-
地下水是地球水资源的重要组成部分,是地球上一切生物生存及人类生产活动中不合或缺的自然资源,是支撑经济可持续发展的重要战略资源,也是构成并影响生态环境的重要因素[1-4]. 根据中国水利统计年鉴数据,从2013年至2020年我国地下水资源占总供水量的比例逐年减少,北方城市地下水供用量较南方高. 在2020年全国地下水资源占总供水量的15.35%,而内蒙古占41.98%. 随着经济的不断发展和工业化、现代化程度的不断提高,我国地下水开采量日益上升,同时由于人类不当的活动导致环境中的污染物入渗,使地下水遭受污染[5-6]. 由于地下水污染具有隐蔽性、滞后性及较弱的自净能力,地下水一旦发生污染就很难恢复,同时对居民饮水安全和社会经济可持续发展构成了严重威胁[7-8]. 因此,进行地下水环境风险评估,对于防治地下水污染、科学规划和可持续利用具有一定的参考价值.
目前,对盐湖盆地蒸发特征、植被生长特征、土壤污染特征有较多的研究,杨宇娜等[9]揭示了吉兰泰及周边地区蒸散发的时空变化规律;迟旭等[10]探明吉兰泰盐湖绿洲防护林带同一建植年限柽柳灌丛形态大小与阻沙能力之间存在一定关系;张阿龙等[11]运用不同的评价方法对吉兰泰盐湖盆地土壤重金属中铬、汞、砷污染展开评价工作. 目前,对盐湖盆地地下水的风险评价较少,高瑞忠等[12]采用单因子指数法、内梅罗指数法和USEPA健康风险评价模型对吉兰泰盐湖盆地地下水中Cr、As、Hg重金属污染开展了一些健康风险评价工作. 评价方法常以单项指标评价法[13]、综合评价法[14-16]、模糊综合评价法[17-21]和集对分析法等为主[22]. 然而这些方法都有各自的缺点,例如单项指标评价法不能给出水体整体的质量状况,综合评价法只突出某单项评价指标对水体质量的影响,模糊数学法、集对分析法存在评价指标权重不唯一等问题[23]. 在实际的地下水质量评价工作中,需要根据研究区实际情况,选择恰当的评价方法并加以改进,方可得到切合实际的评价结果.
本文针对地处西北旱区荒漠边缘的盐湖盆地,结合当地生态环境脆弱、降水量少、水质恶化、污染物种类与来源复杂等诸多问题. 运用李小牛等[24]提出的地下水风险评价概念模型,以盐湖盆地土壤作为风险源,以地下水系统作为风险受体展开风险评价,将地下水脆弱性[25-27]、地下水毒性污染物容量[28]及土壤毒性污染物潜在生态危害[29-32]有机结合起来,并借助ArcGIS技术进行污染分区表征[33-35],分析盐湖盆地地下水污染状况,以期为吉兰泰盐湖盆地地下水资源合理开发利用、地下水污染防控以及保障农牧民生活饮水安全、社会经济和自然环境相协调发展提供科学依据.
