-
近年来,随着我国城市化和工业化进程的快速发展,各种环境污染物的排放量急剧增长,致水环境中污染物的种类和数量也持续增加. 水环境质量的不断恶化,给水生生态系统带来不良影响,同时对人类健康构成潜在威胁,严重制约着社会经济的可持续发展.
研究发现,氧化应激是机体受到有害因素作用后的共同反应机制,许多疾病的发生与机体的氧化应激有关[1]. 生物体在一些环境污染物(如重金属、农药、持久性有机污染物、纳米粒子、药物和个人护理用品等)短期胁迫下便可使体内活性物质 (reactive species, RS) 产生增多,当过量的RS超过了机体抗氧化防御系统的清除能力时,会引起机体产生氧化应激反应,造成DNA/RNA、蛋白质等生物分子的氧化损伤,从而导致机体代谢紊乱,诱发疾病[2−3]. 因此,利用氧化应激评价环境污染物的毒性影响,有助于深入了解环境污染物的致病机理,为污染物的监控预警以及疾病的预防提供科学依据[4−5].
斑马鱼 (Danio rerio) 属辐鳍亚纲 (Actinopterygii) 、鲤科 (Cyprinidae) 、短担尼鱼属 (Danio) ,繁殖力强,繁殖周期短,对毒物的刺激十分敏感,具有高度保守的基因组和信号传导通路,与人类基因高度同源[6−7],目前已被广泛应用于生态毒理学相关研究领域,同时也是分子遗传学、发育生物学中常用的模式生物[8−9]. 本文基于重金属、农药和新兴污染物等常见环境污染物对斑马鱼引起的氧化应激反应进行综述,并对该领域未来的研究方向进行展望.
常见环境污染物致斑马鱼机体氧化应激的研究进展
Research progress on oxidative stress induced by common environmental pollutants in zebrafish (Danio rerio)
-
摘要: 近年来,随着我国城市化和工业化进程的快速发展,水环境污染问题日趋严重,对生态环境和人类健康构成潜在威胁. 氧化应激是机体促氧化物产生和清除之间出现失衡的一种状态,被认为是影响许多疾病发生发展的重要因素,是水环境污染物对生物体产生毒性的重要途径之一. 本文基于重金属、农药和新兴污染物等常见环境污染物对斑马鱼所产生的氧化应激反应进行综述,以期为开展污染物损伤生物体的监控预警及疾病预防提供一定参考依据.Abstract: In recent years, with the rapid development of urbanization and industrialization, the problem of water environment pollution has become increasingly serious, which poses a potential threat to the ecological environment and human health. Oxidative stress is a state of imbalance between the production and removal of prooxidants, which is considered to be an important factor affecting the occurrence and development of many diseases and one of the important ways for water environmental pollutants to produce toxicity to organisms. In this paper, the oxidative stress reactions of zebrafish caused by common environmental pollutants such as heavy metals, pesticides, and emerging pollutants were reviewed to provide some reference for the monitoring and early warning of pollutant damage organisms and disease prevention.
-
Key words:
- environmental pollutants /
- zebrafish /
- oxidative stress
-
表 1 重金属致斑马鱼机体氧化应激的研究
Table 1. Studies on oxidative stress of zebrafish by heavy metals
污染物
Pollutants生长发育时期或模型
Growth period or model浓度
Concentration暴露时间
Exposure time氧化应激
Oxidative stress毒性效应
Toxic effects参考文献
ReferencesCd 肝细胞系 1、5 、10 mg·L−1 24 h CAT↓ GST↓ MDA↑ 遗传损伤 [25] 肝细胞系 0.229、0.458 、0.917 mg·L−1 24 h GR↑ 细胞凋亡 [26] Pb 胚胎 2、7、10 μg·L−1 7 d SOD↑ CAT↑ 细胞凋亡 [33] Hg 胚胎 1、4、16 μg·L−1 7 d CAT↑ GST↑ GPx↓ GSH↑ MDA↑ 发育毒性、免疫毒性 [36] 成鱼(雄/雌) 15、30 μg·L−1 30 d 雄:SOD↑ CAT↑ GSH↑ MDA↑
雌:GPx↓ GSH↓生殖毒性 [37] As 幼鱼 25、50、75 、 150 mg·L−1 120 h SOD↑ MDA↑ 脂质过氧化 [43] 成鱼 10、50、100 、150 mg·L−1 28 d SOD↑ CAT↑ MDA↓ 发育毒性、细胞凋亡 [44] Cr 成鱼 2 mg·L−1 60 d CAT↑ GSH↑ MDA↑ 细胞凋亡、神经毒性 [45] 胚胎 0.882、2.942、8.825 mg·L−1 96 h SOD↑ GPx↓ GST↑ Cu/Zn-Sod↑ Mn-Sod↑ Cat↑ GPx↑ 免疫毒性 [23] 注:正体字母代表酶或小分子,斜体字母代表基因.
