-
金属元素具有毒性大、持久性强、富集性高和难降解等特点,通过进入土壤、空气和水中而对人体健康产生直接或间接危害[1-4]. 饮水和皮肤接触等途径是地表水体中金属元素对人体造成危害的主要方式[5-6]. 因此,研究地表水中金属元素分布特征,评价其对人体健康风险具有重要意义. 目前,国内外学者多采用美国环境保护署(US EPA)提出的人体健康风险评估方法评价金属元素对人体健康的危害,Egbueri等[7]研究了尼日利亚某地区浅层地下水重金属、Achary等[8]研究了孟加拉湾西南海岸地表水重金属、师环环等[9]研究了雷州半岛地下水重金属、赵玉[10]研究了渭河干流浅层地下水与地表水中Cd污染等评价金属元素对人体健康的危害等.
汾河是山西省的母亲河,每年从汾河取各类水资源24.3×108 m3,占山西省水资源利用总量的46%[11]. 流域内工农业生产排放的废水是其水体污染严重的主要原因,严重威胁着人民身体健康安全,破坏流域生态环境[12-14]. 目前对于汾河流域研究主要集中于水质污染[15]、土壤重金属[16]及沉积物重金属污染[17-18]等研究,但对汾河流域地表水中金属元素对人体健康风险评价研究较少.
本文选取汾河流域地表水金属元素为研究对象,分析对人体有潜在危害的As、Cu、Pb、Zn、Hg、Ni、Mn、Fe和Co共9种金属元素空间分布特征,利用多元统计分析方法分析金属元素之间的相关性和来源,采用US EPA水环境健康风险评价方法评价流域内地表水金属浓度对成人和儿童人体健康产生的危害,以期为汾河流域地表水金属元素监测、水资源保护和开发利用提供依据.
-
汾河是山西省流域面积最大的河流以及黄河流域第二大支流,流经忻州、太原、晋中等多个地市,全长716 km,流域总面积39721 km2,约占山西省面积的四分之一,多年平均径流量21×108 m3[19]. 汾河流域西靠吕梁山、东临太行山,地势北高南低,由北向南纵贯山西省中南部,其支流水系发源于两大山系之间,东西两侧为山地和高原,中部形成一连串断陷盆地,干流蜿蜒穿行于太原、临汾两大断陷盆地内. 流域地处中纬度大陆性季风带,多年平均降水量472 mm[20],年内分配不均,7—9月份降水占全年的70%左右.
-
2020年5月采集汾河主要支流入河口及干流断面水样(图1),共采集水样39组,其中汾河上游11组(G1—G11),中游11组(G12—G22),下游9组(G23—G31),支流水样8组(Y1—Y8). 采样前先用原水洗涤聚乙烯采样瓶和瓶盖3—5次,所有样品先用硝酸酸化至pH 值小于2,运回实验室后立即用0.45 μm 的醋酸纤维滤膜过滤后,存放在4℃的冰箱内保存待测. 所有样品均由自然资源部岩溶地质资源环境监督检测中心测试,金属元素As、Cu、Pb、Zn、Hg、Ni、Mn、Fe和Co的含量利用电感耦合等离子体质谱仪(ICPMS)测定. 所有元素测定结果标准偏差均低于5%,加标回收率均为90%—110%,测试结果符合质量控制要求.
-
毒性金属元素通过饮水途径、呼吸途径和皮肤接触途径对人体造成一定健康风险,饮水途径为较重要的一个途径[21-22]. 本文采用US EPA提出的水环境健康风险评价模型,评估研究区地表水金属元素产生的危害,主要考虑通过饮水途径致癌和非致癌物对成人和儿童所造成的健康风险,致癌物和非致癌物经饮水途径所致健康风险评价模型分别如式(1)—(3)[23-24].
式中,Ric为致癌物质所致平均个人年健康风险,a−1;SF为致癌物质摄入的致癌强度系数,kg·d·mg−1;Rin为非致癌物质所致平均个人年健康风险,a−1;RfD为非致癌物日均摄入参考剂量,kg·d·mg−1;Di为金属元素i的单位体重日均暴露剂量,kg·d·mg−1;A为日平均饮水量,L·d−1,成人和儿童日平均饮水量分别为2.223 L·d−1和1 L·d−1;Ci为重金属i的质量浓度,mg·L−1;B为人均体重,kg,山西省成人和儿童平均体重分别为64kg和25kg[25];L为平均人均寿命,山西省平均寿命为75 a[25].
利用水环境的总体健康风险表示致癌物质和非致癌物质对人体的健康危害(式(4))[24].
本文测定的9种金属元素中,致癌物为As,非致癌物为Hg、Cu、Pb、Zn、Mn、Ni、Co和Fe,其毒理学参数见表1[26-28].
水环境健康总体风险分为5个等级[24],RT≥1.0×10−4 a−1时为高风险等级,5.0×10−5 a−1 ≤RT<1.0×10−4 a−1时为较高风险等级,1.0×10−5a−1≤RT<5.0×10−5 a−1时为中等风险等级,1.0×10−6 a−1≤RT<1.0×10−5 a−1时为较低风险等级,RT<1.0×10−6 a−1时为低风险等级.