内蒙古典型旱区盐湖盆地浅层地下水污染风险评价
Risk assessment of groundwater pollution in jilantai salt lake basin in arid area of Inner Mongolia
-
摘要: 为明晰内蒙古阿拉善盟吉兰泰盐湖盆地浅层地下水污染特征及评估地下水饮水安全风险等级,采集了盐湖盆地研究区土壤表层(0—10 cm)样品56个,地下水样品127个,检测分析土壤中重金属元素Cu、As、Pb含量及水样中Cr、Hg、As、F−、NO2−、NO3−含量. 运用地下水风险评价概念模型,将地下水脆弱性、地下水污染物容量及土壤毒性污染物潜在生态危害评价有机结合,对地下水污染风险展开评价. 借助ArcGIS软件进行克里格插值绘图,探析盐湖盆地浅层地下水风险的空间分布特征. 结果表明:盐湖盆地地下水脆弱性指数范围为4.80—5.30属于中等脆弱性,吉兰泰盐湖东南部和吉兰泰镇西北部脆弱性高于其他区域;地下水样品中重金属Hg的含量在《地下水质量标准》中Ⅲ类水水质标准范围内,其他元素均有超标现象,其中F−超标率最高,为62.20%,Cr、As、F−、NO2−、NO3−变异系数分别为125.40%、183.50%、178.70%、248.70%、280.70%,属于强变异性,受外界因素干扰较为明显,研究区地下水特征污染物分布较为集中,主要分布在盐湖盆地的东南部;土壤中重金属Cr、Hg、As的平均含量分别为26.32、0.17、11.77 mg·kg−1,与内蒙古当地土壤背景值相比较,Cr的平均值在背景值范围内,而Hg、As的平均值分别超出背景值4.25、1.57倍,土壤综合潜在生态危害指数为188.32,属于中等潜在生态危害,在盐湖盆地中有41.07%的样品点属于中等、强、很强潜在生态危害;盐湖盆地地下水污染风险等级分布不同与含水层脆弱性指数、特征污染物容量指数及潜在生态危害指数有关,较高污染风险区和高风险区分布在锡林高勒镇西部,较高风险以上的面积占研究区面积的25.77%,古拉本敖包镇、贺兰山的东南部在中风险范围内,中风险区面积占研究区面积的11.49%.Abstract: In order to clarify the chemical pollution characteristics of shallow groundwater in Jilantai Salt Lake Basin, Alxa League, Inner Mongolia, and to assess the safety risk level of groundwater drinking water, 56 samples of soil surface (0—10 cm) and 127 samples of groundwater in the Salt Lake Basin were collected to detect and analyze typical heavy metals in soil. The content of elements Cu, As, Pb and the content of Cr, Hg, As, F−, NO2−, NO3− in the water sample. By using a conceptual model of groundwater risk assessment, the groundwater fragility, the capacity of groundwater toxic pollutants, and the potential ecological risk hazards of soil toxic pollutants are organically combined to carry out key assessments of groundwater pollution risks. Using ArcGIS software to perform Kriging interpolation mapping, the spatial distribution characteristics of shallow groundwater risk in the Salt Lake Basin were analyzed. The results show that the groundwater vulnerability index in the salt lake basin ranges from 4.80 to 5.30, which belongs to medium vulnerability, and the vulnerability of the southeast of Jilantai Salt Lake and the northwest of Jilantai Town is higher than that of other areas; The content of heavy metal Hg in groundwater samples is within the standard range, and other elements are beyond the standard. Among them, F− exceeds the standard rate of 62.20% in the sample. The coefficients of variation of Cr, As, F−, NO2−, and NO3− are respectively. It is 125.40%, 183.50%, 178.70%, 248.70%, and 280.70%, which belong to strong variability and are obviously interfered by external factors. The distribution of groundwater characteristic pollutants in the study area is relatively concentrated, mainly in the southeast of the Salt Lake Basin; The average contents of heavy metals Cr, Hg, and As in the soil were 26.32, 0.17, and 11.77 mg·kg−1. Compared with the local soil background value in Inner Mongolia, the average value of Cr was within the range of the background value, and the average value of Hg and As exceeds the background value by 4.25 and 1.57 times. The soil comprehensive potential ecological hazard coefficient is 188.32, which belongs to the medium potential ecological hazard, and 41.07% of the sample points in the Salt Lake Basin belong to the medium, strong and very strong potential ecological hazard; The uneven distribution of groundwater pollution risk in the Salt Lake Basin is related to the aquifer vulnerability index, characteristic pollutant capacity index and potential ecological hazard index. , the higher pollution risk area and the high risk area are distributed in the west of Xilingaole Town, and the area above the higher risk accounts for 25.77% of the regional area. The southeastern part of Gulaben Aobao Town and Helan Mountain is in the medium risk range, and the medium risk area accounts for 11.49% of the regional area.