Note: normal letters represent enzymes or small molecules, and italic letters represent genes.表 2 农药致斑马鱼机体氧化应激的研究
Table 2. Studies on oxidative stress of zebrafish by pesticides
污染物
Pollutants生长发育
时期或模型
Growth period
or model浓度
Concentration暴露时间
Exposure time氧化应激
Oxidative stress毒性效应
Toxic effects参考文献
References戊唑醇 成鱼 0.18、0.92 、 1.84 mg·L−1 28 d SOD↑ CAT↑ POD↑ GST↑ 细胞凋亡、肝脏毒性 [48] 丙环唑 胚胎 0.5、2 、5 mg·L−1 96 h ROS↑ GPx↑ CAT↑ MDA↑ 细胞凋亡、免疫毒性 [49] 苯醚甲环唑 胚胎 0.3、0.6 和1.2 mg·L−1 96 h ROS↑ SOD↓ CAT↓ GST↓ 细胞凋亡、心血管毒性 [50] 甲氧基丙烯
酸酯类杀菌
剂曲霉素胚胎 30—105 mg·L−1 96 h ROS↑ SOD↓ MDA↑ GSH↓ 免疫毒性 [52] 成鱼
(雄/雌)1、10、100 μg·L−1 28 d 雄:ROS↑ SOD↑↓ CAT↑ GST↑ MDA↑
雌:ROS↑ SOD↓ CAT↑ GST↓↑ MDA↑遗传毒性 [53] 幼鱼/成鱼(雄/雌) 25、50、75 、 150 mg·L−1 96 h/28 d 幼鱼:CAT↑ POD↑ GST↑ MDA↑
成鱼(雄):SOD↓ CAT↑↓ POD↑↓ GST↓↑ MDA↑
成鱼(雌):SOD↑↓CAT↑↓↑ POD↑ GST↓↑ MDA↑发育毒性 [54] 氯氰菊酯 成鱼 0.3、0.6 μg·L−1 12 d SOD↑ CAT↑ 遗传毒性 [56-57] 吡虫啉 成鱼 2 mg·L−1 28 d ROS↑ SOD↑↓ GST↑↓ CAT↑ MDA↑ 遗传毒性 [61] 毒死蜱 成鱼 30、100、300 μg·L−1 21 d SOD↓ GST↓ GPx↓ GSH↓ MDA↑ 消化道毒性 [62] 百草枯 幼鱼 100 mg·L−1 72 h CAT↑ MDA↑ 细胞凋亡 [64] 乙草胺 成鱼 1、10、100 μg·L−1 21 d SOD↑ CAT↑ GPx↑ 发育毒性 [66] 表 3 新兴污染物致斑马鱼机体氧化应激的研究
Table 3. Studies on oxidative stress of zebrafish by emerging pollutants
污染物
Pollutants生长发育时
期或模型
Growth period
or model浓度
Concentration暴露时间
Exposure
time氧化应激
Oxidative stress毒性效应
Toxic effects参考文献
References3,3',4,4',5-五氯联苯 胚胎 16、32、64、128 μg·L−1 7 d Cu/Zn-Sod↓ CAT↓ GPx↓ MDA↑ 发育毒性 [72] 氯代多氟烷基醚磺酸盐 幼鱼 10、100 mg·L−1 72 h SOD↓ Cu/Zn-Sod↓ CAT↓ GST↓ GPx↑ GSH↓ MDA↑ 脂质过氧化 [79] 2,3,7,8-四氯二苯并二恶英 成鱼 0.1、0.2、0.4、0.8 μg·L−1 5 d SOD↓GST↓ MDA↑ 脂质过氧化 [82] 多溴二苯醚 成鱼 5、50、500 μg·L−1 15 d SOD↑ CAT↑ 细胞凋亡、遗传毒性 [83] 二氧化钛纳米粒子 成鱼 10、50、100 mg·L−1 7 d SOD↓ CAT↓ GSTs↓ MDA↑ 脂质过氧化 [86] C70纳米颗粒 幼鱼/成鱼 0.5 、 1.5 mg·L−1 14 d ROS↑ SOD↑ MDA↑ 神经毒性 [87] 异烟肼 幼鱼 1、2、4、6、8、16 mmol·L−1 72 h ROS↑ SOD↓ MDA↑ Sod1↓ 发育毒性 [91] 氯胺酮 胚胎 50、70、90 mg·L−1 24 h ROS↑ SOD↑ CAT↑ GSSG↑ Sod1↑ Cat↑ 细胞凋亡 [92] 烟酸诺氟沙星 胚胎 0.002、0.2、1、5、25 mg·L−1 96 h SOD↑ CAT↑ GPx↑ MDA↑ 发育毒性、免疫毒性 [93] 恩诺沙星 幼鱼 5、10、500 μg·L−1 14 d GPx↓ GST↑ MDA↑ 脂质过氧化 [94] 三氯生 成鱼 50、100、150 μg·L−1 30 d SOD↓ CAT↓ GPx↓ GSH↓ GSSH↓ GR↓ MDA↑ 8-OHdG↑ 蛋白质羰基↑ 遗传毒性 [95] 成鱼 0.034、0.068 mg·L−1 42 d SOD↓ CAT↓ GPx1a↑↓ MT-2↑ 细胞凋亡 [96] 注:正体字母代表酶或小分子,斜体字母代表基因.
Note: normal letters represent enzymes or small molecules, and italic letters represent genes.表 4 其他新兴环境污染物致斑马鱼机体氧化应激的研究
Table 4. Studies on oxidative stress of zebrafish by other emerging pollutants
污染物
Contaminants研究方法
Method斑马鱼氧化应激效应
Effects of pollutants on the oxidative stress of zebrafish参考文献
References微囊藻毒素 雌性斑马鱼暴露于微囊藻毒素7 d 卵巢中SOD、CAT和GPx活性及mRNA水平皆上调,MDA含量增加,出现生殖毒性. [97] 成年斑马鱼暴露于微囊藻毒素7 d 低浓度组 (50 μg·kg−1) 抗氧化酶活性及其mRNA水平皆上调,出现轻微肝损伤,高浓度组(200 μg·kg−1) 抗氧化酶活性及其mRNA水平皆下调,出现严重的肝损伤. [98] 微塑料 成年斑马鱼暴露于聚苯乙烯微塑料中7 d 肝脏中SOD和CAT活性皆上升,出现肝脏炎症和脂质积累. [99] 成年斑马鱼暴露于聚苯乙烯微塑料中21 d 肠道中SOD和CAT活性皆上升,出现肠道炎症. [100] 氧化石墨烯 成年斑马鱼暴露于氧化石墨烯14 d 肝脏中MDA含量、SOD和CAT活性增加,GSH含量降低,出现组织损伤及肠道炎症. [101] 双酚S 成年斑马鱼暴露于双酚S 75 d 长期暴露于双酚S可能会通过诱导大脑氧化应激造成斑马鱼出现焦虑和恐惧反应. [102] 四溴双酚A 斑马鱼胚胎暴露于四溴双酚A 72 h 四溴双酚A浓度高于0.1 mg·L−1时,SOD、CAT和GPx的酶活性出现降低;在1 mg·L−1浓度时,SOD、CAT和GPx1a的基因表达也出现显著降低. 出现细胞凋亡及心脏毒性. [103] 注:正体字母代表酶或小分子,斜体字母代表基因.