-
分析汾河干流和支流地表水金属含量分布特征(表2),对比《地表水环境质量标准》(GB 3838-2002)Ⅲ类标准,研究区As、Cu、Pb、Zn、Ni和Co这6种金属元素含量均满足Ⅲ类水质标准,Hg、Fe和Mn这3种金属元素在部分采样点超标. 汾河干流有30个采样点Hg元素超标,其中汾河中游G26点未超标,污染最严重的点超标8.80倍为汾河下游G28点;Fe有22个采样点超标(上游4个,中游10个,下游8个),最大超标15.33倍为中游G18点;Mn有17个采样点超标(上游1个,中游7个,下游9个),最大超标3.72倍为汾河中游G22点. 支流8个采样点Hg超标,最大超标12.1倍为Y8点浍河水,Fe有6个采样点超标,最大超标3.57倍为Y4点,Mn有3个采样点超标,最大超标1.55倍为Y8点浍河水.
各样品中元素含量的离散程度可以用变异系数表示[29]. 汾河上游Fe、Mn、Zn和Co变异系数均大于0.8,说明Fe、Mn、Zn和Co在各采样点含量变化幅度较大,中游、下游次之. 从上游到下游,金属含量汾河中游最高,下游次之(表2、图2). 各支流金属元素除Pb外,其他元素的变异系数均较大,As的变异系数为1.31,变异幅度最大,说明这些金属元素的浓度存在显著的差异,空间差异明显.
与国内外其他地区河流金属含量相比(表3),汾河Fe和Mn含量普遍高于其他河流,Fe浓度是渭河的3.96倍,印度Subarnarekha河的15.35倍;Mn浓度是渭河的178.22倍;除Hg、Co和Fe外,其他金属元素含量均低于黄河. 汾河As浓度与Subarnarekha河(印度)和底格里斯河(土耳其)类似,但低于黄河、长江和哈拉兹河(伊朗). Cu、Ni、Pb和Zn含量高于渭河和Subarnarekha河(印度),低于黄河和哈拉兹河(伊朗). 说明汾河As和Hg与其他河流相近,Cu、Pb、Zn、Ni和Co相对优于国内外其他河流,但是Fe和Mn浓度相对比较高,是汾河水环境污染的重要因素之一,需要加以重视.
-
汾河流域地表水金属浓度相关性分析表明(表4),Cu、Pb、Zn、Mn、Ni、Co和Fe之间相关性极显著,相关系数在0.8以上,其中Cu和Fe相关系数最高,为0.970,说明Cu和Fe关系最为密切,含量受彼此影响较大;Hg和As相关系数为0.676.
-
通过对分析数据进行检验,其KMO和Bartlett值分别为0.786和0.00,可对金属元素进行主成分分析. 根据因子筛选原则,提取累积方差达92.464%的2个组分进行作为主成分分析(表5),主成分1占方差72.668%,包括Cu、Co、Fe、Ni、Mn、Pb和Zn共7种重金属,贡献率分别为99.0%、98.1%、97.1%、96.8%、96.6%和96.4%;主成分2占方差19.796%,为Hg、As,贡献率分别为92.9%、92.7%. 相关性分析与主成分分析结果基本一致,因此可以将金属元素分为二组,主成分1为一类,主成分2为一类.
汾河流域除G26点外,所有采样点Hg均超标(G26点主要为生活垃圾渗滤液排入造成的),超标的主要原因是燃煤污染、工业废水和车辆的尾气排放等[16]. 流域内As均有分布,且中下游较高,说明As多来源于农业区使用的农药及含磷化肥[34,37]. 结合相关性及主成分2,说明Hg和As可能有相同的来源,来源于工业污染及农业污染等[38-39]. 汾河上游除G7点外,其余采样点金属元素浓度均较低,这主要是由于上游两侧主要为山地和高原,交通不发达,工农业活动相对较少,金属元素主要为流域自然背景. G7点位于汾河水库上游岚河汇入汾河后,周边岚县和娄烦县是山西主要的铁矿矿产资源主要分布区,同时还分布有煤矿等[40];同时汾河水库上游地区分布有大面积连片耕地,因此工农业生产均可导致G7点金属元素较上游其他点值高. 同样的支流Y3点金属元素值也较高. 汾河流域中下游地区主要为太原盆地和临汾盆地区,不仅分布有太原、临汾、霍州、襄汾、河津等大中型城市,也是全省粮棉经济作物主产区. 汾河中游和下游干流两侧分布有大中型工矿企业,如太原至临汾一带均蕴藏有丰富的煤炭资源等[41],煤矿开采产生的矿坑水中Fe、Mn、Pb、Cu、Zn、Ni和Co含量较高[42-43];流域内也分布有锰、水泥灰岩、石膏、铜、白云岩等矿产资源,襄汾县等地分布有铁矿也是造成Pb、Cu、Zn、Ni、Co、Fe和Mn含量较高的原因. 农业废弃物主要为农药化肥中含有Pb、Hg、Zn、Cu 和As等[44-45]. Pb、Zn多认为与交通要道上汽车尾气、轮胎磨损密切等有关[16, 46-47],与汾河中下游城市交通道路密集有关. Pb、Cu、Zn、Ni、Co、Fe、Mn具有很好的相关性,结合主成分1,说明Pb、Cu、Zn、Ni、Co、Fe、Mn不仅来源于工业活动,还受交通污染和农业活动的影响. 春季汾河水位低,河流流速慢,含金属元素的工业废水等排入汾河,是造成流域地表水金属元素累积的主要原因[48-49].
