-
对硝基苯酚等芳香族酚类化合物是合成有机化学工业废水中常见的高毒性、强致癌、耐生物降解有机污染物[1].此外,不少芳香族化合物作为有机染料广泛应用于消费品制造业中,具有较高毒性、水溶性和稳定性,自然降解速度相当缓慢,未经处理排入水体会对环境和人体造成持续危害[2].目前已开发出包括吸附法、萃取法、膜分离法、微生物降解法、高级氧化法等多种处理该类污染水体的方法,但存在二次污染、操作繁琐、设备复杂、处理成本高等问题[3-4].特别地,将硝基苯类物质还原为胺类物质是非常重要的化学资源转化,后者是许多有较高经济价值的化学品(如解热镇痛药、农药、炸药、染料、润滑剂等)的必要成分,而且氨基官能团常用作衍生合成最终化学品的关键位点[1,5].通过活性金属固载的纳米催化剂非均相催化还原工艺将水体中高毒性有机污染物转化为低毒性、高附加值且可重复使用的化学物质,不仅能促进工业有机废水资源转化和综合利用,降低环境风险,而且方法简单、成本较低、易于获取,是消除该类污染水体极其高效、绿色且经济的技术方法[5-7].
近年来,应用于还原降解芳香族类污染物的高效载金纳米催化剂的研发热度持续不减,也取得了显著进展,但保持纳米Au催化剂的高活性和高稳定性仍然是难度较大的瓶颈[7-10].纳米Au颗粒的制备粒径越小,其原子催化效率和使用效益愈发提升,但由此呈现的Au颗粒表面能越高,热力学稳定性越差,容易发生团聚和变形,严重限制其大规模催化应用[8-10].因此,通过设计特定的载金纳米结构来获得高活性、稳定性纳米催化剂是提高其整体催化性能和使用寿命的可行策略.利用多孔载体对纳米Au颗粒进行物理空间分割实现固载和分散,可一定程度限制Au颗粒的聚集[7-11].或者,利用金属氧化物或第二种金属晶体特殊化学界面效应对纳米Au颗粒进行化学修饰形成异质结构或双金属合金得到有效稳定[12-15].结合上述策略,核壳复合材料可作为理想载体进行特定功能化载金催化剂新型纳米结构的设计:①可调控的核/壳双层结构能作为支撑载体锚定纳米Au颗粒的空间分布位置[14-15];②核/壳双层微观结构的多功能多组分设计可赋予该核壳结构新材料特定的物理化学性质和功能属性,以满足高效催化体系的特定应用需求[14-18].
介孔碳空心球结构广泛应用于吸附、催化和能量存储,在制备核壳复合材料中具有特殊优势,包括低密度、电子导电性、稳定性和疏水性等[18-20].与SiO2制备过程相似,间苯二酚-甲醛树脂(RF)可通过扩展经典Stöber法的应用实现聚合物层的合成与沉积.该Stöber反应过程中,乙醇-水作为溶液体系,氨水作为碱性催化剂,间苯二酚-甲醛聚合反应和硅酸四乙酯缩合反应存在明显的速率差异,因而在同一个反应体系中可实现SiO2@RF叠层复合物的合成[19-20].通过碳化热解,碳前驱体RF树脂形成介孔碳衍生壳层,SiO2硬模板被碱液刻蚀形成内空腔.该合成路线可实现介孔碳为壳层的载金核壳结构.此外,对内核结构进行磁性组分的整合以构筑具有较好磁回收性能的载金核壳复合材料,可提高纳米Au催化剂分离回收效率和循环使用性能,有效缓解金材料供应有限且成本昂贵的不利因素[16,18-19].
本文采用乙二胺介导的Stöber-SiO2/RF扩展工艺及碳化-水热刻蚀法制备具有介孔碳氮壳层的Fe2O3@CeO2/CN核壳椭球;[Au(en)2]3+为金前驱体固载于上述核壳结构,通过还原气氛热处理转化为较好分散度的纳米Au颗粒,Fe2O3内核同步转化为小体积Fe颗粒,形成内空腔,得到Fe@CeO2-Au/CN双空腔核壳磁性椭球催化剂.对其进行微观结构和复合组成表征分析,研究其催化还原对硝基苯酚和典型染料分子的反应性能和循环使用性能,探讨催化剂独特结构特征和复合组成协同效应对其催化反应性能的作用影响,揭示其催化反应机理,为设计该类污染水体深度处理的高活性、稳定性催化剂以及提升催化还原工艺的实践效果提供可借鉴的方法.