Note: normal letters represent enzymes or small molecules, and italic letters represent genes. -
[1] FORMAN H J, ZHANG H Q. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy [J]. Nature Reviews Drμg Discovery, 2021, 20(9): 689-709. doi: 10.1038/s41573-021-00233-1 [2] WANG F, XU R, ZHENG F, et al. Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus) [J]. Experimental Animals, 2018, 67(2): 219-227. doi: 10.1538/expanim.17-0101 [3] ZHANG Y X, GUO P Y, WU Y M, et al. Evaluation of the subtle effects and oxidative stress response of chloramphenicol, thiamphenicol, and florfenicol in Daphnia magna [J]. Environmental Toxicology and Chemistry, 2019, 38(3): 575-584. doi: 10.1002/etc.4344 [4] 蒋安祺, 刘慧, 王为木. 纳米ZnO对中华圆田螺的氧化应激效应 [J]. 环境化学, 2017, 36(4): 892-897. doi: 10.7524/j.issn.0254-6108.2017.04.2016102505 JIANG A Q, LIU H, WANG W M. Oxidative stress of nano ZnO on Cipangopaludina cahayensis [J]. Environmental Chemistry, 2017, 36(4): 892-897(in Chinese). doi: 10.7524/j.issn.0254-6108.2017.04.2016102505
[5] 殷健. 重金属对斑马鱼的毒性效应及作用机制研究[D]. 北京: 北京协和医学院, 2014: 19-22. YIN J. Studies on toxic effect and mechanism of heavy metals on zebrafish[D]. Beijing: Peking Union Medical College, 2014: 19-22(in Chinese).
[6] HOWE K, CLARK M D, TORROJA C F, et al. The zebrafish reference genome sequence and its relationship to the human genome [J]. Nature, 2013, 496(7446): 498-503. doi: 10.1038/nature12111 [7] LEE J G, CHO H J, JEONG Y M, et al. Genetic approaches using zebrafish to study the microbiota-gut-brain axis in neurological disorders [J]. Cells, 2021, 10(3): 566. doi: 10.3390/cells10030566 [8] XU C, TU W Q, DENG M, et al. Stereoselective induction of developmental toxicity and immunotoxicity by acetochlor in the early life stage of zebrafish [J]. Chemosphere, 2016, 164: 618-626. doi: 10.1016/j.chemosphere.2016.09.004 [9] HOLTZMAN N G, IOVINE M K, LIANG J O, et al. Learning to fish with genetics: A primer on the vertebrate model Danio rerio [J]. Genetics, 2016, 203(3): 1069-1089. doi: 10.1534/genetics.116.190843 [10] LU Q R, SUN Y Q, ARES I, et al. Deltamethrin toxicity: A review of oxidative stress and metabolism [J]. Environmental Research, 2019, 170: 260-281. doi: 10.1016/j.envres.2018.12.045 [11] WINZER K. Oxidative stress in the marine environment-prognostic tools for toxic injury in fish liver cells[D]. Amsterdam: Universität Amsterdam, 2001: 19-23. [12] VAN DER OOST R, BEYER J, VERMEULEN N P E. Fish bioaccumulation and biomarkers in environmental risk assessment: A review [J]. Environmental Toxicology and Pharmacology, 2003, 13(2): 57-149. doi: 10.1016/S1382-6689(02)00126-6 [13] 余晓玲. 猪场废水中四环素类抗生素对斑马鱼抗氧化效应毒理研究[D]. 南昌: 南昌大学, 2019: 11-13. YU X L. Toxicological study on antioxidant effects of tetracycline antibiotics on zebrafish in swine wastewater[D]. Nanchang: Nanchang University, 2019: 11-13(in Chinese).
[14] LU D L, MA Q, SUN S X, et al. Reduced oxidative stress increases acute cold stress tolerance in zebrafish [J]. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology, 2019, 235: 166-173. [15] DEMIRCI-ÇEKIÇ S, ÖZKAN G, AVAN A N, et al. Biomarkers of oxidative stress and antioxidant defense [J]. Journal of Pharmaceutical and Biomedical Analysis, 2022, 209: 114477. doi: 10.1016/j.jpba.2021.114477 [16] PICKERING A D. Rainbow trout husbandry: Management of the stress response [J]. Aquaculture, 1992, 100(1/2/3): 125-139. [17] 黄钰清, 杨燕宁. 氧化应激在糖尿病性角膜病变中的研究进展 [J]. 国际眼科杂志, 2022, 22(3): 399-402. HUANG Y Q, YANG Y N. Research progress of oxidative stress in diabetic keratopathy [J]. International Eye Science, 2022, 22(3): 399-402(in Chinese).