-
为评估流域重金属元素对人群的健康风险,采用美国环境保护署(USEPA)水环境健康风险评价模型评价地表水金属元素经饮用水途径造成的健康风险(表6和表7). 汾河干流和支流儿童的健康总风险明显高于成人的健康总风险,是成人的1.15倍,说明儿童更易受到金属元素的危害,因此要更加严格控制和管理儿童的饮用水安全. 成人和儿童的致癌物(As)平均个人年健康风险高于儿童非致癌物平均个人年健康风险值(Cu、Pb、Zn、Hg、Ni、Mn、Fe、Co)3—4个数量级,这与焦伟等[46, 50]的研究结果一致,说明致癌强度系数影响致癌物的风险等级. 汾河干流各河段及支流As引起的平均个人健康风险成人为1.6×10−6—1.51×10−4,儿童为1.84×10−6—1.73×10−4,其中汾河中游支流昌源河(Y5)As引起的儿童平均个人健康风险值为5.59×10−5,汾河下游支流浍河(Y8)As引起的成人、儿童平均个人健康风险值均为最大,分别为1.51×10−4、1.73×10−4,高于5×10−5 a−1(国际辐射防护委员会(ICRP)最大可接受风险值)[51],说明As为浍河和昌源河的主要致癌因子,应作为水环境健康风险管理的主要元素. 其余采样点As引起的儿童平均个人健康风险值均低于5×10−5 a−1,高于1×10−6 a−1(瑞典环境保护局、荷兰建设和环境保护部以及英国皇家协会提出的最大可接受风险水平)[24]. 虽然As浓度均未超过Ⅲ类地表水水质标准,但仍具有较高的致癌风险. 致癌风险不仅与As的浓度有关,还与致癌强度系数、人体日平均饮水量、人均体重和人类平均寿命等有关,因此As应作为汾河水环境健康风险管理的主要金属元素.
汾河上游非致癌金属元素所引起的成人和儿童的平均个人年健康风险大小顺序为Co>Hg>Fe>Cu>Mn>Ni>Zn(上游只有1点检测出Pb);汾河中游为Co>Fe>Pb>Hg>Mn>Cu>Ni>Zn;汾河下游为Co>Pb>Fe>Hg>Mn>Cu>Ni>Zn;支流风险顺序为Co>Hg>Fe>Pb>Mn>Cu>Ni>Zn;汾河干流各河段和支流的成人及儿童个人平均健康风险水平平均值均远远小于1×10−6 a−1(表6),说明健康风险处于可以接受的水平. 汾河干流各河段Co、Pb和Fe以及汾河支流中Co和Hg导致的平均个人年健康风险均远大于其他元素,因此,在非致癌性金属元素中,Co、Pb、Fe和Hg应作为优先控制污染物. 成人和儿童的健康风险等级均属于中等风险等级(表7),致癌金属元素远远超过非致癌金属元素对人体健康危害的风险程度.
分析各河段健康总风险,汾河支流>汾河下游>汾河中游>汾河上游(表7),风险值均大于1×10−6 a−1,小于5×10−5 a−1,属中等风险等级,汾河中下游和支流健康风险危害比较大,应该引起足够重视,这主要与汾河中下游分布有大量的中大型城市和工矿企业,以及农业生产活动等有关,支流汇入干流后,干流在较大水量稀释情况下,具有一定的纳污能力. 另一方面也说明了支流流量相对较小,水动力条件较弱,水体自净能力差,水环境容量较小.
本文采用US EPA健康风险评价模型对汾河流域地表水金属元素进行了健康风险评价,但评价模型所选用参数为山西地区或者国际通用系数,与研究区的实际情况不一定完全一致,存在一定的误差. 且此次评价仅针对金属元素,并没有对影响地表水饮用功能的SO42-、Cl-和NO3-等进行评价,具有一定的限制性. 金属元素的健康风险仅考虑了饮用水途径,未考虑其他途径(皮肤接触和呼吸),因此,对汾河流域地表水金属元素的健康风险评价为初步讨论阶段,仍需进一步深入研究.
-
(1)汾河流域Hg、Fe和Mn这3种金属元素部分点超出《地表水环境质量标准》(GB 3838-2002)Ⅲ类标准,主要分布于汾河中下游和各支流. 汾河上游Fe、Mn、Zn和Co变化幅度较大,中游、下游次之. 从上游到下游,金属元素含量汾河中游>汾河下游>汾河上游.
(2)多元统计特征表明,研究区地表水Hg主要来源于燃煤污染、工业废水、汽车尾气的排放等;As主要来源于农业活动,且Hg和As可能有相关的污染来源如工业和农业污染源;Pb、Cu、Zn、Ni、Co、Fe和Mn不仅来源于工业活动,还受交通污染和农业生产活动的影响.
(3)健康风险评价表明,汾河流域地表水中致癌物远对人体健康危害的平均个人年健康风险远超过非致癌物的,致癌性As在支流浍河和昌源河的平均个人健康风险值高于ICRP的最大可接受风险值. As、Co、Pb、Fe和Hg应作为汾河水环境健康风险管理的优先控制金属元素. 成人和儿童的健康风险等级均为中等风险等级,儿童更易受到金属元素的危害. 所有河段健康风险均为中等风险等级,汾河中下游和支流浍河、昌源河健康风险危害较大,应引起足够重视,并采取相应治理和修复措施.