Fe@CeO2/CN双空腔核壳磁性载金椭球催化剂及其催化还原对硝基苯酚和染料污染物
Fe@CeO2/CN double-cavity core-shell magnetic Au-loaded ellipsoidal catalysts for catalytic reduction of 4-nitrophenol and dye pollutants
-
摘要: 载金催化剂可在温和条件下还原性降解环境中某些有毒有害污染物,并转化为低毒性、高附加值的物质,从而促进水体污染物化学资源转化和综合利用.本文设计制备Fe@CeO2/CN双空腔核壳磁性载金椭球催化剂,用于还原降解水体中对硝基苯酚和染料污染物.该催化剂先制备Fe2O3@CeO2梭型微粒内核,采用乙二胺介导的Stöber扩展法在其表面合成SiO2@RF复合物,经过碳化-水热蚀刻得到具有介孔碳氮壳层的Fe2O3@CeO2/CN椭球;采用[Au(en)2]3+为金前驱体的沉积沉淀-还原气氛热处理法在上述椭球中构筑较好分散度超细纳米Au颗粒,同时Fe2O3转化为小体积Fe颗粒并形成内空腔,得到Fe@CeO2-Au/CN双空腔核壳磁性椭球催化剂.该催化剂独特的结构特征和复合组分协同增强性效应使其在还原降解对硝基苯酚和染料污染物中均表现优越的催化反应性能和循环使用性能,重复多次使用后仍保存良好的磁分离性和较好的结构完整性.Abstract: Gold-loaded catalysts can degrade some toxic and harmful pollutants in the environment and convert them into substances with lower toxicity and higher added value under mild conditions, thus promoting the conversion and comprehensive utilization of water pollutant chemical resources. This paper provides a novel synthesis strategy to prepare Fe@CeO2/CN double-cavity core-shell magnetic ellipsoids with Au nanoparticles as catalysts for the reductive degradation of 4-nitrophenol and dye pollutants in the aquatic environment. Fe2O3@CeO2 shuttle-like particles are prepared as the core of the catalysts, and SiO2@RF composites are synthesized on the surface by the ethylenediamine-mediated Stöber extended method. Fe2O3@CeO2/CN ellipsoids with mesoporous carbon-nitrogen shells are obtained through carbonization and alkaline etching. Using [Au(en)2]3+ as gold precursor, ultrafine Au nanoparticles with good dispersion are constructed in the composite ellipsoids by means of deposition-precipitation and reducing atmosphere heat treatment. At the same time, Fe2O3 cores are converted into small Fe particles and inner cavities are formed, obtaining Fe@CeO2-Au/CN core-shell magnetic ellipsoidal catalysts with double cavities. The unique structural characteristics of the catalysts and the enhanced synergistic effect of the composite components enable these catalysts to possess excellent catalytic reaction performance and recycling capability in the reductive degradation of 4-nitrophenol and dye pollutants. After repeated use, the catalysts still preserve good magnetic separation ability and original structural integrity.