[18] ALMEIDA J A, DINIZ Y S, MARQUES S F G, et al. The use of the oxidative stress responses as biomarkers in Nile tilapia (Oreochromis niloticus) exposed to in vivo cadmium contamination [J]. Environment International, 2002, 27(8): 673-679. doi: 10.1016/S0160-4120(01)00127-1 [19] 王晓蓉, 罗义, 施华宏, 等. 分子生物标志物在污染环境早期诊断和生态风险评价中的应用 [J]. 环境化学, 2006, 25(3): 320-325. doi: 10.3321/j.issn:0254-6108.2006.03.016 WANG X R, LUO Y, SHI H H, et al. Application of molecular biomarkers in early diagnosis and ecological risk assessment for water and soil [J]. Environmental Chemistry, 2006, 25(3): 320-325(in Chinese). doi: 10.3321/j.issn:0254-6108.2006.03.016
[20] GASMI T, KHOUNI I, GHRABI A. Assessment of heavy metals pollution using multivariate statistical analysis methods in Wadi El Bey (Tunisia) [J]. Desalination and Water Treatment, 2016, 57(46): 22152-22165. doi: 10.1080/19443994.2016.1147377 [21] 中华人民共和国生态环境部. 关于进一步加强重金属污染防控的意见[EB/OL]. [2022-03-07]. [22] 洪亚军, 冯承莲, 徐祖信, 等. 重金属对水生生物的毒性效应机制研究进展 [J]. 环境工程, 2019, 37(11): 1-9. doi: 10.13205/j.hjgc.201911001 HONG Y J, FENG C L, XU Z X, et al. Advances on ecotoxicity effects of heavy metals to aquatic organisms and the mechanisms [J]. Environmental Engineering, 2019, 37(11): 1-9(in Chinese). doi: 10.13205/j.hjgc.201911001
[23] JIN Y X, LIU Z Z, LIU F, et al. Embryonic exposure to cadmium (II) and chromium (VI) induce behavioral alterations, oxidative stress and immunotoxicity in zebrafish (Danio rerio) [J]. Neurotoxicology and Teratology, 2015, 48: 9-17. doi: 10.1016/j.ntt.2015.01.002 [24] CHEUK W K, CHAN P C Y, CHAN K M. Cytotoxicities and induction of metallothionein (MT) and metal regulatory element (MRE)-binding transcription factor-1 (MTF-1) messenger RNA levels in the zebrafish (Danio rerio) ZFL and SJD cell lines after exposure to various metal ions [J]. Aquatic Toxicology, 2008, 89(2): 103-112. doi: 10.1016/j.aquatox.2008.06.006 [25] MOROZESK M, FRANQUI L S, PINHEIRO F C, et al. Effects of multiwalled carbon nanotubes co-exposure with cadmium on zebrafish cell line: Metal uptake and accumulation, oxidative stress, genotoxicity and cell cycle [J]. Ecotoxicology and Environmental Safety, 2020, 202: 110892. doi: 10.1016/j.ecoenv.2020.110892 [26] KWOK M L, CHAN K M. Oxidative stress and apoptotic effects of copper and cadmium in the zebrafish liver cell line ZFL [J]. Toxicology Reports, 2020, 7: 822-835. doi: 10.1016/j.toxrep.2020.06.012 [27] 吴丰昌, 冯承莲, 曹宇静, 等. 锌对淡水生物的毒性特征与水质基准的研究 [J]. 生态毒理学报, 2011, 6(4): 367-382. WU F C, FENG C L, CAO Y J, et al. Toxicity characteristic of zinc to freshwater biota and its water quality criteria [J]. Asian Journal of Ecotoxicology, 2011, 6(4): 367-382(in Chinese).
[28] 储蓄, 张军霞, 王晶. 动物氧化应激及其营养调控措施研究进展 [J]. 畜牧兽医学报, 2021, 52(12): 3346-3356. doi: 10.11843/j.issn.0366-6964.2021.012.003 CHU X, ZHANG J X, WANG J. Research progress of animal oxidative stress and its nutritional regulation [J]. Acta Veterinaria et Zootechnica Sinica, 2021, 52(12): 3346-3356(in Chinese). doi: 10.11843/j.issn.0366-6964.2021.012.003
[29] CHOUCHENE L, KESSABI K, GUEGUEN M M, et al. Interference with zinc homeostasis and oxidative stress induction as probable mechanisms for cadmium-induced embryo-toxicity in zebrafish [J]. Environmental Science and Pollution Research, 2022, 29(26): 39578-39592. doi: 10.1007/s11356-022-18957-x [30] WANG C C, SI L F, GUO S N, et al. Negative effects of acute cadmium on stress defense, immunity, and metal homeostasis in liver of zebrafish: The protective role of environmental zinc dpre-exposure [J]. Chemosphere, 2019, 222: 91-97. doi: 10.1016/j.chemosphere.2019.01.111 [31] 郭晖, 庄静静. 3种水生植物对铅污染水体的抗性研究 [J]. 西南林业大学学报(自然科学), 2019, 39(2): 52-59. GUO H, ZHUANG J J. Resistance of 3 aquatic plants to lead polluted water [J]. Journal of Southwest Forestry University (Natural Sciences), 2019, 39(2): 52-59(in Chinese).
[32] LOPES A C B A, PEIXE T S, MESAS A E, et al. Lead exposure and oxidative stress: A systematic review [J]. Reviews of Environmental Contamination and Toxicology, 2016, 236: 193-238. [33] PARK K, HAN E J, AHN G, et al. Effects of thermal stress-induced lead (Pb) toxicity on apoptotic cell death, inflammatory response, oxidative defense, and DNA methylation in zebrafish (Danio rerio) embryos [J]. Aquatic Toxicology, 2020, 224: 105479. doi: 10.1016/j.aquatox.2020.105479 [34] MU Y, YU J Q, JI W H, et al. Alleviation of Pb2+ pollution-induced oxidative stress and toxicity in microglial cells and zebrafish larvae by chicoric acid [J]. Ecotoxicology and Environmental Safety, 2019, 180: 396-402. doi: 10.1016/j.ecoenv.2019.05.040 [35] 鲍虞园, 叶国玲, 钟金香, 等. Hg2+对中国鲎幼体急性毒性及MT的诱导效应 [J]. 生态毒理学报, 2020, 15(6): 300-307. BAO Y Y, YE G L, ZHONG J X, et al. Acute toxicity of Hg2+ to and associated metallothionein induction in Tachypleus tridentatus larvae [J]. Asian Journal of Ecotoxicology, 2020, 15(6): 300-307(in Chinese).