汾河流域地表水金属元素分布特征与健康风险评价
Distribution characteristics and health risk assessment of metal elements in surface water of Fenhe River Basin
-
摘要: 为研究汾河流域地表水中金属污染特征及其健康危害程度,本文采集汾河流域主要支流入河口及干流断面水样39组,检测As、Cu、Pb、Zn、Hg、Ni、Mn、Fe和Co共9种金属元素含量,利用多元统计分析法、水环境健康风险评价模型分析了流域地表水中金属元素分布特征及对成人与儿童产生的健康危害. 结果表明,研究区主要超标元素为Hg、Fe和Mn,污染区主要分布于汾河干流中下游和支流. 汾河干流上游Fe、Mn、Zn和Co变化幅度较大,中游、下游次之;各支流金属元素含量差异较大. 多元统计分析显示,Hg和As主要来源于工业污染及农业污染等;Cu、Pb、Zn、Ni、Co、Fe和Mn来源于工农业生产和交通运输. 健康风险评价表明,汾河流域各河段健康总风险为汾河支流>汾河下游>汾河中游>汾河上游,汾河中下游和支流健康风险危害较大,健康风险均为中等;经饮用水途径造成的健康风险儿童是成人的1.15倍,儿童更易受到金属元素的危害;As为支流浍河和昌源河的主要致癌因子;各河段优先控制金属元素为As、Co、Pb、Fe和Hg.Abstract: In order to study the characteristics of metal pollution and health hazards in surface water of Fenhe River Basin, this paper took collected 39 water samples from the main branches of Fenhe River basin flowing into the estuary and main stream sections, and detected the content of nine metal elements, including As, Cu, Pb, Zn, Hg, Ni, Mn, Fe and Co. Multivariate statistical analysis and water environmental health risk assessment model were used to evaluate the distribution characteristics of metal elements in surface water and their health hazards to adults and children. The results showed that Hg, Fe and Mn were the main elements exceeding the standard in the study area, and the polluted areas were mainly distributed in the middle and lower reaches and tributaries of the main stream of Fenhe River. The changes of Fe, Mn, Zn and Co in the upper reaches of Fenhe River are large, followed by the middle and lower reache. The content of metal elements in tributaries varies greatly. Multivariate statistical analysis showed that Hg and As mainly came from industrial pollution and agricultural pollution. Pb, Cu, Zn, Ni, Co, Fe and Mn come from industrial and agricultural production and transportation. The health risk evaluation showed that the total health risk of each section of the Fenhe River basin was tributary>lower reaches> middle reaches> upper reaches. The health risk of children through drinking water was 1.15 times that of adults, and children were more vulnerable to metal elements; As was the main carcinogen of Huihe River and Changyuan River; The priority control metal elements in each river reach were As, Co, Pb, Fe and Hg.
-
-
表 1 金属元素毒理学参数(kg·d·mg−1)
Table 1. Toxicological parameters of the metals
元素
Element致癌强度系数
SF毒性参考剂量
RfDAs 15 — Cu — 0.005 Pb — 0.0014 Zn — 0.3 Hg — 0.0003 Ni — 0.02 Mn — 0.14 Fe — 0.7 Co — 0.0003 注:“—”表示无数据. Note: "-" indicates no data. 表 2 汾河流域主要水化学组分统计结果(μg·L−1)
Table 2. Statistics of major ions in Fenhe River basin
水体
Water数据统计
Data statisticsAs Hg Cu Pb Zn Mn Ni Co Fe 汾河上游
Upper reaches最大值 2.73 0.55 3.87 2.01 10.2 110 4.87 1.66 2270 最小值 0.23 0.26 0.51 2.01 0.91 0.78 1.21 0.16 16 平均值 1.6 0.41 1.41 2.01 2.91 23.23 2.22 0.44 426.45 标准差 0.86 0.09 0.92 0 3.62 29.95 0.99 0.42 631.73 变异系数 0.54 0.22 0.65 0 1.24 1.29 0.45 0.95 1.48 检出率/% 100 100 100 9.1 54.5 100 100 100 100 汾河中游
Middle reaches最大值 4.51 0.59 9.21 6.05 49.8 372 12.1 3.9 4600 最小值 1.54 0.36 1.12 0.14 11.2 19.4 2.53 0.35 140 平均值 3.13 0.5 5 3.34 31.52 194.35 7.8 2.07 2139.09 标准差 1.2 0.07 3.06 2.44 14.14 142.12 3.43 1.39 1590.64 汾河中游
Middle reaches变异系数 0.38 0.14 0.61 0.73 0.45 0.73 0.44 0.67 0.74 检出率/% 100 100 100 90.9 90.9 100 100 100 100 汾河下游
Lower reaches最大值 4.73 0.88 8.45 8.07 37.2 360 12.3 4.43 3920 最小值 2.35 0.09 1.7 1.25 2.09 152 4.77 0.99 150 平均值 3.85 0.62 4.93 4.48 21.65 262 8.38 2.53 2088.89 标准差 0.85 0.24 2.35 2.44 12.9 75.7 2.46 1.12 1227.89 变异系数 0.22 0.39 0.48 0.54 0.6 0.29 0.29 0.44 0.59 检出率/% 100 100 100 100 100 100 100 100 100 汾河支流
Tributaries最大值 21.8 1.21 3.52 1.08 13.2 155 7.31 1.28 1070 最小值 1.09 0.29 0.55 0.56 2.46 4.2 1.44 0.18 110 平均值 5.28 0.54 1.93 0.84 6.29 80.08 3.62 0.74 556.25 标准差 6.91 0.3 0.99 0.22 4.35 59.63 2.28 0.43 321.6 变异系数 1.31 0.55 0.51 0.26 0.69 0.74 0.63 0.58 0.58 检出率/% 100 100 100 50 100 100 100 100 100 地表水Ⅲ类水标准或标准限值
Class III standard or standard limit of surface water50 0.1 1000 50 1000 100 20 1000 300 表 3 国内外不同河流金属元素浓度(μg·L−1)