-
图 9 催化剂催化还原对硝基苯酚(a)、亚甲基蓝(b)和甲基橙(c)随时间变化的紫外可见光谱图;催化剂催化还原对硝基苯酚随时间变化的反应性能图(d)及一级反应动力学图(e);Fe@CeO2-Au/CN(1)和Fe@CeO2-Au(2)催化剂的循环反应性能图(f)
Figure 9. Time evolutions of UV-Vis absorption spectra for the reduction of 4-NP (a), MB (b) and MO (c) over Fe@CeO2-Au/CN catalyst; Plots of Ct/Co (d)and ln (Ct/Co)(e) versus reaction time for the reduction of 4-NP over different samples; Recyclability tests of Fe@CeO2-Au/CN (1)and Fe@CeO2-Au(2) catalysts (f)
表 1 Fe@CeO2-Au/CN催化剂与其他文献报道的载金催化剂性能对比
Table 1. Comparison of Fe@CeO2-Au/CN catalyst and other reported Au-supported catalysts in other literatures
催化剂
Catalyst反应时间/min
Reaction time反应速率常数/min−1
k Reaction rate constant转化频率/min−1
TOF Turnover frequency参考文献
ReferencesFe@CeO2-Au/CN椭球 6 0.790 16.83 本文 Fe@SiO2-Au/CN椭球 8 0.529 11.45 本文 Fe@Au/CN椭球 7 0.681 14.81 本文 Fe@CeO2-Au/SiO2椭球 7 0.650 6.47 本文 Fe@CeO2-Au微粒 8 0.592 9.29 本文 Fe@SiO2-Au/mSiO2微球 7.5 0.496 6.26 [21] Fe3O4@Au/mSiO2-TiO2微球 8 0.604 7.62 [24] Fe3O4@PDA-Au微球 6 0.630 4.10 [25] Au/CSNFs纳米纤维 16 0.354 9.38 [26] Au/SNTs纳米纤维 280 s 0.636 0.77 [27] Au/PAMAM空心微球 30 0.120 3.27 [28] Au/TiO2纳米纤维 16 0.244 0.97 [29] SiO2@Au/CeO2微球 5 0.780 4.0 [30] Fe3O4@Au/TiO2-ZrO2微球 6 0.369 3.56 [31] Au/CeO2空心微球 9 0.361 0.89 [32] H-TiO2/Au/H-mSiO2空心微球 9 0.303 1.25 [33] -
[1] DAS R, SYPU V S, PAUMO K, et al. Silver decorated magnetic nanocomposite (Fe3O4@PPy-MAA/Ag) as highly active catalyst towards reduction of 4-nitrophenol and toxic organic dyes [J]. Applied Catalysis B:Environmental, 2019, 244: 546-588. doi: 10.1016/j.apcatb.2018.11.073 [2] CAI L Q, ZHANG L N, XU X J. One-step synthesis of ultra-small silver nanoparticles-loaded triple-helix β-glucan nanocomposite for highly catalytic hydrogenation of 4-nitrophenol and dyes [J]. Chemical Engineering Journal, 2022, 442: 136114. doi: 10.1016/j.cej.2022.136114 [3] 许婉馨, 杨波, 陈子伦, 等. 聚乙烯醇海绵负载铑催化剂催化还原对硝基苯酚 [J]. 环境化学, 2020, 39(9): 2576-2583. doi: 10.7524/j.issn.0254-6108.2020050803 XU W X, YANG B, CHEN Z L, et al. Polyvinyl sponge supported rh catalytic reduction of P-nitrophenol [J]. Environmental Chemistry, 2020, 39(9): 2576-2583(in Chinese). doi: 10.7524/j.issn.0254-6108.2020050803
[4] ASLAM S, SUBHAN F, YAN Z F, et al. Fabrication of gold nanoparticles within hierarchically ZSM-5-based micro/mesostructures (MMZ) with enhanced stability for catalytic reduction of pnitrophenol and methylene blue [J]. Separation and Purification Technology, 2021, 254: 117645. doi: 10.1016/j.seppur.2020.117645 [5] ZHU Q Y, ZHANG W J, CAI J, et al. Morphology-controlled synthesis of gold nanoparticles with chitosan for catalytic reduction of nitrophenol [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 640: 128471. doi: 10.1016/j.colsurfa.2022.128471 [6] CHEN C S, CHEN T C, CHIU T C, et al. Silver particles deposited onto magnetic carbon nanofibers as highly active catalysts for 4-nitrophenol reduction [J]. Applied Catalysis B:Environmental, 2022, 315: 121596. doi: 10.1016/j.apcatb.2022.121596 [7] DEVI A P, PADHI D K, MINHRA P M, et al. Bio-surfactant mediated synthesis of Au/g-C3N4 plasmonic hybrid nanocomposite for enhanced photocatalytic reduction of mono-nitrophenols [J]. Journal of Industrial and Engineering Chemistry, 2022, 108: 118-129. doi: 10.1016/j.jiec.2021.12.030 [8] NIU L, ZHAO X L, TANG Z, et al. Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles [J]. Science of The Total Environment, 2022, 835: 155423. doi: 10.1016/j.scitotenv.2022.155423 [9] WANG C, SONG F, WANG X L, et al. A cellulose nanocrystal templating approach to synthesize size-controlled gold nanoparticles with high catalytic activity [J]. International Journal of Biological Macromolecules, 2022, 209: 464-471. doi: 10.1016/j.ijbiomac.2022.04.046 [10] LIU Y L, DONG H L, HUANG H W, et al. Electron-deficient Au nanoparticles confined in organic molecular cages for catalytic reduction of 4-nitrophenol [J]. ACS Applied Nano Materials, 2022, 5(1): 1276-1283. doi: 10.1021/acsanm.1c03859 [11] CHEN H, ZHUANG Q, WANG H, et al. Ultrafine gold nanoparticles dispersed in conjugated microporous polymers with sulfhydryl functional groups to improve the reducing activity of 4-nitrophenol [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2022, 649: 129459. doi: 10.1016/j.colsurfa.2022.129459 [12] LANDGE V, SONAWANE S, MANICKAM S, et al. Ultrasound-assisted wet-impregnation of Ag-Co nanoparticles on cellulose nanofibers: Enhanced catalytic hydrogenation of 4-nitrophenol [J]. Journal of Environmental Chemical Engineering, 2021, 9: 105719. doi: 10.1016/j.jece.2021.105719 [13] SHAH F, YADAV N, SINGH S. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity [J]. Colloids and Surfaces B:Biointerfaces, 2021, 198: 111478. doi: 10.1016/j.colsurfb.2020.111478 [14] WU K, WANG X Y, Guo L L, et al. Facile synthesis of Au embedded CuOx-CeO2 core/shell nanospheres as highly reactive and sinter-resistant catalysts for catalytic hydrogenation of p-nitrophenol [J]. Nano Research, 2020, 12(8): 2044-2055. [15] MISRA M, CHOWDHURY S R, SINGH N. TiO2@Au@CoMn2O4 core-shell nanorods for photo-electrochemical and photocatalytic activity for decomposition of toxic organic compounds and photo reduction of Cr6+ ion [J]. Journal of Alloys and Compounds, 2020, 824: 153861. doi: 10.1016/j.jallcom.2020.153861 [16] GUO Z H, LU J S, XIE W S, et al. Facile preparation of recyclable Fe@metal phenolic networks-Au system for catalytic reduction of 4-nitrophenol [J]. Materials Chemistry and Physics, 2022, 281: 125907. doi: 10.1016/j.matchemphys.2022.125907 [17] Cao J R, Cai J H, Li R P, et al. A novel 3D yolk-double-shell Au@CdS/g-C3N4 nanostructure with enhanced photoelectrochemical and photocatalytic properties [J]. The Journal of Physical Chemistry C, 2022, 126: 4939-4947. [18] PENG H, WANG D, MA D S, et al. Multifunctional yolk-shell structured magnetic mesoporous polydopamine/carbon microspheres for photothermal therapy and heterogenous catalysis [J]. ACS Applied Materials & Interfaces, 2022, 14: 23888-23895. [19] FANG J S, ZHANG Y W, ZHOU Y M, et al. Synthesis of novel ultrasmall Au-loaded magnetic SiO2/carbon yolk-shell ellipsoids as highly reactive and recoverable nanocatalysts [J]. Carbon, 2017, 121: 602-611. doi: 10.1016/j.carbon.2017.06.022 [20] LIU C, WANG J, LI J S, et al. Controllable synthesis of N-doped hollowstructured mesoporous carbon spheres by anamine-induced Stöber-silica/carbon assembly process [J]. Journal of Materials Chemistry A, 2016, 4: 11916. doi: 10.1039/C6TA03748H [21] FANG J S, ZHANG Y W, ZHOU Y M, et al. Fabrication of ellipsoidal silica yolk-shell magnetic structures with extremely stable Au nanoparticles as highly reactive and recoverable Catalysts [J]. Langmuir, 2017, 33: 2698-2708. doi: 10.1021/acs.langmuir.6b03873 [22] GU S S, LOU Z, LI L D, et al. Fabrication of flexible reduced graphene oxide/Fe2O3 hollow nanospheres based on-chip micro-supercapacitors for integrated photodetecting applications [J]. Nano Research, 