASs)是全球关注的一类新污染物,理解PFASs在环境中的迁移、分配、转化过程是预测其环境归趋和风险的重要任务. 近年来,越来越多的研究开始关注地下水中PFASs的运移和分配行为. 本文系统总结了新近的研究成果和文献,重点总结、归纳了PFASs在地下水中的界面吸附行为,包括固-水界面、空气-水界面和非水相液体(non-aqueous phase liquid,NAPL)-水界面. 针对PFASs在3种界面吸附过程以及主控要素进行了详细论述,并得出了相关结论. 虽然固-水界面吸附最为重要,但其他两个界面过程也不容忽视. 对于不同种类PFASs及不同碳链长度的同类PFASs在界面分配行为各异,直接影响其在地下水中的迁移和分布. 影响PFASs多界面过程的要素主要包括吸附介质的性质、PFASs自身的物理化学性质及水化学要素等. 最后,立足现有研究成果和盲点,对未来相关研究进行了展望.
-
关键词:
- 全氟及多氟烷基化合物(PFASs) /
- 地下水 /
- 界面吸附 /
- 吸附系数 /
- 新污染物.
Abstract: Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) are emerging contaminants of global concerns. Understanding their transport, distribution and transformation processes in environment is essential to predict the environmental fate and risk of PFAS. Recently, an increasing number of studies has focused on transport and distribution of PFAS in groundwater. Thus, our study summarizes the relevant literature and recent outcomes, and mainly addresses PFAS adsorption phenomenon at different interfaces associated with groundwater environment, including solid-water interface, air-water interface and NAPL-water interface. Specifically, we demonstrated adsorption behaviors of PFASs and corresponding influential factors, and thus concluding that 1) Even the solid-water interface adsorption has be considered the most important, the other interfacial processes should not be ignored; 2) The distribution of PFASs with different functional groups as well as PFASs of different carbon-chain length might vary at individual interfaces, and thus directly influencing their migration and distribution in groundwater; 3) The factors controlling PFASs interfacial behavior could be properties of adsorption medium, physiochemical properties of PFAS molecules and water chemistry. To end, we provided outlook for future research based on the current knowledge and blind spots on this topic.-
Key words:
- PFASs /
- groundwater /
- interface adsorption /
- adsorption coefficient /
- emerging contaminants
-
表 1 近5年地下水中PFASs界面吸附的重要文献
Table 1. Important literature of PFASs interface adsorption in groundwater in recent five years
界面过程
Interface process作者
Author主要结论
Main conclusion发表时间
Published time固-水界面 LV Xueyan等[12] 在相同的溶液化学条件下,PFOA在石灰岩柱中的吸附量高于沙柱. 2018.05 XIAO Feng等[13] 阳离子和两性离子PFAS在天然土壤中的吸附是高度非线性的. 2019.09 NGUYEN T M H等[14] PFASs的固-水分配系数(lgKd值)的范围从小于0到大约为3,其大小与链长相关,且与分子质量Mw>350 g·mol−1的PFASs具有显著的线性相关性(R2=0.94,P<0.0001). 2020.11 ZENG Jicai等[15] PFAS在固-水界面的吸附量随着链长和孔隙水离子强度的增加而增加,随着PFAS浓度的增大而减小. 2021.11 LOGANATHAN N, WILSON A K.[16] 首次从分子角度出发,使用经典分子动力学(MD)模拟短链和长链PFAS分子在高岭石粘土的水饱和介孔中的吸附,界面结构和动态变化. 2022.05 空气-水界面 LYU Ying等[17] 在水饱和度较低和颗粒直径较小的条件下,PFAS在空气-水界面的吸附量更大. 2018.06 COSTANZA Jed等[18] PFOA、PFOS在空气-水界面的吸附量与界面面积成正比. 2019.07 BRUSSEAU M L[9] 首次描述了流体-流体界面吸附对于PFAS在多孔介质中运移的潜在速率限制. 2020 HUANG Dandan等[19] 当多种PFAS同时存在且浓度较高时,PFOS在空气-水界面的吸附减弱. 2022 LYU Ying等[20] 长链PFCAs主要吸附在空气-水界面,而短链PFCAs更易吸附于固相. 2022.03 NAPL-水界面 BRUSSEAU M L [21] 提出了包括固相吸附、空气-水界面吸附、NAPL-水界面吸附等在内的综合概念模型,以用来评估各个吸附过程在PFAS(PFOS、PFOA和PTOH)运移中的重要性. 2018 SILVA J A K等[22] 随着水饱和度的降低,PFOA在NAPL-水界面的吸附增强. 2019.03 BRUSSEAU M L, TAGHAP H[23] 首次使用界面分区示踪试验(IPTT)来测量不同饱和度下的NAPL-水界面面积. 2020.07 GLUBT Sarah and BRUSSEAU M L[24] 首次使用QSPR分析方法对PFAS在NAPL-水界面的吸附系数(kni)进行预测. 2021.03 LIAO Shuchi等[25] 当水相中的共污染物浓度大致低于100 μg·L−1时,竞争吸附效应不大可能影响PFAS在NAPL-水界面上的吸附. 2022.06 表 2 地下水中几种常见PFASs的理化性质
Table 2. Physicochemical properties of several common PFASs in groundwater
化合物
Compounds化学式