-
Key words:
- salt lake basin /
- groundwater /
- pollution assessment /
- spatial distribution /
- toxic pollutants
-
表 1 DRASTIC指标体系评分标准
Table 1. DRASTIC index system scoring criteria
埋深/m
Burial
depth D净补给量/mm
Net
replenishment R含水层介质
Aquifer
media(A)土壤
Soli(S)包气带类型
Type of aeration
zone(I)地形坡度/%
Topographic
gradient(T)渗透系数/(m·d−1)
Permeability
coefficient(C)评分
Score>30.5 ≤51 粘土 卵砾石 粘土为主(50%) >18 ≤4.1 1 26.7—30.5 51—72 亚粘土 砂砾石 亚粘土为主 17—18 4.1—12.2 2 22.9—26.7 72—92 亚砂土 泥炭 亚砂土为主 15—17 12.2—20.3 3 15.2—22.9 92—117 粉砂 胀缩或凝聚性粘土 粉砂为主 13—15 20.3—28.5 4 12.1—15.2 117—148 粉细砂 砾质亚粘土 粉细砂为主 11—13 28.5—34.6 5 9.1—12.1 148—178 细砂 亚粘土 细砂为主 9—11 34.6—40.7 6 6.8—9.1 178—216 中砂 粉砾质亚粘土 中砂为主 7—9 40.7—61.5 7 4.6—6.8 216—235 粗砂 粘土质亚粘土 粗砂为主 4—7 61.5—71.6 8 1.5—4.6 235—255 砂砾石 垃圾 砂砾石为主 2—4 71.6—81.5 9 <1.5 >255 卵砾石 非胀缩和非凝聚性粘土 卵砾石为主 <2 >81.5 10 表 2 容量指数评分标准
Table 2. Scoring criteria for capacity index
TCD 等级
Rank水环境状态
Water environment status分值
Score0—0.2 Ⅰ 极易恶化 5 0.2—0.4 Ⅱ 极易污染 4 0.4—0.6 Ⅲ 易污染 3 0.6—0.8 Ⅳ 较易污染 2 >0.8 Ⅴ 不易污染 1 表 3 潜在生态危害系数与综合潜在生态危害指数等级划分
Table 3. Classification of potential ecological hazard index and comprehensive potential ecological hazard index
等级
Rank潜在生态危害指数
Potential ecological hazard index综合潜在生态危害指数
Comprehensive potential ecological hazard index潜在生态危害程度
Potential ecological hazard level1 $ {E}_{i}\le 40 $ RI $ \le 150 $ 轻微生态危害 2 $ {40 < E}_{i}\le 80 $ $ 150 < \mathrm{R}\mathrm{I}\le 300 $ 中等生态危害 3 $ {80 < E}_{i}\le 160 $ $ 300 < RI\le 600 $ 强生态危害 4 $ {160 < E}_{i}\le 320 $ $ \mathrm{R}\mathrm{I} > 600 $ 很强生态危害 5 $ {E}_{i}\ge 320 $ — 极强生态危害 表 4 盐湖盆地浅层地下水特征毒性元素含量统计分析
Table 4. Statistical analysis of characteristic toxic elements in shallow groundwater in the Salt Lake Basin
元素
Element含量范围/(mg·L−1)
Content range平均值/(mg·L−1)
Average value标准差
Standard
deviation变异系数/%
Coefficient of
variation地下水质量标准
(GBT14848-2017)/(mg·L−1)
Groundwater Quality Standards超标率/%
Exceeding
rateCr 0.0012—0.27 0.038 0.048 125.40 0.050 22.05 Hg 0.0000020—0.0010 0.00020 0.00020 98.70 0.0010 0 As 0.00011—0.066 0.0047 0.0086 183.50 0.010 11.02 F- 0—46.18 2.77 4.95 178.70 1.00 62.20 NO2- 0—11.06 0.64 1.59 248.70 1.00 14.17 NO3- 0—48.47 3.12 8.76 280.70 20.00 4.72 表 5 盐湖盆地土壤特征毒性元素含量统计分析(mg·kg−1)
Table 5. Statistical analysis of soil characteristic toxic elements in the Salt Lake Basin
毒性元素
Toxic
element最小值
