-
筑牢黄河流域生态安全是保障国家生态安全的重要支撑,而下游冲积平原区是流域内生态脆弱区之一,特别近几十年来随着工业化城镇化发展、气候变化[1]、人类活动[2]等因素影响,带来了水资源短缺、水质恶化等一系列生态环境问题[3]. 同时黄河下游冲积平原区一般工农业发达,是重要农业粮食产区,地下水在工农业和饮用水中扮演者重要角色,对地下水水化学特征及演化机制进行研究,不仅能反映影响地下水化学的各种自然或人为因素,而且对水资源保护与合理开发利用,进而保障生态安全等具有重要意义[4-6]. 德州位于山东省西北部,具有黄河流域下游冲积平原区的典型特征,本次选取了德州市作为代表区开展研究.
目前关于德州市的研究主要集中在浅层地下水水质演化[6]、地面沉降与地下水相关性[7-8]、地下水降落漏斗[9]、深层地下水水化学特征[10]、水位动态[11]等,如贾超等[8]系统研究了鲁西北平原深层地下水降落漏斗现状及地面沉降时空演化,总结了地面沉降与地下水开采的相关性. 赵全升等[6]论述了浅层地下水的水质特征,分析研究了浅层地下水的水质演化. 冯颖等[10]基于多年动态监测研究了德州市深层地下水化学特征及水位动态变化. 纪洪磊等[11]通过分析区内第四纪沉积展布特征,结合二等水准测量数据和分层沉降标数据与地面沉降规律,揭示鲁北平原区地面沉降机理和沉降模式. 为本次研究提供了借鉴,但对德州市地下水水化学特征、演化等尚需开展更深入的研究.
因此,本文通过描述性统计、因子分析、Piper图、Gibbs图、离子比值、矿物饱和指数等方法,对德州市地下水水化学成因进行系统分析,同时结合开采条件下水位变化,分析其生态环境影响. 以期对德州市地下水资源合理开发利用和保护及黄河流域下游水生态环境改善提供借鉴.
黄河流域下游德州地区地下水水化学成因及生态环境影响
Hydrochemical genesis and ecological environment influence of groundwater in dezhou city at lower Yellow River Basin
-
摘要: 德州市位于黄河流域下游平原,是主要农业粮食作物产区,地下水资源影响着农业安全和人民健康安全. 研究地下水化学成因及生态环境影响,对地下水可持续开发利用具有重要意义. 采集243组地下水样品,运用描述性统计分析、因子分析、Piper三线图、Gibbs图及离子比值等方法,结合地质背景条件,运用PHREEQC计算矿物饱和指数,分析区内地下水化学特征及成因,并分析其生态环境影响. 结果表明,德州市地下水为弱碱性水,TDS介于234—28162 mg·L−1之间,区内占优势的阴、阳离子为Cl−、SO42-和Na+、Mg2+,浅层地下水化学类型以HCO3·Cl-Ca·Mg型,HCO3·Cl-Na·Ca、HCO3·SO4-Na·Ca型等为主,深层地下水以HCO3·SO4-Na型水为主. 德州地区地下水化学特征受岩石风化溶滤作用、蒸发浓缩作用、阳离子交换作用的共同影响,以溶滤作用、蒸发浓缩作用为主. 岩石风化溶滤作用以硅酸盐岩和蒸发岩矿物溶解为主. 深层地下水中阳离子交替吸附作用以正向为主,浅层地下水中该反应较为复杂. 德州地区地下水中蒸发盐岩、硅酸盐岩在岩石风化溶滤过程中的贡献率为62.199%,碳酸盐岩风化、其它岩石风化的贡献率约为11.802%. 浅层地下水的合理开发,可以减弱蒸发浓缩作用,在一定程度上改良研究区内的土壤质量,减少区内的盐渍化土地面积,因此合理开发利用浅层地下水用于农业灌溉等,在一定程度上可以有益于生态环境的改善.Abstract: Dezhou City is located in the downstream plain of the Yellow River Basin, which is the main agricultural food crop production area. Groundwater resources affect agricultural safety and people’s health and safety. Studying the hydrochemical genesis and ecological environment influence of groundwater is of great significance to the sustainable development and utilization of groundwater. 243 groups of groundwater samples were collected. Descriptive statistical analysis, factor analysis, Piper diagram, Gibbs diagram and ion ratio methods were used, along with the calculation of mineral saturation index by PHREEQC, combined with the geological background conditions, The chemical characteristics and evolution of groundwater in the area were analyzed. The results show that: (1) The groundwater in Dezhou City is weak alkaline water, and the TDS was between 234 — 28162 mg·L−1, which changes greatly. The dominant