-
抗生素是一类具有抵抗微生物活性的天然、半合成或人工合成的化合物[1-2],能够干扰或抑制致病微生物的存在,在人和动物的疾病治疗,作为畜禽的饲料添加剂,促进动物生长等方面具有重要作用. 我国是抗生素的生产和使用大国,年均使用量约2.5万t,占全球总使用量的20%左右[3-4],但由于大量工业废水和生活污水未得到及时有效的处理便排放到环境中,且抗生素不易被人或动物吸收利用,易诱导“超级细菌”的出现,因此具有较高的生态和人类健康风险[5]. 磺胺嘧啶(sulfadiazine,SD)作为最常用的磺胺类抗生素药物之一,具有稳定性高、亲水性强的特点,在沉积物、地表水和地下水广泛存在[6,1-8]. 部分研究已证实磺胺类药物对人体健康有较大危害且广泛存在于环境中,因此对抗生素的治理势在必行.
在各类抗生素的处理技术中,高级氧化技术是最具有应用前景的技术. 电化学氧化技术因操作简单,工艺条件温和,无二次污染,反应活性高,逐渐成为抗生素废水处理中可行性最高的技术. 在电化学技术中,掺硼金刚石膜(boron-doped diamond,BDD)电极因具有电化学窗口宽、背景电流低、抗腐蚀性强、化学性能稳定等诸多优点在电化学氧化系统中得到广泛应用[9]. 在以BDD为阳极,碳毡(carbon felt,CF)为阴极的电化学氧化系统中,阳极BDD产生·OH,亲电进攻阳极附近的有机污染物. 阴极CF可在原位生成H2O2,在Fe2+存在的条件下,H2O2 被催化分解产生大量·OH,构成经典的电芬顿反应. 但在室温和室压下,氧气在水中的低溶解度(约8 mg·L−1)直接影响了空气中的氧气在传统阴极上的氧传质[10],导致空气氧源的利用率非常低[11]. 因此,气体扩散电极 (Gas diffusion electrode,GDE)被广泛研究以提高阴极催化层氧传质效率,它允许氧气从外部供应到阴极表面,而无需将其溶解在电解质中并提高 H2O2 电合成效率. 雷阳明等[12]制备出的GDE的效果远优于石墨电极,H2O2生成量为石墨电极的10倍,酸性红B溶液在阴极室的脱色率和COD去除率分别为94.2%和66.8%. 周明华等[13]以碳毡为基底制备的自然空气扩散电极 (natural air diffusion electrode,NADE),与普通气体扩散电极(GDE)系统相比,阴极的氧扩散系数提高了约 5.7倍,使 H2O2 产量显着增加(101.67 mg·h−1·cm−2). 孙秀萍等[11]研究了GDE的不同氧源的贡献率,发现H2O2的积累规律为双氧源模式>空气氧源>阳极析氧.
近年来,以活化过硫酸盐(persulfate, PS)产生硫酸根自由基(·SO4−)作为主要强氧化性基团降解有机污染物的新型高级氧化技术发展迅速,Fe2+作为催化剂活化PS进而氧化污染物逐渐成为研究热点,研究发现Fe2+活化 PS 能有效降解CIP、SMX、左氧氟沙星和TMP等抗生素[14-15]. 而研究表明[16],在BDD系统中,作为电解质的Na2SO4会在阳极反应生成一定量的S2O82−,这为电芬顿和过硫酸盐活化相结合提供新思路.
本文通过在阳极阴极之间加入质子交换膜的方式,分别构建单室反应器和阴阳极分隔的双室反应器,以SD作为目标污染物,探索系统对磺胺类抗生素的去除效率并明确该系统的作用机制.