Min最大值
Max均值
Average标准差
Standard
deviation变异系数/%
Coefficient of
variation内蒙古自治区背景值
Inner Mongolia Autonomous
region background国家标准
(GB15618-2018)
National standard背景值
Background超标率
Exceeding rate标准值
Standard超标率
Exceeding rateCr 2.90 55.21 26.32 9.86 37.46 41.40 5.36% 250.00 0 Hg 0.00 0.60 0.17 0.16 94.12 0.04 73.21% 3.40 0 As 0.00 21.74 11.77 5.98 50.81 7.50 73.21% 25.00 0 表 6 潜在生态危害指数评价结果
Table 6. Evaluation results of potential ecological hazard index
元素
Element$ {E}_{i} $ $ {{\bar E}_{i}} $ 样品比例
Sample ratio轻微危害
Minor hazard中等危害
Moderate hazard强危害
Strong hazard很强危害
Very hazard极强危害
Extremely hazardCr 0.14—2.67 1.27 100% 0 0 0 0 Hg 1.59—601.48 171.36 26.79% 14.29% 19.64% 14.29% 25% As 0—28.98 15.69 100% 0 0 0 0 $\mathrm{RI}$ $ \overline{{\rm{RI}}} $ 样品比例
Sample ratio轻微危害
Minor hazard中等危害
Moderate hazard强危害
Strong hazard很强危害
Very hazard— RI 21.89—609.47 188.32 58.93% 14.29% 25% 1.79% — -
[1] 蒲生彦, 马晋, 杨庆, 等. 地下水污染预警指标体系构建方法研究进展 [J]. 环境科学与技术, 2019, 42(3): 191-197. PU S Y, MA J, YANG Q, et al. A review on construction methods for index system of early warning of groundwater pollution [J]. Environmental Science & Technology, 2019, 42(3): 191-197(in Chinese).
[2] 白利平, 王业耀, 郭永丽, 等. 基于风险管理的区域(流域)地下水污染预警方法研究 [J]. 环境科学, 2014, 35(8): 2903-2910. BAI L P, WANG Y Y, GUO Y L, et al. Research of early-warning method for regional groundwater pollution based on risk management [J]. Environmental Science, 2014, 35(8): 2903-2910(in Chinese).
[3] 白利平, 王业耀, 王金生, 等. 基于数值模型的地下水污染预警方法研究 [J]. 中国地质, 2011, 38(6): 1652-1659. BAI L P, WANG Y Y, WANG J S, et al. A study of the groundwater pollution early-warning method based on numerical model [J]. Geology in China, 2011, 38(6): 1652-1659(in Chinese).
[4] 张毅博, 赵剑斐, 黄涛, 等. 基于地统计分析的老旧工业园农田区域地下水重金属空间分布及风险评价 [J]. 江苏农业科学, 2020, 48(12): 258-264. ZHANG Y B, ZHAO J F, HUANG T, et al. Spatial distribution and risk assessment of heavy metals in farmland area around old industrial park based on ground statistical analysis [J]. Jiangsu Agricultural Sciences, 2020, 48(12): 258-264(in Chinese).
[5] 王嘉瑜, 蒲生彦, 胡玥, 等. 地下水污染风险预警等级及阈值确定方法研究综述 [J]. 水文地质工程地质, 2020, 47(2): 43-50. WANG J Y, PU S Y, HU Y, et al. Review on the determination methods for early warning grade and threshold of groundwater pollution risk [J]. Hydrogeology & Engineering Geology, 2020, 47(2): 43-50(in Chinese).