[36] ZHANG Q F, LI Y W, LIU Z H, et al. Exposure to mercuric chloride induces developmental damage, oxidative stress and immunotoxicity in zebrafish embryos-larvae [J]. Aquatic Toxicology, 2016, 181: 76-85. doi: 10.1016/j.aquatox.2016.10.029 [37] ZHANG Q F, LI Y W, LIU Z H, et al. Reproductive toxicity of inorganic mercury exposure in adult zebrafish: Histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis [J]. Aquatic Toxicology, 2016, 177: 417-424. doi: 10.1016/j.aquatox.2016.06.018 [38] XU M C, RUI D S, YAN Y Z, et al. Oxidative damage induced by arsenic in mice or rats: A systematic review and meta-analysis [J]. Biological Trace Element Research, 2017, 176(1): 154-175. doi: 10.1007/s12011-016-0810-4 [39] MONDAL P, SHAW P, DEY BHOWMIK A, et al. Combined effect of arsenic and fluoride at environmentally relevant concentrations in zebrafish (Danio rerio) brain: Alterations in stress marker and apoptotic gene expression [J]. Chemosphere, 2021, 269: 128678. doi: 10.1016/j.chemosphere.2020.128678 [40] DELANEY P, RAMDAS NAIR A, PALMER C, et al. Arsenic induced redox imbalance triggers the unfolded protein response in the liver of zebrafish [J]. Toxicology and Applied Pharmacology, 2020, 409: 115307. doi: 10.1016/j.taap.2020.115307 [41] SMITH A H, SMITH M M H. Arsenic drinking water regulations in developing countries with extensive exposure [J]. Toxicology, 2004, 198(1/2/3): 39-44. [42] SARKAR S, MUKHERJEE S, CHATTOPADHYAY A, et al. Low dose of arsenic trioxide triggers oxidative stress in zebrafish brain: Expression of antioxidant genes [J]. Ecotoxicology and Environmental Safety, 2014, 107: 1-8. doi: 10.1016/j.ecoenv.2014.05.012 [43] SUN H J, ZHANG J Y, WANG Q, et al. Environmentally relevant concentrations of arsenite induces developmental toxicity and oxidative responses in the early life stage of zebrafish [J]. Environmental Pollution, 2019, 254: 113022. doi: 10.1016/j.envpol.2019.113022 [44] DONG W Q, SUN H J, ZHANG Y, et al. Impact on growth, oxidative stress, and apoptosis-related gene transcription of zebrafish after exposure to low concentration of arsenite [J]. Chemosphere, 2018, 211: 648-652. doi: 10.1016/j.chemosphere.2018.08.010 [45] YAO H, GUO L, JIANG B H, et al. Oxidative stress and chromium (VI) carcinogenesis [J]. Journal of Environmental Pathology, Toxicology and Oncology:Official Organ of the International Society for Environmental Toxicology and Cancer, 2008, 27(2): 77-88. doi: 10.1615/JEnvironPatholToxicolOncol.v27.i2.10 [46] SHAW P, MONDAL P, BANDYOPADHYAY A, et al. Environmentally relevant concentration of chromium induces nuclear deformities in erythrocytes and alters the expression of stress-responsive and apoptotic genes in brain of adult zebrafish [J]. Science of the Total Environment, 2020, 703: 135622. doi: 10.1016/j.scitotenv.2019.135622 [47] 农琼媛, 覃礼堂, 莫凌云, 等. 抗生素与三唑类杀菌剂混合物对羊角月牙藻的长期毒性相互作用研究 [J]. 生态毒理学报, 2019, 14(4): 140-149. NONG Q Y, QIN L T, MO L Y, et al. The toxic interactions of long-term effects involving antibiotics and triazole fungicides on Selenastrum capricornutum [J]. Asian Journal of Ecotoxicology, 2019, 14(4): 140-149(in Chinese).
[48] LI S Y, JIANG Y, SUN Q Q, et al. Tebuconazole induced oxidative stress related hepatotoxicity in adult and larval zebrafish (Danio rerio) [J]. Chemosphere, 2020, 241: 125129. doi: 10.1016/j.chemosphere.2019.125129 [49] ZHAO F, CAO F, LI H, et al. The effects of a short-term exposure to propiconazole in zebrafish (Danio rerio) embryos [J]. Environmental Science and Pollution Research International, 2020, 27(30): 38212-38220. doi: 10.1007/s11356-020-09968-7 [50] ZHU J S, LIU C L, WANG J Y, et al. Difenoconazole induces cardiovascular toxicity through oxidative stress-mediated apoptosis in early life stages of zebrafish (Danio rerio) [J]. Ecotoxicology and Environmental Safety, 2021, 216: 112227. doi: 10.1016/j.ecoenv.2021.112227 [51] HNÁTOVÁ M, GBELSKÁ Y, OBERNAUEROVÁ M, et al. Cross-resistance to strobilurin fungicides in mitochondrial and nuclear mutants of Saccharomyces cerevisiae [J]. Folia Microbiologica, 2003, 48(4): 496-500. doi: 10.1007/BF02931331 [52] LI H, CAO F J, ZHAO F, et al. Developmental toxicity, oxidative stress and immunotoxicity induced by three strobilurins (pyraclostrobin, trifloxystrobin and picoxystrobin) in zebrafish embryos [J]. Chemosphere, 2018, 207: 781-790. doi: 10.1016/j.chemosphere.2018.05.146 [53] HAN Y N, LIU T, WANG J H, et al. Genotoxicity and oxidative stress induced by the fungicide azoxystrobin in zebrafish (Danio rerio) livers [J]. Pesticide Biochemistry and Physiology, 2016, 133: 13-19. doi: 10.1016/j.pestbp.2016.03.011 [54] MAO L G, JIA W, ZHANG L, et al. Embryonic development and oxidative stress effects in the larvae and adult fish livers of zebrafish (Danio rerio) exposed to the strobilurin fungicides, kresoxim-methyl and pyraclostrobin [J]. Science of the Total Environment, 2020, 729: 139031. doi: 10.1016/j.scitotenv.2020.139031 [55] 潘宏伟. 斑马鱼对溴氰菊酯、氯化镉胁迫的行为响应及机制分析[D]. 济南: 山东师范大学, 2019: 67-72. PAN H W. Behavioral response and mechanism analysis of zebrafish (Danio rerio) under deltamethrin and cadmium chloride stress[D]. Jinan: Shandong Normal University, 2019: 67-72(in Chinese).