Table 3. Concentrations of heavy metals in different basins at home and abroad (μg·L−1)
河流
RiverAs Hg Cu Pb Zn Mn Ni Co Fe 汾河(本研究) 2.80 0.50 3.71 3.75 21.10 153.27 5.99 1.63 1516.81 渭河[30] 1.48 0.98 2.09 2.93 7.30 0.86 0.78 — 382.41 黄河[31] 7.30 0.14 36.27 19.51 52.46 597 25.11 — — 长江[32] 13.20 — 10.70 55.10 9.40 5.40 13.40 — 239.80 珠江[33] — — 8.24 — — 5.84 — — — Subarnarekha河(印度)[34] 2.13 — 3.35 — — 1.48 2.39 0.24 98.80 底格里斯河( 土耳其)[35] 2.354 — 165 0.342 37 467 72 111 388 哈拉兹河( 伊朗)[36] 55.35 — 13.25 4.4 52.75 116 22.4 — — 注:“—”表示无数据 表 4 重金属的相关关系矩阵
Table 4. Correlation matrix of the heavy metals
Hg As Cu Pb Zn Mn Ni Co Fe Hg 1 0.676** 0.222 0.043 0.075 0.358* 0.386* 0.287 0.167 As 1 0.267 −0.021 0.099 0.330* 0.372* 0.283 0.206 Cu 1 0.939** 0.954** 0.911** 0.958** 0.968** 0.970** Pb 1 0.849** 0.941** 0.900** 0.964** 0.928** Zn 1 0.826** 0.910** 0.892** 0.917** Mn 1 0.942** 0.950** 0.884** Ni 1 0.966** 0.927** Co 1 0.965** Fe 1 注:**表示在0.01水平上显著相关;*表示在0.05水平上显著相关. 表 5 重金属的主成分因子载荷
Table 5. Factors matrix of the heavy metals in the principal component analysis
元素
ElementPC1 PC2 Hg 0.062 0.929 As 0.045 0.927 Cu 0.990 −0.034 Pb 0.964 −0.042 Zn 0.921 −0.142 Mn 0.966 0.057 Ni 0.968 0.146 Co 0.981 0.015 Fe 0.971 −0.109 特征值 6.540 1.782 方差/% 72.668 19.796 累积方差/% 72.688 92.464 表 6 地表水重金属平均个人年健康风险(×10−11a−1)
Table 6. Average personal annual health risks caused by the heavy metals via drinking pathways in surface water
人群
Crowd水体
Water数据统计
Data statisticsAs Cu Pb Zn Hg Ni Mn Fe Co 成人
Adult汾河上游 最大值 1.90×106 35.85 66.49 1.57 84.91 11.28 36.39 150.18 256.26 最小值 1.60×105 4.72 66.49 0.14 40.14 2.80 0.26 1.06 24.70 平均值 1.11×106 13.09 66.49 0.45 63.57 5.13 7.69 28.21 68.35 汾河中游 最大值 3.13×106 85.31 200.14 7.69 91.08 28.02 123.06 304.34 602.06 最小值 1.07×106 10.37 4.63 1.73 55.58 5.86 6.42 9.26 54.03 平均值 2.17×106 46.32 110.52 4.87 77.33 18.06 64.29 141.52 319.70 汾河下游 最大值 3.28×106 78.27 266.96 5.74 135.85 28.48 119.09 259.35 683.88 最小值 1.63×106 15.75 41.35 0.32 13.89 11.05 50.28 9.92 152.83 平均值 2.67×106 45.67 148.28 3.34 96.23 19.41 86.67 138.20 390.40 汾河支流 最大值 1.51×107 32.60 35.73 2.04 186.79 16.93 51.27 70.79 197.60 最小值 7.57×105 5.09 18.53 0.38 44.77 3.33 1.39 7.28 27.79 平均值 3.65×106 17.90 27.87 0.97 83.56 8.39 26.49 36.80 114.04 儿童
Children汾河上游 最大值 2.18×106 41.28 76.57 1.81 97.78 12.99 41.90 172.95 295.11 最小值 1.84×105 5.44 76.57 0.16 46.22 3.23 0.30 1.22 28.44 平均值 1.28×106 15.07 76.57 0.52 73.21 5.91 8.85 32.49 78.71 汾河中游 最大值 3.60×106 98.24 230.48 8.85 104.89 32.27 141.71 350.48 693.33 最小值 1.23×106 11.95 5.33 1.99 64.00 6.75 7.39 10.67 62.22 平均值 2.50×106 53.34 127.28 5.60 89.05 20.80 74.04 162.98 368.16 汾河下游 最大值 3.78×106 90.13 307.43 6.61 156.44 32.80 137.14 298.67 787.56 最小值 1.88×106 18.13 47.62 0.37 16.00 12.72 57.90 11.43 176.00 平均值 3.08×106 52.60 170.76 3.85 110.81 22.36 99.81 159.15 449.58 汾河支流 最大值 1.73×107 37.55 41.14 2.35 215.11 19.49 59.05 81.52 227.56 最小值 8.72×105 5.87 21.33 0.44 51.56 3.84 1.60 8.38 32.00 平均值 4.21×106 20.61 32.10 1.12 96.22 9.66 30.51 42.38 131.33 表 7 年均总健康风险值(a−1)
Table 7. Average total personal annual health risks
人群
Crowd健康风险
Health risks汾河上游
Upper reaches汾河中游
Middle reaches汾河下游
Lower reaches汾河支流
Tributaries成人
AdultRc 1.11×10−5 2.17×10−5 2.67×10−5 3.65×10−5 Rn 2.21×10−9 9.14×10−9 1.05×10−8 3.39×10−9 RT 1.11×10−5 2.17×10−5 2.67×10−5 3.65×10−5 风险等级 中等 中等 中等 中等 儿童
ChildrenRc 1.28×10−5 2.50×10−5 3.08×10−5 4.21×10−5 Rn 2.21×10−9 8.89×10−9 1.05×10−8 3.48×10−9 RT 1.28×10−5 2.50×10−5 3.08×10−5 4.21×10−5 风险等级 中等 中等 中等 中等 -
[1] MOHANAKAVITHA T, DIVAHAR R, MEENAMBAL T, et al. Dataset on the assessment of water quality of surface water in Kalingarayan Canal for heavy metal pollution, Tamil Nadu [J]. Data in Brief, 2019, 22: 878-884. doi: 10.1016/j.dib.2019.01.010 [2] 王贞岩, 王姝, 付腾飞, 等. 秦皇岛海岸带地下水重金属特征及健康风险评价 [J]. 环境化学, 2021, 40(4): 1157-1166. WANG Z Y, WANG S, FU T F, et al. Characteristics and health risk assessment of heavy metals in groundwater of Qinhuangdao coastal zone [J]. Environmental Chemistry, 2021, 40(4): 1157-1166(in Chinese).