[6] 刘子金, 徐存东, 朱兴林, 等. 干旱荒漠区人工绿洲土壤盐碱化风险综合评估与演变分析 [J]. 中国环境科学, 2022, 42(1): 367-379. LIU Z J, XU C D, ZHU X L, et al. Comprehensive assessment and evolution analysis of soil salinization in artificial oasis in arid desert area [J]. China Environmental Science, 2022, 42(1): 367-379(in Chinese).
[7] 姚丽利, 高童, 胡立堂. 地下水水源地污染预警应用研究: 以浑河冲洪积扇为例 [J]. 南水北调与水利科技, 2016, 14(1): 37-41,66. YAO L L, GAO T, HU L T. Application study of groundwater pollution early warning in source field: A case study in alluvial-pluvial fan of Hun River [J]. South-to-North Water Transfers and Water Science & Technology, 2016, 14(1): 37-41,66(in Chinese).
[8] 王晓东, 田伟, 张雪艳. 宁夏地区地下水金属元素分布特征及健康风险评价 [J]. 环境科学, 2022, 43(1): 329-338. WANG X D, TIAN W, ZHANG X Y. Distribution characteristics and health risk assessment of metal elements for groundwater in the Ningxia region of China [J]. Environmental Science, 2022, 43(1): 329-338(in Chinese).
[9] 杨宇娜, 汪季, 张成福, 等. 吉兰泰及周边地区蒸散发的时空变化规律[J]. 灌溉排水学报, 2019, 38(S2): 30-36. YANG Y N, WANG J, ZHANG C F, et al. Spatial and temporal variations of evapotranspiration in Jilantai and its surrounding areas[J]. Journal of Irrigation and Drainage, 2019, 38(Sup 2): 30-36(in Chinese).
[10] 迟旭, 崔向新, 党晓宏, 等. 吉兰泰盐湖绿洲柽柳灌丛生长与沙堆形态特征的关系 [J]. 西北农林科技大学学报(自然科学版), 2022, 50(3): 49-58. CHI X, CUI X X, DANG X H, et al. Relationship between Tamarix chinensis shrub growth and sand pile morphology in Jilantai Salt Lake Oasis [J]. Journal of Northwest A & F University (Natural Science Edition), 2022, 50(3): 49-58(in Chinese).
[11] 张阿龙, 高瑞忠, 张生, 等. 吉兰泰盐湖盆地土壤重金属铬、汞、砷分布的多方法评价 [J]. 土壤学报, 2020, 57(1): 130-141. ZHANG A L, GAO R Z, ZHANG S, et al. Evaluation using numerous methods of distribution of heavy metals Cr, Hg and As in Jilantai salt lake basin [J]. Acta Pedologica Sinica, 2020, 57(1): 130-141(in Chinese).
[12] 高瑞忠, 秦子元, 张生, 等. 吉兰泰盐湖盆地地下水Cr6+、As、Hg健康风险评价 [J]. 中国环境科学, 2018, 38(6): 2353-2362. GAO R Z, QIN Z Y, ZHANG S, et al. Health risk assessment of Cr6+, As and Hg in groundwater of Jilantai salt lake basin, China [J]. China Environmental Science, 2018, 38(6): 2353-2362(in Chinese).
[13] 付昌昌, 李向全, 张岩, 等. 盐城滨海平原地下水质量现状及健康风险评价 [J]. 水资源与水工程学报, 2017, 28(5): 54-60. FU C C, LI X Q, ZHANG Y, et al. Groundwater quality evaluation and the health risk assessment of Yancheng Coastal Plain [J]. Journal of Water Resources and Water Engineering, 2017, 28(5): 54-60(in Chinese).