Chemical formula含C数
C-Length分子量/
(g·mol−1)
Molecular
weightlgCMC /
(mol·L−1)a水溶度/
(g·L−1)b
Water
solubilitypKab Perfluoroalkyl carboxylic acids (PFCAs) Perfluorobutanoic acid 全氟丁酸 (PFBA) CF3(CF2)2COOH 4 214.04 −0.20 214(25 ℃) 1.07 Perfluoropentanoic acid 全氟戊酸(PFPeA) CF3(CF2)3COOH 5 264.05 NAc NAc 0.34 Perfluorohexanoic acid 全氟己酸 (PFHxA) CF3(CF2)4COOH 6 314.05 −1.15 15.7(25 ℃) −0.16 Perfluoroheptanoic acid 全氟庚酸(PFHpA) CF3(CF2)5COOH 7 364.06 −1.63 3.65·10−3 (25 ℃) −2.29 Perfluorooctanoic acid 全氟辛酸 (PFOA) CF3(CF2)6COOH 8 414.07 −2.11 2.29(24 ℃) −0.5—4.2 Perfluorononanoic acid 全氟壬酸(PFNA) CF3(CF2)7COOH 9 464.08 −2.58 NAc −0.21 Perfluorodecanoic acid 全氟癸酸(PFDA) CF3(CF2)8COOH 10 514.08 −3.07 NAc −5.2 Perfluoroundecanoic acid 全氟十一烷酸(PFUnDA) CF3(CF2)9COOH 11 564.09 −3.55 NAc −5.2 Perfluorododecanoic acid 全氟十二烷酸(PFDoDA) CF3(CF2)10COOH 12 614.1 −4.03 NAc −5.2 Perfluorotridecanoic acid 全氟十三烷酸(PFTrDA) CF3(CF2)11COOH 13 664.1 −4.52 NAc −5.2 Perfluorotetradecanoic acid 全氟十四烷酸(PFTeDA) CF3(CF2)12COOH 14 714.11 −5.00 NAc −5.2 Perfluoroalkyl sulfonic acids (PFSAs) Perfluorobutane sulfonic acid 全氟丁烷磺酸(PFBS) CF3(CF2)3SO3K 4 300.1 NAc 0.344(25 ℃) −3.31 Perfluorohexane sulfonic acid 全氟己烷磺酸(PFHxS) CF3(CF2)5SO3K 6 400.12 −1.74 0.0062(25 ℃) 0.14 Perfluorooctane sulfonic acid 全氟辛烷磺酸(PFOS) CF3(CF2)7SO3K 8 500.13 −2.62 3.2·10−6(25 ℃) −3.27d Perfluorodecane sulfonic acid 全氟癸烷磺酸(PFDS) CF3(CF2)9 SO3H 10 600.15 NAc NAc −3.24 a lgCMC,即临界胶束浓度,数值从Bhhatarai and Gramatica[57]的报道中获得;b水溶度和pKa(酸解离常数)的数值从Gagliano等[1]的报道中获得;c NA即Not available,表示未测得;d PFOS水溶度的数据来自Deng等[59]. -
[1] GAGLIANO E, SGROI M, FALCIGLIA P P, et al. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration [J]. Water Research, 2020, 171: 115381. doi: 10.1016/j.watres.2019.115381 [2] HEPBURN E, MADDEN C, SZABO D, et al. Contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) from legacy landfills in an urban re-development precinct [J]. Environmental Pollution, 2019, 248: 101-113. doi: 10.1016/j.envpol.2019.02.018 [3] LIU L Q, QU Y X, HUANG J, et al. Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: Risk assessment and geographical distribution [J]. Environmental Sciences Europe, 2021, 33(1): 1-12. doi: 10.1186/s12302-020-00446-y [4] YONG Z Y, KIM K Y, OH J E. The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018 [J]. Environmental Pollution, 2021, 268: 115395. doi: 10.1016/j.envpol.2020.115395 [5] SHARMA B M, BHARAT G K, TAYAL S, et al. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River Basin: Emissions and implications for human exposure [J]. Environmental Pollution, 2016, 208: 704-713. doi: 10.1016/j.envpol.2015.10.050 [6] GUELFO J L, ADAMSON D T. Evaluation of a national data set for insights into sources, composition, and concentrations of per- and polyfluoroalkyl substances (PFASs) in US drinking water [J]. Environmental Pollution, 2018, 236: 505-513. doi: 10.1016/j.envpol.2018.01.066 [7] HAGSTROM A L, ANASTAS P, BOISSEVAIN A, et al. Yale School of Public Health Symposium: An overview of the challenges and opportunities associated with per- and polyfluoroalkyl substances (PFAS) [J]. The Science of the Total Environment, 2021, 778: 146192. doi: 10.1016/j.scitotenv.2021.146192 [8] GHISI R, VAMERALI T, MANZETTI S. Accumulation of perfluorinated alkyl substances (PFAS) in agricultural plants: A review [J]. Environmental Research, 2019, 169: 326-341. doi: 10.1016/j.envres.2018.10.023 [9] BRUSSEAU M L. Simulating PFAS transport influenced by rate-limited multi-process retention [J]. Water Research, 2020, 168: 115179. doi: 10.1016/j.watres.2019.115179 [10] BRUSSEAU M L, JESSUP R E, RAO P S C. Modeling the transport of solutes influenced by multiprocess nonequilibrium [J]. Water Resources Research, 1989, 25(9): 1971-1988. doi: 10.1029/WR025i009p01971 [11] PÉTRÉ M A, GENEREUX D P, KOROPECKYJ-COX L, et al. Per- and polyfluoroalkyl substance (PFAS) transport from groundwater to streams near a PFAS manufacturing facility in north Carolina, USA [J]. Environmental Science & Technology, 2021, 55(9): 5848-5856. [12] LV X Y, SUN Y Y, JI R, et al. Physicochemical factors controlling the retention and transport of perfluorooctanoic acid (PFOA) in saturated sand and limestone porous media [J]. Water Research, 2018, 141: 251-258. doi: 10.1016/j.watres.2018.05.020 [13] XIAO F, JIN B S, GOLOVKO S A, et al. Sorption and desorption mechanisms of cationic and zwitterionic per- and polyfluoroalkyl substances in natural soils: Thermodynamics and hysteresis [J]. Environmental Science & Technology, 2019, 53(20): 11818-11827. [14] NGUYEN T M H, BRÄUNIG J, THOMPSON K, et al. Influences of chemical properties, soil properties, and solution pH on soil-water partitioning coefficients of per- and polyfluoroalkyl substances (PFASs) [J]. Environmental Science & Technology, 2020, 54(24): 15883-15892. [15] ZENG J C, BRUSSEAU M L, GUO B. Model validation and analyses of parameter sensitivity and uncertainty for modeling long-term retention and leaching of PFAS in the vadose zone [J]. Journal of Hydrology, 2021, 603: 127172. doi: 10.1016/j.jhydrol.2021.127172 [16] LOGANATHAN N, WILSON A K. Adsorption, structure, and dynamics of short- and long-chain PFAS molecules in kaolinite: Molecular-level insights [J]. Environmental Science & Technology, 2022, 56(12): 8043-8052. [17] LYU Y, BRUSSEAU M L, CHEN W, et al. Adsorption of PFOA at the air-water interface during transport in unsaturated porous media [J]. Environmental Science & Technology, 2018, 52(14): 7745-7753. [18] COSTANZA J, ARSHADI M, ABRIOLA L M, et al. Accumulation of PFOA and PFOS at the air-water interface [J]. Environmental Science & Technology Letters, 2019, 6(8): 487-491. [19] HUANG D D, SALEEM H, GUO B, et al. The impact of multiple-component PFAS solutions on fluid-fluid interfacial adsorption and transport of PFOS in unsaturated porous media [J]. Science of the Total Environment, 2022, 806: 150595. doi: 10.1016/j.scitotenv.2021.150595 [20] LYU Y, WANG B H, DU X Q, et al. Air-water interfacial adsorption of C4-C10 perfluorocarboxylic acids during transport in unsaturated porous media [J]. Science of the Total Environment, 2022, 831: 154905. doi: 10.1016/j.scitotenv.2022.154905 [21] BRUSSEAU M L. Assessing the potential contributions of additional retention processes to PFAS retardation in the subsurface [J]. Science of the Total Environment, 2018, 613/614: 176-185. doi: 10.1016/j.scitotenv.2017.09.065 [22] SILVA J A K, MARTIN W A, JOHNSON J L, et al. Evaluating air-water and NAPL-water interfacial adsorption and retention of Perfluorocarboxylic acids within the Vadose zone [J]. Journal of Contaminant Hydrology, 2019, 223: 103472. doi: 10.1016/j.jconhyd.2019.03.004 [23] BRUSSEAU M L, TAGHAP H. NAPL-water interfacial area as a function of fluid saturation measured with the