[56] PARAVANI E V, SIMONIELLO M F, POLETTA G L, et al. Cypermethrin: Oxidative stress and genotoxicity in retinal cells of the adult zebrafish [J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2018, 826: 25-32. doi: 10.1016/j.mrgentox.2017.12.010 [57] PARAVANI E V, SIMONIELLO M F, POLETTA G L, et al. Cypermethrin induction of DNA damage and oxidative stress in zebrafish gill cells [J]. Ecotoxicology and Environmental Safety, 2019, 173: 1-7. doi: 10.1016/j.ecoenv.2019.02.004 [58] 高越, 赵劲宇, 张鹏九, 等. 苹果园施用高效氯氰菊酯对施药人员的暴露量及健康风险评估 [J]. 农药, 2021, 60(1): 38-41. doi: 10.16820/j.cnki.1006-0413.2021.01.010 GAO Y, ZHAO J Y, ZHANG P J, et al. Risk assessment of human exposure to Beta-Cypermethrin during application in apple orchard [J]. Agrochemicals, 2021, 60(1): 38-41(in Chinese). doi: 10.16820/j.cnki.1006-0413.2021.01.010
[59] MU X Y, SHEN G M, HUANG Y, et al. The enantioselective toxicity and oxidative stress of beta-cypermethrin on zebrafish [J]. Environmental Pollution, 2017, 229: 312-320. doi: 10.1016/j.envpol.2017.05.088 [60] HAN J J, JI C, GUO Y C, et al. Mechanisms underlying melatonin-mediated prevention of fenvalerate-induced behavioral and oxidative toxicity in zebrafish [J]. Journal of Toxicology and Environmental Health, Part A, 2017, 80(23/24): 1331-1341. [61] GE W L, YAN S H, WANG J H, et al. Oxidative stress and DNA damage induced by imidacloprid in zebrafish (Danio rerio) [J]. Journal of Agricultural and Food Chemistry, 2015, 63(6): 1856-1862. doi: 10.1021/jf504895h [62] WANG X Y, SHEN M L, ZHOU J J, et al. Chlorpyrifos disturbs hepatic metabolism associated with oxidative stress and gut microbiota dysbiosis in adult zebrafish [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2019, 216: 19-28. [63] GAAIED S, OLIVEIRA M, LE BIHANIC F, et al. Gene expression patterns and related enzymatic activities of detoxification and oxidative stress systems in zebrafish larvae exposed to the 2, 4-dichlorophenoxyacetic acid herbicide [J]. Chemosphere, 2019, 224: 289-297. doi: 10.1016/j.chemosphere.2019.02.125 [64] WANG Q, LIU S, HU D Y, et al. Identification of apoptosis and macrophage migration events in paraquat-induced oxidative stress using a zebrafish model [J]. Life Sciences, 2016, 157: 116-124. doi: 10.1016/j.lfs.2016.06.009 [65] 蒋青桃, 宋仙平, 张锋, 等. 乙草胺对雄性小鼠GC-1精原细胞的毒性研究 [J]. 职业与健康, 2020, 36(21): 2920-2926. doi: 10.13329/j.cnki.zyyjk.2020.0800 JIANG Q T, SONG X P, ZHANG F, et al. Toxicity of acetochlor on GC-1 spermatogonia cells of male mice [J]. Occupation and Health, 2020, 36(21): 2920-2926(in Chinese). doi: 10.13329/j.cnki.zyyjk.2020.0800
[66] ZHANG Y Y, XUE W, LONG R Z, et al. Acetochlor affects zebrafish ovarian development by producing estrogen effects and inducing oxidative stress [J]. Environmental Science and Pollution Research International, 2020, 27(22): 27688-27696. doi: 10.1007/s11356-020-09050-2 [67] 朱炳宇, 周博, 李查德邓, 等. 生物监测在新兴污染物研究中的应用及进展 [J]. 环境与健康杂志, 2019, 36(5): 460-465. doi: 10.16241/j.cnki.1001-5914.2019.05.022 ZHU B Y, ZHOU B, LI C D D, et al. Application and development of biological monitoring in study of emerging contaminants: a review of recent studies [J]. J Environ Health, 2019, 36(5): 460-465(in Chinese). doi: 10.16241/j.cnki.1001-5914.2019.05.022
[68] 中国科学院生态环境中心. 典型污染物的环境暴露与健康危害机制 [J]. 中国科学院院刊, 2016, 31(Z2): 158-162. Ecological Environment Center of Chinese Academy of Sciences. Environmental exposure and health hazard mechanism of typical pollutants [J]. Bulletin of Chinese Academy of Sciences, 2016, 31(Z2): 158-162(in Chinese).