[14] 张翔. 综合污染指数评价法在北洛河上的研究应用 [J]. 水利技术监督, 2021, 29(3): 8-10,18. ZHANG X. Study and application of comprehensive pollution index evaluation method in Beiluo River [J]. Technical Supervision in Water Resources, 2021, 29(3): 8-10,18(in Chinese).
[15] 袁瑞强, 钟钰翔, 龙西亭. 洞庭湖上游平原浅层地下水水质综合评价 [J]. 水资源保护, 2021, 37(6): 121-127. YUAN R Q, ZHONG Y X, LONG X T. Comprehensive evaluation of shallow groundwater quality in upper plain of Dongting Lake [J]. Water Resources Protection, 2021, 37(6): 121-127(in Chinese).
[16] 梁乃森, 钱程, 穆文平, 等. 大牛地气田区地下水水质模糊综合评价 [J]. 水文地质工程地质, 2020, 47(3): 52-59. LIANG N S, QIAN C, MU W P, et al. Fuzzy comprehensive evaluation of groundwater quality of the Daniudi gas field area [J]. Hydrogeology & Engineering Geology, 2020, 47(3): 52-59(in Chinese).
[17] 许传坤, 翟亚男. 地下水环境质量评价方法研究 [J]. 水利技术监督, 2021, 29(6): 144-148,161. XU C K, ZHAI Y N. Study on groundwater environmental quality assessment based on different assessment methods [J]. Technical Supervision in Water Resources, 2021, 29(6): 144-148,161(in Chinese).
[18] 时雯雯, 周金龙, 曾妍妍, 等. 新疆乌昌石城市群地下水多重水质评价 [J]. 干旱区资源与环境, 2021, 35(2): 109-116. SHI W W, ZHOU J L, ZENG Y Y, et al. Multiple groundwater quality evaluation of Urumqi-Changji-Shihezi City agglomeration in Xinjiang [J]. Journal of Arid Land Resources and Environment, 2021, 35(2): 109-116(in Chinese).
[19] 柳凤霞, 史紫薇, 钱会, 等. 银川地区地下水水化学特征演化规律及水质评价 [J]. 环境化学, 2019, 38(9): 2055-2066. doi: 10.7524/j.issn.0254-6108.2019043003 LIU F X, SHI Z W, QIAN H, et al. Evolution of groundwater hydrochemical characteristics and water quality evaluation in Yinchuan area [J]. Environmental Chemistry, 2019, 38(9): 2055-2066(in Chinese). doi: 10.7524/j.issn.0254-6108.2019043003
[20] 刚什婷, 贾涛, 邓英尔, 等. 基于熵权法的集对分析模型在蛤蟆通流域地下水水质评价中的应用 [J]. 长江科学院院报, 2018, 35(9): 23-27. GANG S T, JIA T, DENG Y E, et al. Assessment of groundwater quality in hamatong drainage basin by using model of set pair analysis based on entropy weight method [J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 23-27(in Chinese).
[21] 周宇哲, 高茂庭. 水质评价中模糊-集对分析法的改进 [J]. 环境工程学报, 2015, 9(2): 749-755. ZHOU Y Z, GAO M T. An improved fuzzy-set pair analysis in water quality evaluation [J]. Chinese Journal of Environmental Engineering, 2015, 9(2): 749-755(in Chinese).
[22] 陈南祥, 苏荣, 曹文庚. 基于熵权的集对分析法在土默特左旗地下水水质评价中的应用 [J]. 干旱区资源与环境, 2013, 27(6): 30-34. CHEN N X, SU R, CAO W G. Application of the Set Pair analysis method to evaluation of shallow groundwater quality based on entropy weight [J]. Journal of Arid Land Resources and Environment, 2013, 27(6): 30-34(in Chinese).
[23] 安永凯. 鄂尔多斯盆地地下水污染风险评价及预警研究[D]. 长春: 吉林大学, 2016. AN Y K. Study on risk assessment and early warning of groundwater pollution in the Ordos Basin[D]. Changchun: Jilin University, 2016(in Chinese).