2016, 9(2): 424-434. doi: 10.1007/s12274-015-0923-7 [23] ZENG T, ZHANG X L, WANG S H, et al. A double-shelled yolk-like structure as an ideal magnetic support of tiny gold nanoparticles for nitrophenol reduction [J]. Journal of Materials Chemistry A, 2013, 1: 11641. doi: 10.1039/c3ta12660a [24] ZHANG H X, ZHANG Y W, ZHOU Y M, et al. Synthesis and characterization of a multifunctional nanocatalyst based on a novel type of binary-metal-oxide-coated Fe3O4-Au nanoparticle [J]. RSC Advances, 2016, 6: 18685. doi: 10.1039/C5RA27136C [25] ZENG T, ZHANG X L, NIU H Y, et al. In situ growth of gold nanoparticles onto polydopamine-encapsulated magnetic microspheres for catalytic reduction of nitrobenzene [J]. Applied Catalysis B:Environmental, 2013, 134-135: 26-33. doi: 10.1016/j.apcatb.2012.12.037 [26] KOGA H, TOKUNAGA E, HIDAKA M, et al. Topochemical synthesis and catalysis of metal nanoparticles exposed on crystalline cellulose nanofibers [J]. Chemical Communications, 2010, 46(45): 8567-8569. doi: 10.1039/c0cc02754e [27] HAN J, LI L Y, GUO R. Novel approach to controllable synthesis of gold nanoparticles supported on polyaniline nanofibers [J]. Macromolecules, 2010, 43(24): 10636-10644. doi: 10.1021/ma102251e [28] WU H Y, LIU Z L, WANG X D, et al. Preparation of hollow capsule-stabilized gold nanoparticles through the encapsulation of the dendrimer [J]. Journal of Colloid and Interface Science, 2006, 302(1): 142-148. doi: 10.1016/j.jcis.2006.06.019 [29] HAO Y G. , SHAO X K, LI B X, et al. Mesoporous TiO2 nanofibers with controllable Au loadings for catalytic reduction of 4-nitrophenol [J]. Materials Science in Semiconductor Processing, 2015, 40: 621-630. doi: 10.1016/j.mssp.2015.07.026 [30] LIU B C, YU S L, WANG Q, et al. Hollow mesoporous ceria nanoreactors with enhanced activity and stability for catalytic application [J]. Chemical Communications, 2013, 49: 3757-3759. doi: 10.1039/c3cc40665b [31] ZHANG H X, ZHANG Y W, ZHOU Y M, et al. Preparation of magnetically recoverable gold nanocatalysts with a highly reactive and enhanced thermal stability [J]. Journal of Alloys and Compounds, 2016, 688: 23-31. doi: 10.1016/j.jallcom.2016.07.019 [32] XU Y M, ZHANG Y W, ZHOU Y M, et al. CeO2 hollow nanospheres synthesized by a one pot template-free hydrothermal method and their application as catalyst support [J]. RSC Advances, 2015, 5: 58237-58245. doi: 10.1039/C5RA08124F [33] FANG J S, ZHANG Y W, ZHOU Y W, et al. In-situ construction of Au nanoparticles confined in double-shelled TiO2/mSiO2 hollow architecture for excellent catalytic activity and enhanced thermal stability [J]. Applied Surface Science, 2017, 392: 36-45. doi: 10.1016/j.apsusc.2016.08.157 [34] ZHANG J S, YAO T J, ZHANG H, et al. Preparation of raspberry-like γ-Fe2O3/crackled nitrogen-doped carbon capsules and their application as supports to improve catalytic activity [J]. Nanoscale, 2016, 8(44): 18693-18702. doi: 10.1039/C6NR05418H [35] EVANGELISTA V, ACOSTA B J, MIRIDONOV S, et al. Highly active Au-CeO2@ZrO2 yolk-shell nanoreactors for the reduction of 4-nitrophenol to 4-aminophenol [J]. Applied Catalysis B:Environmental, 2015, 166-167: 518-528. doi: 10.1016/j.apcatb.2014.12.006 [36] WANG Q, LI Y J, LIU B C, et al. Novel recyclable dual-heterostructured Fe3O4@CeO2/M (M= Pt, Pd and Pt-Pd) catalysts: synergetic and redox effects for superior catalytic performance [J]. Journal of Materials Chemistry A, 2015, 3: 139-147. doi: 10.1039/C4TA05691D