[3] 何宇, 洪欣, 闭潇予, 等. 九洲江流域水环境重金属污染特征及来源解析 [J]. 环境化学, 2021, 40(1): 240-253. HE Y, HONG X, BI X Y, et al. Characteristics and sources of heavy metal pollution in water environment of Jiuzhou River Basin [J]. Environmental Chemistry, 2021, 40(1): 240-253(in Chinese).
[4] 周巧巧, 任勃, 李有志, 等. 中国河湖水体重金属污染趋势及来源解析 [J]. 环境化学, 2020, 39(8): 2044-2054. ZHOU Q Q, REN B, LI Y Z, et al. Trends and sources of dissolved heavy metal pollution in water of rivers and lakes in China [J]. Environmental Chemistry, 2020, 39(8): 2044-2054(in Chinese).
[5] CHEN L, ZHOU S L, SHI Y X, et al. Heavy metals in food crops, soil, and water in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested [J]. Science of the Total Environment, 2018, 615: 141-149. doi: 10.1016/j.scitotenv.2017.09.230 [6] 谢浩, 梁永平, 李军, 等. 龙子祠泉域地下水金属元素分布特征及健康风险评价 [J]. 环境科学, 2021, 42(9): 4257-4266. XIE H, LIANG Y P, LI J, et al. Distribution characteristics and health risk assessment of metal elements in groundwater of longzici spring area [J]. Environmental Science, 2021, 42(9): 4257-4266(in Chinese).
[7] EGBUERI J C. Heavy metals pollution source identification and probabilistic health risk assessment of shallow groundwater in Onitsha, Nigeria [J]. Analytical Letters, 2020, 53: 1620-1638. doi: 10.1080/00032719.2020.1712606 [8] ACHARY M S, PANIGRAHI S, SATPATHY K K, et al. Health risk assessment and seasonal distribution of dissolved trace metals in surface waters of Kalpakkam, southwest coast of Bay of Bengal [J]. Regional Studies in Marine Science, 2016, 6: 96-108. doi: 10.1016/j.rsma.2016.03.017 [9] 师环环, 潘羽杰, 曾敏, 等. 雷州半岛地下水重金属来源解析及健康风险评价 [J]. 环境科学, 2021, 42(9): 4246-4256. SHI H H, PAN Y J, ZENG M, et al. Source analysis and health risk assessment of heavy metals in groundwater of Leizhou peninsula [J]. Environmental Science, 2021, 42(9): 4246-4256(in Chinese).
[10] 赵玉. 渭河干流浅层地下水与地表水中重金属Cd污染特征及风险评价 [J]. 地球科学与环境学报, 2020, 42(2): 267-277. ZHAO Y. Characteristics and risk assessment of heavy meatal Cd pollution of shallow groundwater and surface water in main stream of Weihe River, China [J]. Journal of Earth Sciences and Environment, 2020, 42(2): 267-277(in Chinese).
[11] 祁彧. 汾河干流重金属迁移规律研究[D]. 太原: 太原理工大学, 2017. QI Y. Study on the heavy metal migration rule in the mainstream of Fenhe River[D]. Taiyuan: Taiyuan University of Technology, 2017(in Chinese).
[12] YANG Y G, MENG Z L, JIAO W T. Hydrological and pollution processes in mining area of Fenhe River Basin in China [J]. Environmental Pollution, 2018, 234: 743-750. doi: 10.1016/j.envpol.2017.12.018 [13] WANG L F, LI H, DANG J H, et al. Effects of urbanization on water quality and the macrobenthos community structure in the Fenhe River, Shanxi Province, China [J]. Journal of Chemistry, 2020, 2020: 8653486. [14] 柴宁磐. 汾河流域河水污染的地球化学示踪[D]. 西安: 长安大学, 2021. CHAI N P. Geochemical tracer of river water pollution in the Fen river basin[D]. Xi'an: Chang'an University, 2021(in Chinese).
[15] 赵春红, 申豪勇, 王志恒, 等. 汾河流域地表水水化学同位素特征及其影响因素 [J]. 环境科学, 2022, 43(10): 4440-4448. ZHAO C H, SHEN H Y, WANG Z H, et al. Hydrochemical and isotopic characteristics in the surface water of the Fenhe river basin and influence factors [J]. Environmental Science, 2022, 43(10): 4440-4448(in Chinese).