[24] 李小牛, 周长松, 周孝德, 等. 污灌区浅层地下水污染风险评价研究 [J]. 水利学报, 2014, 45(3): 326-334,342. LI X N, ZHOU C S, ZHOU X D, et al. Study on risk assessment of groundwater pollution in sewage irrigation area [J]. Journal of Hydraulic Engineering, 2014, 45(3): 326-334,342(in Chinese).
[25] 张翼龙, 陈宗宇, 曹文庚, 等. DRASTIC与同位素方法在内蒙古呼和浩特市地下水防污性评价中的应用 [J]. 地球学报, 2012, 33(5): 819-825. ZHANG Y L, CHEN Z Y, CAO W G, et al. The application of DRASTIC and isotope method to the evaluation of groundwater vulnerability in Hohhot, inner Mongolia [J]. Acta Geoscientica Sinica, 2012, 33(5): 819-825(in Chinese).
[26] 孙才志, 奚旭, 董璐. 基于ArcGIS的下辽河平原地下水脆弱性评价及空间结构分析 [J]. 生态学报, 2015, 35(20): 6635-6646. SUN C Z, XI X, DONG L. An Arc GIS-based analysis of groundwater spatial structure and groundwater vulnerability in the lower reaches of the Liaohe River Plain [J]. Acta Ecologica Sinica, 2015, 35(20): 6635-6646(in Chinese).
[27] 郭静, 赵林, 刘年磊. 基于DRASTIC的包气带阻滞污染物能力研究 [J]. 环境污染与防治, 2011, 33(12): 52-55. GUO J, ZHAO L, LIU N L. Study on the ability of blocking pollutants in the vadose zone based on DRASTIC [J]. Environmental Pollution & Control, 2011, 33(12): 52-55(in Chinese).
[28] 董贵明, 刘仍阳, 常大海, 等. VCH地下水污染风险评价模型构建及应用 [J]. 环境科学与技术, 2018, 41(3): 198-204. DONG G M, LIU R Y, CHANG D H, et al. VCH groundwater pollution risk assessment model: Building and application [J]. Environmental Science & Technology, 2018, 41(3): 198-204(in Chinese).
[29] 赵杰, 罗志军, 赵越, 等. 环鄱阳湖区农田土壤重金属空间分布及污染评价 [J]. 环境科学学报, 2018, 38(6): 2475-2485. ZHAO J, LUO Z J, ZHAO Y, et al. Spatial distribution and pollution assessment of heavy metals in farmland soils in Poyang Lake area [J]. Acta Scientiae Circumstantiae, 2018, 38(6): 2475-2485(in Chinese).
[30] 王海洋, 韩玲, 谢丹妮, 等. 矿区周边农田土壤重金属分布特征及污染评价 [J]. 环境科学, 2022, 43(4): 2104-2114. WANG H Y, HAN L, XIE D N, et al. Distribution characteristics of heavy metals in farmland soils around mining areas and pollution assessment [J]. Environmental Science, 2022, 43(4): 2104-2114(in Chinese).
[31] 张富贵, 彭敏, 王惠艳, 等. 基于乡镇尺度的西南重金属高背景区土壤重金属生态风险评价 [J]. 环境科学, 2020, 41(9): 4197-4209. ZHANG F G, PENG M, WANG H Y, et al. Ecological risk assessment of heavy metals at township scale in the high background of heavy metals, southwestern, China [J]. Environmental Science, 2020, 41(9): 4197-4209(in Chinese).
[32] 张阿龙, 高瑞忠, 张生, 等. 吉兰泰盐湖盆地土壤铬、汞、砷污染的负荷特征与健康风险评价 [J]. 干旱区研究, 2018, 35(5): 1057-1067. ZHANG A L, GAO R Z, ZHANG S, et al. Pollution load characteristics and health risk assessment of heavy metals Cr, Hg and As in the Jilantai salt lake basin [J]. Arid Zone Research, 2018, 35(5): 1057-1067(in Chinese).