BDD-Fe-NADE电芬顿系统降解磺胺类抗生素的作用机理
Degradation mechanism of sulfa antibiotics by H2O2 and PS in BDD-Fe-NADE system
-
摘要: 本研究构建了以BDD电极为阳极,自然空气扩散电极 (natural air diffusion electrode,NADE)为阴极,零价铁作为催化剂的电芬顿系统,深入探索了该系统对磺胺嘧啶(sulfadiazine,SD)的降解效果和机理. 相较于其他系统,BDD-Fe-NADE系统降解优势明显. 为进一步探索系统的作用机理,在BDD阳极和NADE阴极之间加入质子交换膜,构建双室降解系统,分别计算阳极室和阴极室中直接电子转移(direct electron transfer,DET)、H2O2、·OH、S2O82−和·SO4−等氧化性粒子对于磺胺嘧啶降解的贡献率. 结果表明,在阳极室中,电极氧化和Fe2+催化S2O82−产生的·SO4−起主要氧化作用,贡献率分别为49.02%和35.29%;在阴极室中,Fe2+催化H2O2产生的·OH起主要氧化作用,贡献率达99.61%. 在不添加污染物的条件下,阳极室积累的S2O82−浓度在180 min时可达到0.4 mmol·L−1,阴极室积累的H2O2浓度在120 min时可达到8 mmol·L−1. 在初始pH为3时,阴极室pH会随H2O2的生成逐渐增大,阳极室pH由于·OH的生成缓慢降低. 利用 Gaussian软件在 B3LYP/6-31+g(d,p)水平优化 SD分子构象,结合密度泛函理论(Density functional theory,DFT)计算电子云密度和福井函数,确定了SD分子中的反应活性位点,利用高效液相色谱串联质谱(Liquid chromatograph mass spectrometer)对中间产物测定,检测到质荷比(m/z)为 225、279、185、171等6种中间产物,推测了 SD的三种可能降解途径.Abstract: This paper explores the degradation effect and oxidation mechanism of the electro oxidation system with BDD as anode, NADE as cathode and zero valent Fe as catalyst. Compared with other systems, BDD-Fe-NADE system has obvious advantages in degradation. In order to further explore the mechanism of the system, a proton exchange membrane was added between BDD anode and NADE cathode to construct a two-compartment degradation system. The contributions of Direct Electron Transfer (DET), H2O2, ·OH, S2O82−and ·SO4− to sulfadiazine degradation in anode and cathode chambers were calculated. The results show that ·SO4− produced by S2O82− catalyzed by Fe2+ and electrode oxidation play a major role in the anodic chamber, contributing 35.29% and 49.02% respectively. In the cathode chamber, ·OH produced by H2O2 catalyzed by Fe2+ plays a major role in oxidation, contributing 99.61%. In the absence of contaminants, the concentration of S2O82− accumulated can reach 0.4 mmol·L−1 at 180 min in the anode chamber, and the concentration of H2O2 accumulated can reach 8 mmol·L−1 at 120 min in the cathode chamber. When the initial pH is 3, the pH of the cathode chamber gradually increases with the generation of H2O2, while the pH of the anode chamber decreases slowly due to the generation of ·OH. The conformation of SD molecule was optimized at the B3LYP/6-31+g(d, p) level by Gaussian software, and the Fukui function and electron cloud density were calculated with density functional theory (DFT), and the reactive sites in SD molecule were determined. Liquid Chromatograph Mass Spectrometer (LC-MS) was used for the determination of intermediates. The Mass charge ratio (m/z) of intermediates was 225, 279, 317, 185, 171. Three possible degradation pathways were detected finally.