[16] 胡杰, 赵心语, 王婷婷, 等. 太原市汾河河岸带土壤重金属分布特征、评价与来源解析 [J]. 环境科学, 2022, 43(5): 2500-2509. HU J, ZHAO X Y, WANG T T, et al. Distribution characteristics, evaluation, and source analysis of heavy metals in soils of Fenhe riparian zone in Taiyuan City [J]. Environmental Science, 2022, 43(5): 2500-2509(in Chinese).
[17] 裴海光, 贾自强, 杨静, 等. 汾河太原段沉积物氮、铜、铝含量及酶活性的分布及动态 [J]. 山西大学学报(自然科学版), 2022, 45(1): 237-246. PEI H G, JIA Z Q, YANG J, et al. Distribution and dynamics of N, Cu, Al, and enzyme activity in the sediments of Taiyuan section of Fenhe River, Shanxi [J]. Journal of Shanxi University (Natural Science Edition), 2022, 45(1): 237-246(in Chinese).
[18] 霍雪萍. 汾河流域沉积物中重金属分布及潜在风险评价 [J]. 太原科技大学学报, 2017, 38(5): 397-404. HUO X P. Distribution of heavy metals in sediments of Fen River and potential risk evaluation [J]. Journal of Taiyuan University of Science and Technology, 2017, 38(5): 397-404(in Chinese).
[19] 山西省人民政府. 汾河流域生态景观规划(2020-2035年)[R]. 2020. The People’s Government of Shanxi Province. Ecological landscape planning of Fenhe River Basin(2020-2035) [R]. 2020(in Chinese).
[20] 唐莉, 张永波, 祝雪萍, 等. 汾河流域降水量时空分布变化对汛期的影响 [J]. 水电能源科学, 2018, 36(9): 10-13. TANG L, ZHANG Y B, ZHU X P, et al. Influence of spatial and temporal distribution of precipitation in Fenhe River Basin on flood season [J]. Water Resources and Power, 2018, 36(9): 10-13(in Chinese).
[21] GIRI S, SINGH A K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnarekha River, India [J]. Journal of Hazardous Materials, 2014, 265: 305-314. doi: 10.1016/j.jhazmat.2013.09.067 [22] XIA F, NIU X, QU L Y, et al. Integrated source-risk and uncertainty assessment for metals contamination in sediments of an urban river system in Eastern China [J]. CATENA, 2021, 203: 105277. doi: 10.1016/j.catena.2021.105277 [23] AHADA C P S, SUTHAR S. Groundwater nitrate contamination and associated human health risk assessment in southern districts of Punjab, India [J]. Environmental Science and Pollution Research International, 2018, 25(25): 25336-25347. doi: 10.1007/s11356-018-2581-2 [24] 黄宏伟, 肖河, 王敦球, 等. 漓江流域水体中重金属污染特征及健康风险评价 [J]. 环境科学, 2021, 42(4): 1714-1723. HUANG H W, XIAO H, WANG D Q, et al. Pollution characteristics and health risk assessment of heavy metals in the water of Lijiang River Basin [J]. Environmental Science, 2021, 42(4): 1714-1723(in Chinese).
[25] 环境保护部. 中国人群暴露参数手册-成人卷, Adults[M]. 北京: 中国环境出版社, 2013. Ministry of Environmental Protection. Exposure factors handbook of Chinese population(Adults)[M]. Beijing: China Environmental Press, 2013(in Chinese).
[26] US EPA. Risk assessment guidance for superfund: volume I: human health evaluation annual. Supplemental guidance. “Standard default exposure factors” interim final[R]. Washington: US EPA, 1991. [27] US EPA. Guidelines for exposure assessment[R]. Washington DC: US EPA, 1992. [28] US EPA. Child-specific exposure factors handbook[R]. EPA/600/R-06/096F. Washington DC: US EPA, 2008. [29] STOEVA N, BEROVA M, ZLATEV Z. Effect of arsenic on some physiological parameters in bean plants [J]. Biologia Plantarum, 2005, 49(2): 293-296. doi: 10.1007/s10535-005-3296-z [30] 任丽江, 张妍, 张鑫, 等. 渭河流域关中段地表水重金属的污染特征与健康风险评价 [J]. 生态环境学报, 2022, 31(01): 131-141. REN L J, ZHANG Y, ZHANG X, et al. Pollution characteristics and health risk assessment of heavy metals in surface water in Guanzhong Section of the Weihe River Basin [J]. Ecology and Environmental Sciences, 2022, 31(01): 131-141(in Chinese).