[69] 阮挺, 江桂斌. 发现新型环境有机污染物的基本理论与方法 [J]. 中国科学院院刊, 2020, 35(11): 1328-1336. doi: 10.16418/j.issn.1000-3045.20200915004 RUAN T, JIANG G B. Basic theory and analytical methodology for identification of novel environmental organic pollutants [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(11): 1328-1336(in Chinese). doi: 10.16418/j.issn.1000-3045.20200915004
[70] 周海龙, 张林宝, 廖春阳, 等. 持久性有机污染物对水生动物芳香烃受体通道的毒理机制及其早期监测 [J]. 生态毒理学报, 2010, 5(1): 9-17. ZHOU H L, ZHANG L B, LIAO C Y, et al. Advances on toxicological mechanism of AhR pathway and early biomonitoring of persistent organic pollutants (POPs) in aquatic animals [J]. Asian Journal of Ecotoxicology, 2010, 5(1): 9-17(in Chinese).
[71] NAGAYAMA J, TSUJI H, IIDA T, et al. Immunologic effects of perinatal exposure to dioxins, PCBs and organochlorine pesticides in Japanese infants [J]. Chemosphere, 2007, 67(9): S393-S398. doi: 10.1016/j.chemosphere.2006.05.134 [72] LIU H, NIE F H, LIN H Y, et al. Developmental toxicity, oxidative stress, and related gene expression induced by dioxin-like PCB 126 in zebrafish (Danio rerio) [J]. Environmental Toxicology, 2016, 31(3): 295-303. doi: 10.1002/tox.22044 [73] SCHLEZINGER J J, WHITE R D, STEGEMAN J J. Oxidative inactivation of cytochrome P-450 1A (CYP1A) stimulated by 3, 3', 4, 4'-tetrachlorobiphenyl: Production of reactive oxygen by vertebrate CYP1As [J]. Molecular Pharmacology, 1999, 56(3): 588-597. doi: 10.1124/mol.56.3.588 [74] TERAOKA H, DONG W, TSUJIMOTO Y, et al. Induction of cytochrome P450 1A is required for circulation failure and edema by 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin in zebrafish [J]. Biochemical and Biophysical Research Communications, 2003, 304(2): 223-228. doi: 10.1016/S0006-291X(03)00576-X [75] NA Y R, SEOK S H, BAEK M W, et al. Protective effects of vitamin E against 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) induced toxicity in zebrafish embryos [J]. Ecotoxicology and Environmental Safety, 2009, 72(3): 714-719. doi: 10.1016/j.ecoenv.2008.09.015 [76] ZHENG X M, LIU H L, SHI W, et al. Effects of perfluorinated compounds on development of zebrafish embryos [J]. Environmental Science and Pollution Research International, 2011, 19(7): 2498-2505. [77] CHEN H, HAN J B, ZHANG C, et al. Occurrence and seasonal variations of per- and polyfluoroalkyl substances (PFASs) including fluorinated alternatives in rivers, drain outlets and the receiving Bohai Sea of China [J]. Environmental Pollution, 2017, 231: 1223-1231. doi: 10.1016/j.envpol.2017.08.068 [78] SHI Y L, SONG X W, JIN Q, et al. Tissue distribution and bioaccumulation of a novel polyfluoroalkyl benzenesulfonate in crucian carp [J]. Environment International, 2020, 135: 105418. doi: 10.1016/j.envint.2019.105418 [79] WU Y M, DENG M, JIN Y X, et al. Uptake and elimination of emerging polyfluoroalkyl substance F-53B in zebrafish larvae: Response of oxidative stress biomarkers [J]. Chemosphere, 2019, 215: 182-188. doi: 10.1016/j.chemosphere.2018.10.025 [80] ZOU Y L, WU Y M, WANG Q Y, et al. Comparison of toxicokinetics and toxic effects of PFOS and its novel alternative OBS in zebrafish larvae [J]. Chemosphere, 2021, 265: 129116. doi: 10.1016/j.chemosphere.2020.129116 [81] KERN P A, FISHMAN R B, SONG W, et al. The effect of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) on oxidative enzymes in adipocytes and liver [J]. Toxicology, 2002, 171(2/3): 117-125. [82] 聂芳红, 孔庆波, 刘连平, 等. 两种二噁英类化合物对斑马鱼肝脏MDA、SOD和GST的影响 [J]. 食品与生物技术学报, 2009, 28(2): 210-213. NIE F H, KONG Q B, LIU L P, et al. Effects of two DLCs on hepatic MDA, SOD and GST in zebrafish [J]. Journal of Food Science and Biotechnology, 2009, 28(2): 210-213(in Chinese).
[83] MENG S L, CHEN X, GYIMAH E, et al. Hepatic oxidative stress, DNA damage and apoptosis in adult zebrafish following sub-chronic exposure to BDE-47 and BDE-153 [J]. Environmental Toxicology, 2020, 35(11): 1202-1211. doi: 10.1002/tox.22985 [84] 张章, 唐天乐, 唐文浩. 人工纳米材料对斑马鱼生态毒理效应研究进展 [J]. 生态毒理学报, 2016, 11(5): 14-23. ZHANG Z, TANG T L, TANG W H. Research progress in ecotoxicological effects of engineered nanomaterials on zebrafish [J]. Asian Journal of Ecotoxicology, 2016, 11(5): 14-23(in Chinese).