interfacial partitioning tracer test method [J]. Chemosphere, 2020, 260: 127562. doi: 10.1016/j.chemosphere.2020.127562 [24] van GLUBT S, BRUSSEAU M L. Contribution of nonaqueous-phase liquids to the retention and transport of per and polyfluoroalkyl substances (PFAS) in porous media [J]. Environmental Science & Technology, 2021, 55(6): 3706-3715. [25] LIAO S C, ARSHADI M, WOODCOCK M J, et al. Influence of residual nonaqueous-phase liquids (NAPLs) on the transport and retention of perfluoroalkyl substances [J]. Environmental Science & Technology, 2022, 56(12): 7976-7985. [26] GUO B, ZENG J C, BRUSSEAU M L. A mathematical model for the release, transport, and retention of per- and polyfluoroalkyl substances (PFAS) in the vadose zone [J]. Water Resources Research, 2020, 56(2): e2019WR026667. [27] ZENG J C, GUO B. Multidimensional simulation of PFAS transport and leaching in the vadose zone: Impact of surfactant-induced flow and subsurface heterogeneities [J]. Advances in Water Resources, 2021, 155: 104015. doi: 10.1016/j.advwatres.2021.104015 [28] ZHANG D Q, ZHANG W L, LIANG Y N. Distribution of eight perfluoroalkyl acids in plant-soil-water systems and their effect on the soil microbial community [J]. Science of the Total Environment, 2019, 697: 134146. doi: 10.1016/j.scitotenv.2019.134146 [29] BRUSSEAU M L, van GLUBT S. The influence of surfactant and solution composition on PFAS adsorption at fluid-fluid interfaces [J]. Water Research, 2019, 161: 17-26. doi: 10.1016/j.watres.2019.05.095 [30] ZHOU Z, LIANG Y, SHI Y L, et al. Occurrence and transport of perfluoroalkyl acids (PFAAs), including short-chain PFAAs in Tangxun Lake, China [J]. Environmental Science & Technology, 2013, 47(16): 9249-9257. [31] DENG S B, NIE Y, DU Z W, et al. Enhanced adsorption of perfluorooctane sulfonate and perfluorooctanoate by bamboo-derived granular activated carbon [J]. Journal of Hazardous Materials, 2015, 282: 150-157. doi: 10.1016/j.jhazmat.2014.03.045 [32] PUNYAPALAKUL P, SUKSOMBOON K, PRARAT P, et al. Effects of surface functional groups and porous structures on adsorption and recovery of perfluorinated compounds by inorganic porous silicas [J]. Separation Science and Technology, 2013, 48(5): 775-788. doi: 10.1080/01496395.2012.710888 [33] MEJIA-AVENDAÑO S, ZHI Y, YAN B, et al. Sorption of polyfluoroalkyl surfactants on surface soils: Effect of molecular structures, soil properties, and solution chemistry [J]. Environmental Science & Technology, 2020, 54(3): 1513-1521. [34] UWAYEZU J N, YEUNG L W Y, BÄCKSTRÖM M. Sorption of PFOS isomers on goethite as a function of pH, dissolved organic matter (humic and fulvic acid) and sulfate [J]. Chemosphere, 2019, 233: 896-904. doi: 10.1016/j.chemosphere.2019.05.252 [35] JOHNSON R L, ANSCHUTZ A J, SMOLEN J M, et al. The adsorption of perfluorooctane sulfonate onto sand, clay, and iron oxide surfaces [J]. Journal of Chemical & Engineering Data, 2007, 52(4): 1165-1170. [36] HIGGINS C P, LUTHY R G. Sorption of perfluorinated surfactants on sediments [J]. Environmental Science & Technology, 2006, 40(23): 7251-7256. [37] TANG C Y, SHIANG FU Q, GAO D W, et al. Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces [J]. Water Research, 2010, 44(8): 2654-2662. doi: 10.1016/j.watres.2010.01.038 [38] JIA C X, YOU C, PAN G. Effect of temperature on the sorption and desorption of perfluorooctane sulfonate on humic acid [J]. Journal of Environmental Sciences, 2010, 22(3): 355-361. doi: 10.1016/S1001-0742(09)60115-7 [39] WANG D J, ZHANG W, ZHOU D M. Antagonistic effects of humic acid and iron oxyhydroxide grain-coating on biochar nanoparticle transport in saturated sand [J]. Environmental Science & Technology, 2013, 47(10): 5154-5161. [40] WANG F, LIU C S, SHIH K. Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite [J]. Chemosphere, 2012, 89(8): 1009-1014. doi: 10.1016/j.chemosphere.2012.06.071 [41] WANG F, SHIH K. Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: Influence of solution pH and cations [J]. Water Research, 2011, 45(9): 2925-2930. doi: 10.1016/j.watres.2011.03.007 [42] SHIH K, WANG F. Adsorption behavior of perfluorochemicals (PFCs) on boehmite: Influence of solution chemistry [J]. Procedia Environmental Sciences, 2013, 18: 106-113. doi: 10.1016/j.proenv.2013.04.015 [43] ZHAO L X, BIAN J N, ZHANG Y H, et al. Comparison of the sorption behaviors and mechanisms of perfluorosulfonates and perfluorocarboxylic acids on three kinds of clay minerals [J]. Chemosphere, 2014, 114: 51-58. doi: 10.1016/j.chemosphere.2014.03.098 [44] SCHULTZ M M, HIGGINS C P, HUSET C A, et al. Fluorochemical mass flows in a municipal wastewater treatment facility [J]. Environmental Science & Technology, 2006, 40(23): 7350-7357. [45] WU D, TONG M P, KIM H. Influence of perfluorooctanoic acid on the transport and deposition behaviors of bacteria in quartz sand [J]. Environmental Science & Technology, 2016, 50(5): 2381-2388. [46] LYU X Y, LIU X, WU X L, et al. Importance of Al/Fe oxyhydroxide coating and ionic strength in perfluorooctanoic acid (PFOA) transport in saturated porous media [J]. Water Research, 2020, 175: 115685. doi: 10.1016/j.watres.2020.115685 [47] SIRIWARDENA D P, CRIMI M, HOLSEN T M, et al. Influence of groundwater conditions and co-contaminants on sorption of perfluoroalkyl compounds on granular activated carbon [J]. Remediation Journal, 2019, 29(3): 5-15. doi: 10.1002/rem.21603 [48] YOU C, JIA C X, PAN G. Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment-water interface [J]. Environmental Pollution, 2010, 158(5): 1343-1347. doi: 10.1016/j.envpol.2010.01.009 [49] KWADIJK C J A F, VELZEBOER I, KOELMANS A A. Sorption of perfluorooctane sulfonate to carbon nanotubes in aquatic sediments [J]. Chemosphere, 2013, 90(5): 1631-1636. doi: 10.1016/j.chemosphere.2012.08.041 [50] DU Z W, DENG S B, CHEN Y G, et al. Removal of perfluorinated carboxylates from washing wastewater of perfluorooctanesulfonyl fluoride using activated carbons and resins [J]. Journal of Hazardous Materials, 2015, 286: 136-143. doi: 10.1016/j.jhazmat.2014.12.037 [51] LUO Q, ZHAO C W, LIU G X, et al. A porous aromatic framework constructed from benzene rings has a high adsorption capacity for perfluorooctane sulfonate [J]. Scientific Reports, 2016, 6: 20311. doi: 10.1038/srep20311 [52] XIAO F, ZHANG X R, PENN L, et al. Effects of monovalent cations on the competitive adsorption of perfluoroalkyl acids by kaolinite: Experimental studies and modeling [J]. Environmental Science & Technology, 2011, 45(23): 10028-10035. [53] DENG S B, YU Q, HUANG J, et al. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: Effects of resin properties and solution chemistry [J]. Water Research, 2010, 44(18): 5188-5195. doi: 10.1016/j.watres.2010.06.038 [54] ZHANG Q Y, DENG S B, YU G, et al. Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism [J]. Bioresource Technology, 2011, 102(3): 2265-2271. doi: 10.1016/j.biortech.2010.10.040 [55] GOSS K U. The pKa values of PFOA and other highly fluorinated carboxylic acids [J]. Environmental Science & Technology, 2008, 42(2): 456-458. [56] XIAO F. Emerging poly- and perfluoroalkyl substances in the aquatic environment: A review of current literature [J]. Water Research, 2017, 124: 482-495. doi: 10.1016/j.watres.2017.07.024 [57] BHHATARAI B, GRAMATICA P. Prediction of aqueous solubility, vapor pressure and critical micelle concentration for aquatic partitioning of perfluorinated chemicals [J]. Environmental Science & Technology, 2011, 45(19): 8120-8128. [58] JEON J, KANNAN K, LIM B J, et al. Effects of salinity and organic matter on the partitioning of perfluoroalkyl acid (PFAs) to clay particles [J]. Journal of Environmental Monitoring, 2011, 13(6): 1803-1810. doi: 10.1039/c0em00791a [59] DENG S B, ZHANG Q Y, NIE Y, et al. Sorption mechanisms of perfluorinated compounds on carbon nanotubes [J]. Environmental Pollution, 2012, 168: 138-144. doi: 10.1016/j.envpol.2012.03.048 [60] SHARIFAN H, BAGHERI M, WANG D, et al. Fate and transport of per- and polyfluoroalkyl substances (PFASs) in the vadose zone [J]. Science of the Total Environment, 2021, 771: 145427. doi: 10.1016/j.scitotenv.2021.145427 [61] SHEN C Y, JIN Y, ZHUANG J, et al. Role and importance of surface heterogeneities in transport of particles in saturated porous media [J]. Critical Reviews in Environmental Science and Technology, 2020, 50(3): 244-329. doi: 10.1080/10643389.2019.1629800 [62] PAN G, JIA C X, ZHAO D Y, et al. Effect of cationic and anionic surfactants on the sorption and desorption of perfluorooctane sulfonate (PFOS) on natural sediments [J]. Environmental Pollution, 2009, 157(1): 325-330. doi: 10.1016/j.envpol.2008.06.035 [63] ZAGGIA A, CONTE L, FALLETTI L, et al. Use of strong anion exchange resins for the removal of perfluoroalkylated substances from contaminated drinking water in batch and continuous pilot plants [J]. Water Research, 2016, 91: 137-146. doi: 10.1016/j.watres.2015.12.039 [64] LYU X Y, LIU X, SUN Y Y, et al. Importance of surface roughness on perfluorooctanoic acid (PFOA) transport in unsaturated porous media [J]. Environmental Pollution, 2020, 266: 115343. doi: 10.1016/j.envpol.2020.115343 [65] XIAO F, SIMCIK M F, HALBACH T R, et al. Perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in soils and groundwater of a US metropolitan area: Migration and implications for human exposure [J]. Water Research, 2015, 72: 64-74. doi: 10.1016/j.watres.2014.09.052 [66] WEBER A K, BARBER L B, LEBLANC D R, et al. Geochemical and hydrologic factors controlling subsurface transport of poly- and perfluoroalkyl substances, cape cod, Massachusetts [J]. Environmental Science & Technology, 2017, 51(8): 4269-4279. [67] HUNTER ANDERSON R, ADAMSON D T, STROO H F. Partitioning of poly- and perfluoroalkyl substances from soil to groundwater within aqueous film-forming foam source zones [J]. Journal of Contaminant Hydrology, 2019, 220: 59-65. doi: 10.1016/j.jconhyd.2018.11.011 [68] SHIN H M, VIEIRA V M, RYAN P B, et al. Environmental fate and transport modeling for perfluorooctanoic acid emitted from the Washington Works Facility in West Virginia [J]. Environmental Science & Technology, 2011, 45(4): 