-
Key words:
- BDD anode /
- NADE cathode /
- eletric-fenton /
- hydrogen peroxide /
- persulfate
-
表 1 阴阳极室中不同条件降解效果的一级动力学模型
Table 1. First-order kinetic models of degradation effects under different conditions in negative and anode chambers
不同氧化体系
Oxidation system主要氧化性物种
Oxidizing species拟合曲线
Curve相关系数R2
Correlation coefficient R2MeOH (阳极室) DET y=−0.0036x 0.9956 NaNO3 (阳极室) DET、·OH y=−0.0044x 0.9863 Na2SO4 (阳极室) DET、·OH、S2O82− y=−0.0052x 0.9975 0.01gFe (阳极室) DET、·OH、·SO4- y=−0.0102xx 0.9980 MeOH (阴极室) DET y =−1.3312×10−4x 0.4568 None (阴极室) DET、H2O2 y =−4.5303×10−4x 0.7196 0.01 gFe (阴极室) DET、·OH y =−0.0263x 0.9936 表 2 阴阳极室中主要氧化性物种的相对贡献率
Table 2. Relative contribution rates of major oxidizing species in negative and anode chambers
氧化性物种
Oxidizing species反应速率/min−1
Reaction rate阳极室贡献率
Anode chamber contribution rate阴极室贡献率
Cathode chamber contribution rate总贡献率
Total contributionDET(阳极室) 0.0036 35.29% — 9.86% DET(阴极室) 1.3312×10−4 — 0.05% 0.04% S2O82−(阳极室) 0.0008 7.84% — 2.19% ·SO4−(阳极室) 0.0050 49.02% — 13.70% ·OH(阳极室) 0.0012 11.76% — 3.29% ·OH(阴极室) 0.0262 — 99.61% 71.77% H2O2(阴极室) 3.1991×10−4 — 0.12% 0.09% 表 3 SD分子各原子电荷分布及福井函数
Table 3. Atomic charge distribution and Fukui function of SD molecule
序号
Number原子
Atomq(N−1) q(N) q(N+1) $ {{f}}_{{k}}^{{-}} $ $ {{f}}_{{k}}^{{+}} $ $ {f}_{k}° $ $ \Delta {{f}}_{{k}}^{{}} $ 1 N 0.159140 −0.471844 0.036982 0.630984 −0.508826 0.061079 −1.13981 2 N 0.193241 −0.461786 0.032302 0.655027 −0.494088 0.0804695 −1.149115 3 C 0.426275 0.123577 −0.022331 0.302698 0.145908 0.224303 −0.15679 4 C 0.399976 0.124973 −0.014342 0.275003 0.139315 0.207159 −0.135688 5 C −0.158145 −0.124715 0.072764 −0.03343 −0.197479 −0.1154545 −0.164049 6 H −0.024686 0.112320 0.000817 −0.137006 0.111503 −0.0127515 0.248509 7 H −0.023231 0.109609 0.000527 −0.13284 0.109082 −0.011879 0.241922 8 H 0.005523 0.100858 −0.002962 −0.095335 0.10382 0.0042425 0.199155 9 S 0.001378 1.244183 −0.027617 −1.242805 1.2718 0.0144975 2.514605 10 N −0.000527 −0.694635 0.123537 0.694108 −0.818172 −0.062032 −1.51228 11 O −0.000264 −0.549971 0.007608 0.549707 −0.557579 −0.003936 −1.107286 12 O 0.001555 −0.516570 0.025864 0.518125 −0.542434 −0.0121545 −1.060559 13 C −0.051271 0.653111 −0.016108 −0.704382 0.669219 −0.0175815 1.373601 14 H −0.000842 0.309116 −0.003446 −0.309958 0.312562 0.001302 0.62252 15 C −0.004064 −0.199575 0.322091 0.195511 −0.521666 −0.1630775 −0.717177 16 C 0.036056 −0.056802 −0.090401 0.092858 0.033599 0.0632285 −0.059259 17 C 0.007852 −0.079882 −0.092795 0.087734 0.012913 0.0503235 −0.074821 18 C 0.013557 −0.118305 0.159633 0.131862 −0.277938 −0.073038 −0.4098 19 H −0.003718 0.136788 0.002454 −0.140506 0.134334 −0.003086 0.27484 20 C 0.028771 −0.114564 0.167937 0.143335 −0.282501 −0.069583 −0.425836 21 H −0.000556 0.129437 0.002626 −0.129993 0.126811 −0.001591 0.256804 22 C −0.004050 0.299698 0.066359 −0.303748 0.233339 −0.0352045 0.537087 23 H −0.000845 0.083736 −0.006994 −0.084581 0.09073 0.0030745 0.175311 24 H −0.001609 0.085124 −0.007287 −0.086733 0.092411 0.002839 0.179144 25 N −0.000224 −0.655931 0.283023 0.655707 −0.938954 −0.1416235 −1.594661 26 H −0.000013 0.265992 −0.010127 −0.266005 0.276119 0.005057 0.542124 27 H 0.000723 0.266054 −0.010113 −0.265331 0.276167 0.005418 0.541498 -
[1] HALLING-SØRENSEN B, NIELSEN S N, LANZKY P F, et al. Occurrence, fate and effects of pharmaceutical substances in the environment- A review [J]. Chemosphere, 1998, 36(2): 357-393. doi: 10.1016/S0045-6535(97)00354-8 [2] MARTINEZ J L. Environmental pollution by antibiotics and by antibiotic resistance determinants [J]. Environmental Pollution, 2009, 157(11): 2893-2920. doi: 10.1016/j.envpol.2009.05.051 [3] 高立红, 史亚利, 厉文辉, 等. 抗生素环境行为及其环境效应研究进展 [J]. 环境化学, 2013, 32(9): 1619-1633. GAO L H, SHI Y L, LI W H, et al. Environmental behavior and impacts of antibiotics [J]. Environmental Chemistry, 2013, 32(9): 1619-1633(in Chinese).