[33] 唐学芳, 吴勇, 陈晶, 等. 基于DRASTIC-GIS 模型的成都典型区域地下水脆弱性评价 [J]. 环境监测管理与技术, 2020, 32(6): 28-32. TANG X F, WU Y, CHEN J, et al. DRASTIC-GIS model for assessing groundwater vulnerability in typical area of Chengdu [J]. The Administration and Technique of Environmental Monitoring, 2020, 32(6): 28-32(in Chinese).
[34] 马贵仁, 屈忠义, 王丽萍, 等. 基于ArcGIS空间插值的河套灌区土壤水盐运移规律与地下水动态研究 [J]. 水土保持学报, 2021, 35(4): 208-216. MA G R, QU Z Y, WANG L P, et al. Research on soil water and salt movement and groundwater dynamics in Hetao irrigation district based on ArcGIS spatial interpolation [J]. Journal of Soil and Water Conservation, 2021, 35(4): 208-216(in Chinese).
[35] 王金哲, 张光辉, 严明疆, 等. 干旱区地下水功能评价与区划体系指标权重解析 [J]. 农业工程学报, 2020, 36(22): 133-143. WANG J Z, ZHANG G H, YAN M J, et al. Index weight analysis of groundwater function evaluation and zoning system in arid areas [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(22): 133-143(in Chinese).
[36] 刘春华, 张光辉, 王威, 等. 区域地下水系统防污性能评价方法探讨与验证: 以鲁北平原为例 [J]. 地球学报, 2014, 35(2): 217-222. LIU C H, ZHANG G H, WANG W, et al. The method for regional groundwater vulnerability assessment and the verification of the assessment results: A case study of the northern Shandong plain [J]. Acta Geoscientica Sinica, 2014, 35(2): 217-222(in Chinese).
[37] 孟宪萌, 束龙仓, 卢耀如. 基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用 [J]. 水利学报, 2007, 38(1): 94-99. MENG X M, SHU L C, LU Y R. Modified DRASTIC model for groundwater vulnerability assessment based on entropy weight [J]. Journal of Hydraulic Engineering, 2007, 38(1): 94-99(in Chinese).
[38] 朱飞, 熊丽君, 吴建强, 等. 基于改进DRASTIC模型的平原河网地区地下水脆弱性评价 [J]. 环境科学与技术, 2020, 43(2): 187-193. ZHU F, XIONG L J, WU J Q, et al. Groundwater vulnerability assessment in plain river network areas based on the improved DRASTIC model [J]. Environmental Science & Technology, 2020, 43(2): 187-193(in Chinese).
[39] 杨宁, 陶志斌, 高松, 等. 基于AHP的DRASTIC模型对莱州地区地下水脆弱性研究[J]. 地质学报, 2019, 93(S1): 133-137. YANG N, TAO Z B, GAO S, et al. Study of groundwater vulnerability in Laizhou using AHP-based DRASTIC model[J]. Acta Geologica Sinica, 2019, 93(Sup 1): 133-137(in Chinese).
[40] 宋波, 张云霞, 庞瑞, 等. 广西西江流域农田土壤重金属含量特征及来源解析 [J]. 环境科学, 2018, 39(9): 4317-4326. SONG B, ZHANG Y X, PANG R, et al. Analysis of characteristics and sources of heavy metals in farmland soils in the Xijiang River draining of Guangxi [J]. Environmental Science, 2018, 39(9): 4317-4326(in Chinese).
[41] 李娇, 陈海洋, 滕彦国, 等. 拉林河流域土壤重金属污染特征及来源解析 [J]. 农业工程学报, 2016, 32(19): 226-233. LI J, CHEN H Y, TENG Y G, et al. Contamination characteristics and source apportionment of soil heavy metals in Lalin River Basin [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(19): 226-233(in Chinese).