[31] ZUO H, MA X L, YANG K, et al. Distribution and risk assessment of metals in surface water and sediment in the upper reaches of the Yellow River, China[J]. Soil and Sediment Contamination: An International Journal, 2016, 25(8): 917-940. [32] WU B, ZHAO D Y, JIA H Y, et al. Preliminary risk assessment of trace metal pollution in surface water from Yangtze River in Nanjing Section, China [J]. Bulletin of Environmental Contamination and Toxicology, 2009, 82(4): 405-409. doi: 10.1007/s00128-008-9497-3 [33] ZENG J, HAN G L, WU Q X, et al. Heavy metals in suspended particulate matter of the Zhujiang River, Southwest China: contents, sources, and health risks[J]. International Journal of Environmental Research and Public Health. 2019, 16: 1843. [34] REN Z Q, XIAO R, ZHANG Z H, et al. Risk assessment and source identification of heavy metals in agricultural soil: A case study in the coastal city of Zhejiang Province, China [J]. Stochastic Environmental Research and Risk Assessment, 2019, 33(11/12): 2109-2118. [35] MEMET V, BULENT S. Assessment of nutrient and heavy metal contamination in surface water and sediments of the upper Tigris River, Turkey[J]. Catena. 2012, 92: 1-10. [36] NASRABADI, T. An index approach to metallic pollution in river waters[J]. International Journal of Environmental Research, 2015, 9(1): 385-394. [37] HUANG Y, CHEN Q Q, DENG M H, et al. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China [J]. Journal of Environmental Management, 2018, 207: 159-168. [38] 刘贝, 黄文辉, 敖卫华, 等. 沁水盆地晚古生代煤中硫的地球化学特征及其对有害微量元素富集的影响 [J]. 地学前缘, 2016, 23(3): 59-67. LIU B, HUANG W H, AO W H, et al. Geochemistry characteristics of sulfur and its effect on hazardous elements in the Late Paleozoic coal from the Qinshui Basin [J]. Earth Science Frontiers, 2016, 23(3): 59-67(in Chinese).
[39] 咏梅, 张漫, 王圣伟, 等. 山东省滨城区农田土壤重金属来源解析及评价 [J]. 中国农业大学学报, 2014, 19(6): 119-125. YONG M, ZHANG M, WANG S W, et al. Farmlang soil heavy metal source analysis and evalution in Bingcheng County of Ahandong Province, China [J]. Journal of China Agricultural University, 2014, 19(6): 119-125(in Chinese).
[40] 李晋昌, 张红, 石伟. 汾河水库周边土壤重金属含量与空间分布 [J]. 环境科学, 2013, 34(1): 116-120. LI J C, ZHANG H, SHI W. Concentrations of soil heavy metals and their spatial distribution in the surrounding area of Fenhe reservoir [J]. Environmental Science, 2013, 34(1): 116-120(in Chinese).
[41] 霍超. 山西煤炭资源分布特征及勘查开发布局研究 [J]. 中国煤炭地质, 2020, 32(9): 159-162. HUO C. Study on coal resources distribution features and exploration, Exploitation Layout in Shanxi Province [J]. Coal Geology of China, 2020, 32(9): 159-162(in Chinese).
[42] 赵峰华, 孙红福, 李文生. 煤矿酸性矿井水中有害元素的迁移特性 [J]. 煤炭学报, 2007, 32(3): 261-266. ZHAO F H, SUN H F, LI W S. Migration of hazardous elements in acid coal mine drainage [J]. Journal of China Coal Society, 2007, 32(3): 261-266(in Chinese).
[43] 孙亚军, 陈歌, 徐智敏, 等. 我国煤矿区水环境现状及矿井水处理利用研究进展 [J]. 煤炭学报, 2020, 45(1): 304-316. SUN Y J, CHEN G, XU Z M, et al. Research progress of water environment, treatment and utilization in coal mining areas of China [J]. Journal of China Coal Society, 2020, 45(1): 304-316(in Chinese).
[44] ATAFAR Z, MESDAGHINIA A, NOURI J, et al. Effect of fertilizer application on soil heavy metal concentration [J]. Environmental Monitoring and Assessment, 2010, 160(1/2/3/4): 83-89. [45] SOARES S F D, MOURA N B D A S, MAZUR N, et al. Heavy metals contamination in soil and plants by intensive use of pesticides and fertilizers[C]. 17th WCSS, 2002. [46] 刘昭, 周宏, 曹文佳, 等. 清江流域地表水重金属季节性分布特征及健康风险评价 [J]. 环境科学, 2021, 42(1): 175-183. LIU Z, ZHOU H, CAO W J, et al. Seasonal distribution characteristics and health risk assessment of heavy metals in surface water of Qingjiang River [J]. Environmental Science, 2021, 42(1): 175-183(in Chinese).
[47] 李伟迪, 崔云霞, 曾撑撑, 等. 太滆运河流域农田土壤重金属污染特征与来源解析 [J]. 环境科学, 2019, 40(11): 5073-5081. LI W D, CUI Y X, ZENG C C, et al. Pollution characteristics and source analysis of heavy metals in farmland soils in the taige canal valley [J]. Environmental Science, 2019, 40(11): 5073-5081(in Chinese).
[48] 朱建伟. 太原市汾河干流入河排污口调查分析 [J]. 山西水利, 2019, 35(5): 8-10. ZHU J W. Investigation and analysis of drainage outlet to Fenhe River main stream in Taiyuan City [J]. Shanxi Water Resources, 2019, 35(5): 8-10(in Chinese).
[49] 崔苗. 汾河太原段水质污染现状分析 [J]. 山西科技, 2020, 35(1): 73-75. CUI M. Analysis on water pollution in Taiyuan section of Fen River [J]. Shanxi Science and Technology, 2020, 35(1): 73-75(in Chinese).
[50] 焦伟, 牛勇, 李斌, 等. 基于化学形态分析的城市道路灰尘重金属健康风险评价与人为来源解析 [J]. 生态环境学报, 2018, 27(12): 2269-2275. JIAO W, NIU Y, LI B, et al. Health risk assessment and anthropogenic source identification of heavy metals in urban road dusts based on chemical fraction analysis [J]. Ecology and Environmental Sciences, 2018, 27(12): 2269-2275(in Chinese).
[51] US EPA. Available information on assessing exposure from pesticides in food: a User's Guide[R]. Washington, DC: US EPA, 2000: 14-16. -