1435-1442. [69] KIM H, ANNABLE M D, RAO P S. Gaseous transport of volatile organic chemicals in unsaturated porous media: Effect of water-partitioning and air-water interfacial adsorption [J]. Environmental Science & Technology, 2001, 35(22): 4457-4462. [70] COSTANZA-ROBINSON M S, CARLSON T D, BRUSSEAU M L. Vapor-phase transport of trichloroethene in an intermediate-scale vadose-zone system: Retention processes and tracer-based prediction [J]. Journal of Contaminant Hydrology, 2013, 145: 82-89. doi: 10.1016/j.jconhyd.2012.12.004 [71] BRUSSEAU M L. Estimating the relative magnitudes of adsorption to solid-water and air/oil-water interfaces for per- and poly-fluoroalkyl substances [J]. Environmental Pollution, 2019, 254: 113102. doi: 10.1016/j.envpol.2019.113102 [72] BRUSSEAU M L. The influence of molecular structure on the adsorption of PFAS to fluid-fluid interfaces: Using QSPR to predict interfacial adsorption coefficients [J]. Water Research, 2019, 152: 148-158. doi: 10.1016/j.watres.2018.12.057 [73] BRUSSEAU M L, YAN N, van GLUBT S, et al. Comprehensive retention model for PFAS transport in subsurface systems [J]. Water Research, 2019, 148: 41-50. doi: 10.1016/j.watres.2018.10.035 [74] VECITIS C D, PARK H, CHENG J, et al. Enhancement of perfluorooctanoate and perfluorooctanesulfonate activity at acoustic cavitation bubble interfaces [J]. The Journal of Physical Chemistry C, 2008, 112(43): 16850-16857. doi: 10.1021/jp804050p [75] SCHAEFER C E, CULINA V, NGUYEN D, et al. Uptake of poly- and perfluoroalkyl substances at the air-water interface [J]. Environmental Science & Technology, 2019, 53(21): 12442-12448. [76] LYU Y, BRUSSEAU M L. The influence of solution chemistry on air-water interfacial adsorption and transport of PFOA in unsaturated porous media [J]. Science of the Total Environment, 2020, 713: 136744. doi: 10.1016/j.scitotenv.2020.136744 [77] BRUSSEAU M L, GUO B, HUANG D D, et al. Ideal versus nonideal transport of PFAS in unsaturated porous media [J]. Water Research, 2021, 202: 117405. doi: 10.1016/j.watres.2021.117405 [78] PSILLAKIS E, CHENG J, HOFFMANN M R, et al. Enrichment factors of perfluoroalkyl oxoanions at the air/water interface [J]. The Journal of Physical Chemistry. A, 2009, 113(31): 8826-8829. doi: 10.1021/jp902795m [79] GUELFO J L, HIGGINS C P. Subsurface transport potential of perfluoroalkyl acids at aqueous film-forming foam (AFFF)-impacted sites [J]. Environmental Science & Technology, 2013, 47(9): 4164-4171. [80] MCKENZIE E R, SIEGRIST R L, MCCRAY J E, et al. Effects of chemical oxidants on perfluoroalkyl acid transport in one-dimensional porous media columns [J]. Environmental Science & Technology, 2015, 49(3): 1681-1689. [81] BRUSSEAU M L, JANOUSEK H, MURAO A, et al. Synchrotron X-ray microtomography and interfacial partitioning tracer test measurements of napl-water interfacial areas [J]. Water Resources Research, 2008, 44(1): W01411. [82] BRUSSEAU M L. Examining the robustness and concentration dependency of PFAS air-water and NAPL-water interfacial adsorption coefficients [J]. Water Research, 2021, 190: 116778. doi: 10.1016/j.watres.2020.116778 [83] MCKENZIE E R, SIEGRIST R L, MCCRAY J E, et al. The influence of a non-aqueous phase liquid (NAPL) and chemical oxidant application on perfluoroalkyl acid (PFAA) fate and transport [J]. Water Research, 2016, 92: 199-207. doi: 10.1016/j.watres.2016.01.025