[4] 徐维海, 张干, 邹世春, 等. 典型抗生素类药物在城市污水处理厂中的含量水平及其行为特征 [J]. 环境科学, 2007, 28(8): 1779-1783. XU W H, ZHANG G, ZOU S C, et al. Occurrence, distribution and fate of antibiotics in sewage treatment plants [J]. Environmental Science, 2007, 28(8): 1779-1783(in Chinese).
[5] 章强, 辛琦, 朱静敏, 等. 中国主要水域抗生素污染现状及其生态环境效应研究进展 [J]. 环境化学, 2014, 33(7): 1075-1083. doi: 10.7524/j.issn.0254-6108.2014.07.001 ZHANG Q, XIN Q, ZHU J M, et al. The antibiotic contaminations in the main water bodies in China and the associated environmental and human health impacts [J]. Environmental Chemistry, 2014, 33(7): 1075-1083(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.07.001
[6] 叶必雄, 张岚. 环境水体及饮用水中抗生素污染现状及健康影响分析 [J]. 环境与健康杂志, 2015, 32(2): 173-178. YE B X, ZHANG L. Analysis of the pollution status and health risk of antibiotics in water environment and drinking water [J]. Journal of Environment and Health, 2015, 32(2): 173-178(in Chinese).
[7] 刘昔, 王智, 王学雷, 等. 我国典型区域地表水环境中抗生素污染现状及其生态风险评价 [J]. 环境科学, 2019, 40(5): 2094-2100. LIU X, WANG Z, WANG X L, et al. Status of antibiotic contamination and ecological risks assessment of several typical Chinese surface-water environments [J]. Environmental Science, 2019, 40(5): 2094-2100(in Chinese).
[8] 童蕾, 姚林林, 刘慧, 等. 抗生素在地下水系统中的环境行为及生态效应研究进展 [J]. 生态毒理学报, 2016, 11(2): 27-36. TONG L, YAO L L, LIU H, et al. Review on the environmental behavior and ecological effect of antibiotics in groundwater system [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 27-36(in Chinese).
[9] 孙见蕊. 钛基掺硼金刚石薄膜电极的制备、性质及其在废水处理中的应用[D]. 长春: 吉林大学, 2012. SUN J R. Preparation, properties of Ti/BDD electrodes and their applications in wastewater treatment [D]. Changchun: Jilin University, 2012(in Chinese).
[10] PÉREZ J F, LLANOS J, SÁEZ C, et al. Electrochemical jet-cell for the in situ generation of hydrogen peroxide [J]. Electrochemistry Communications, 2016, 71: 65-68. doi: 10.1016/j.elecom.2016.08.007 [11] SUN X P, LV J J, YAN Z H, et al. A three-dimensional gas diffusion electrode without external aeration for producing H2O2 and eliminating amoxicillin using electro-Fenton process [J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107301. doi: 10.1016/j.jece.2022.107301 [12] 雷阳明, 申哲民, 祝松鹤, 等. 采用气体扩散电极降解酸性红B研究 [J]. 环境化学, 2005, 24(3): 330-333. LEI Y M, SHEN Z M, ZHU S H, et al. Study on degradation of acid red b using gas diffusion electrode [J]. Environmental Chemistry, 2005, 24(3): 330-333(in Chinese).