[85] CLEMENTE Z, CASTRO V, JONSSON C, et al. Ecotoxicology of nano-TiO2 an evaluation of its toxicity to organisms of aquatic ecosystems [J]. International Journal of Environmental Research, 2012, 6: 33-50. [86] TANG T, ZHANG Z, ZHU X. Toxic effects of TiO2 NPs on zebrafish [J]. International Journal of Environmental Research and Public Health, 2019, 6(4): 523. [87] SARASAMMA S, AUDIRA G, SAMIKANNU P, et al. Behavioral impairments and oxidative stress in the brain, muscle, and gill caused by chronic exposure of C70 nanoparticles on adult zebrafish [J]. International Journal of Molecular Sciences, 2019, 20(22): 5795. doi: 10.3390/ijms20225795 [88] DU J, CAI J, WANG S T, et al. Oxidative stress and apotosis to zebrafish (Danio rerio) embryos exposed to perfluorooctane sulfonate (PFOS) and ZnO nanoparticles [J]. International Journal of Occupational Medicine and Environmental Health, 2017, 30(2): 213-229. [89] ZHU B, HE W, HU S, et al. The fate and oxidative stress of different sized SiO2 nanoparticles in zebrafish (Danio rerio) larvae [J]. Chemosphere, 2019, 225: 705-712. doi: 10.1016/j.chemosphere.2019.03.091 [90] YU X, SUI Q, LYU S G, et al. Do high levels of PPCPs in landfill leachates influence the water environment in the vicinity of landfills? A case study of the largest landfill in China [J]. Environment International, 2020, 135: 105404. doi: 10.1016/j.envint.2019.105404 [91] ZOU Y, ZHANG Y, HAN L W, et al. Oxidative stress-mediated developmental toxicity induced by isoniazide in zebrafish embryos and larvae [J]. Journal of Applied Toxicology:JAT, 2017, 37(7): 842-852. doi: 10.1002/jat.3432 [92] FÉLIX L M, VIDAL A M, SERAFIM C, et al. Ketamine induction of p53-dependent apoptosis and oxidative stress in zebrafish (Danio rerio) embryos [J]. Chemosphere, 2018, 201: 730-739. doi: 10.1016/j.chemosphere.2018.03.049 [93] LIANG X M, WANG F LI K B, et al. Effects of norfloxacin nicotinate on the early life stage of zebrafish (Danio rerio): Developmental toxicity, oxidative stress and immunotoxicity [J]. Fish & Shellfish Immunology, 2020, 96: 262-269. [94] SEHONOVA P, TOKANOVA N, HODKOVICOVA N, et al. Oxidative stress induced by fluoroquinolone enrofloxacin in zebrafish (Danio rerio) can be ameliorated after a prolonged exposure [J]. Environmental Toxicology and Pharmacology, 2019, 67: 87-93. doi: 10.1016/j.etap.2019.02.002 [95] GYIMAH E, DONG X, QIU W H, et al. Sublethal concentrations of triclosan elicited oxidative stress, DNA damage, and histological alterations in the liver and brain of adult zebrafish [J]. Environmental Science and Pollution Research International, 2020, 27(14): 17329-17338. doi: 10.1007/s11356-020-08232-2 [96] 王凡, 牛晓莹, 刘飞, 等. 三氯生对斑马鱼卵巢抗氧化和凋亡相关基因表达的影响 [J]. 淡水渔业, 2020, 50(1): 3-8. doi: 10.3969/j.issn.1000-6907.2020.01.001 WANG F, NIU X Y, LIU F, et al. Effect of triclosan on expression of antioxidant and apoptosis-related genes in ovary of Danio rerio [J]. Freshwater Fisheries, 2020, 50(1): 3-8(in Chinese). doi: 10.3969/j.issn.1000-6907.2020.01.001
[97] HOU J, LI L, XUE T, et al. Damage and recovery of the ovary in female zebrafish i. p.-injected with MC-LR [J]. Aquatic Toxicology, 2014, 155: 110-118. doi: 10.1016/j.aquatox.2014.06.010 [98] HOU J, LI L, XUE T, et al. Hepatic positive and negative antioxidant responses in zebrafish after intraperitoneal administration of toxic microcystin-LR [J]. Chemosphere, 2015, 120: 729-736. doi: 10.1016/j.chemosphere.2014.09.079 [99] LU Y F, ZHANG Y, DENG Y F, et al. Uptake and accumulation of polystyrene microplastics in zebrafish (Danio rerio) and toxic effects in liver [J]. Environmental Science & Technology, 2016, 50(7): 4054-4060. [100] QIAO R X, SHENG C, LU Y F, et al. Microplastics induce intestinal inflammation, oxidative stress, and disorders of metabolome and microbiome in zebrafish [J]. Science of the Total Environment, 2019, 662: 246-253. doi: 10.1016/j.scitotenv.2019.01.245 [101] CHEN M J, YIN J F, LIANG Y, et al. Oxidative stress and immunotoxicity induced by graphene oxide in zebrafish [J]. Aquatic Toxicology, 2016, 174: 54-60. doi: 10.1016/j.aquatox.2016.02.015 [102] SALAHINEJAD A, ATTARAN A, NADERI M, et al. Chronic exposure to bisphenol S induces oxidative stress, abnormal anxiety, and fear responses in adult zebrafish (Danio rerio) [J]. Science of the Total Environment, 2021, 750: 141633. doi: 10.1016/j.scitotenv.2020.141633 [103] WU S M, JI G X, LIU J N, et al. TBBPA induces developmental toxicity, oxidative stress, and apoptosis in embryos and zebrafish larvae (Danio rerio) [J]. Environmental Toxicology, 2016, 31(10): 1241-1249. doi: 10.1002/tox.22131 [104] XIANG Q Q, XU B F, DING Y L, et al. Oxidative stress response induced by butachlor in zebrafish embryo/larvae: The protective effect of vitamin C [J]. Bulletin of Environmental Contamination and Toxicology, 2018, 100(2): 208-215. doi: 10.1007/s00128-017-2245-9 [105] GIORDO R, NASRALLAH G K, AL-JAMAL O, et al. Resveratrol inhibits oxidative stress and prevents mitochondrial damage induced by zinc oxide nanoparticles in zebrafish (Danio rerio) [J]. International Journal of Molecular Sciences, 2020, 21(11): 3838. doi: 10.3390/ijms21113838 [106] OH J Y, KIM E A, KANG S I, et al. Protective effects of fucoidan isolated from celluclast-assisted extract of Undaria pinnatifida sporophylls against AAPH-induced oxidative stress in vitro and in vivo zebrafish model [J]. Molecules (Basel, Switzerland), 2020, 25(10): 2361. doi: 10.3390/molecules25102361