[13] ZHANG Q Z, ZHOU M H, REN G B, et al. Highly efficient electrosynthesis of hydrogen peroxide on a superhydrophobic three-phase interface by natural air diffusion [J]. Nature Communications, 2020, 11: 1731. doi: 10.1038/s41467-020-15597-y [14] JI Y F, FERRONATO C, SALVADOR A, et al. Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: Implications for remediation of groundwater contaminated by antibiotics [J]. Science of the Total Environment, 2014, 472: 800-808. doi: 10.1016/j.scitotenv.2013.11.008 [15] EPOLD I, DULOVA N. Oxidative degradation of levofloxacin in aqueous solution by S2O82−/Fe2+, S2O82−/H2O2 and S2O82−/OH− processes: A comparative study [J]. Journal of Environmental Chemical Engineering, 2015, 3(2): 1207-1214. doi: 10.1016/j.jece.2015.04.019 [16] 孙智宇. BDD阳极电解硫酸盐制备过硫酸盐的研究[D]. 太原: 太原理工大学, 2020. SUN Z Y. Study on preparation of persulfate by electrolysis of sulfate on BDD anode[D]. Taiyuan: Taiyuan University of Technology, 2020(in Chinese).
[17] DIVYAPRIYA G, NIDHEESH P V. Electrochemically generated sulfate radicals by boron doped diamond and its environmental applications [J]. Current Opinion in Solid State and Materials Science, 2021, 25(3): 100921. doi: 10.1016/j.cossms.2021.100921 [18] NASHAT M, MOSSAD M, EL-ETRIBY H K, et al. Optimization of electrochemical activation of persulfate by BDD electrodes for rapid removal of sulfamethazine [J]. Chemosphere, 2022, 286: 131579. doi: 10.1016/j.chemosphere.2021.131579 [19] FU J L, ZHANG X W, LEI L C. Fe-modified multi-walled carbon nanotube electrode for production of hydrogen peroxide [J]. Acta Physico-Chimica Sinica, 2007, 23(8): 1157-1162. doi: 10.1016/S1872-1508(07)60060-6 [20] ZHOU W, RAJIC L, MENG X X, et al. Efficient H2O2 electrogeneration at graphite felt modified via electrode polarity reversal: Utilization for organic pollutants degradation [J]. Chemical Engineering Journal, 2019, 364: 428-439. doi: 10.1016/j.cej.2019.01.175 [21] LUO H J, LI C L, WU C Q, et al. Electrochemical degradation of phenol by in situ electro-generated and electro-activated hydrogen peroxide using an improved gas diffusion cathode [J]. Electrochimica Acta, 2015, 186: 486-493. doi: 10.1016/j.electacta.2015.10.194 [22] 杨子增. UV/O3降解水中磺胺嘧啶的效能和机理研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. YANG Z Z. Performance and mechanism for degradation of sulfadiazine in water by UV/O3 process[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese).
[23] 余忆玄. 羟基自由基的生成及降解磺胺嘧啶方法和机理[D]. 大连: 大连海事大学, 2019. YU Y X. Mechanism and method of production of hydroxyl radicals and fast degradation of sulfadiazine[D]. Dalian: Dalian Maritime University, 2019(in Chinese).
[24] TENG W, XU J, CUI Y J, et al. Photoelectrocatalytic degradation of sulfadiazine by Ag3PO4/MoS2/TiO2 nanotube array electrode under visible light irradiation [J]. Journal of Electroanalytical Chemistry, 2020, 868: 114178. doi: 10.1016/j.jelechem.2020.114178 [25] 苟玺莹, 张盼月, 钱锋, 等. UV/H2O2降解水中磺胺嘧啶影响因素及机理 [J]. 环境工程学报, 2017, 11(11): 5810-5819. GOU X Y, ZHANG P Y, QIAN F, et al. Influencing factors and mechanism of sulfadiazine degradation by UV/H2O2 [J]. Chinese Journal of Environmental Engineering, 2017, 11(11): 5810-5819(in Chinese).