anions and cations in the area were Cl−, SO42− and Na+, Mg2+. The chemical types of shallow groundwater are HCO3·Cl-Ca·Mg, HCO3·Cl-Na·Ca and HCO3·SO4-Na·Ca. The deep groundwater is dominated by HCO3·SO4-Na type water. (2) The chemical characteristics of groundwater in Dezhou area are affected by the combined effects of rock weathering, leaching, evaporation and concentration, and cation exchange. The rock weathering and leaching are mainly the dissolutionof silicate rocks and evaporation rocks. The cation exchange adsorption in deep groundwater is mainly positive, and the reaction in shallow groundwater is more complex. (3) PHREEQC calculation shows that the contribution rate of evaporated salt rock and silicate rock in groundwater in Dezhou area in the process of rock weathering and leaching was 62.199%, and that of carbonate rock weathering and other rock weathering was about 11.802%. (4) Rational exploitation of shallow groundwater can weaken evaporation and concentration, improve soil quality and reduce salinized land area in the study area, therefore, rational exploitation and utilization of shallow groundwater for agricultural irrigation can be beneficial to the improvement of ecological environment to a certain extent.
-
表 1 水样测试指标和检出限
Table 1. Water sample test indicators and detection limits
指标
Index检测方法
Detect method检出限
Detection limitpH DZ/T 0064.5-2021 玻璃电极法 — TH DZ/T 0064.15-2021 乙二胺四乙酸二钠滴定法 3mg·L−1(以CaCO3计) TDS DZ/T 0064.9-2021 重量法 — K+ DZ/T 0064.27-2021 火焰发射光谱法 0.50 mg·L−1 Na+ DZ/T 0064.42-2021 电感耦合等离子体发射光谱法 0.60 mg·L−1 Ca2+ DZ/T 0064.13-2021 乙二胺四乙酸二钠滴定法 4 mg·L−1 Mg2+ DZ/T 0064.14-2021 乙二胺四乙酸二钠滴定法 3 mg·L−1 Cl− DZ/T 0064.50-2021 银量滴定法 3 mg·L−1 SO42− DZ/T 0064.64-2021 乙二胺四乙酸二钠-钡滴定法 10 mg·L−1 HCO3− DZ/T 0064.49-2021 滴定法 5 mg·L−1 Mn2+ DZ/T 0064.22-2021 电感耦合等离子体发射光谱法 0.15 µg·L−1 NO3− DZ/T 0064.59-2021 紫外分光光度法 0.20 mg·L−1 表 2 德州市地下水主要水化学指标质量浓度统计(mg·L−1)
Table 2. Mass concentration statistics of the main hydrochemical indexes(mg·L−1)
pH TH TDS K+ Na+ Ca2+ Mg2+ Cl- SO42- HCO3- 浅层地下水
SGW均值Mean 7.77 732.38 2321.79 5.98 368.12 111.72 109.3 640.71 680.37 644.69 中值Medium 7.77 631 1930 1.65 303.44 98.1 87.7 487.5 584 629.5 标准差SD 0.23 688.19 2212.67 29.15 351.03 89.98 117.36 638.88 615.3 178.01 最大值Max 8.38 8107 28162 408.6 4317 881 1400 5935 4868 1523 最小值Min 7.09 90 234 0.33 11.92 1.45 11.7 18.7 13.7 173 变异系数CV 0.03 0.94 0.95 4.88 0.95 0.81 1.07 1 0.9 0.28 深层地下水
DGW均值Mean 8.22 236.34 1133.5 2.03 309.95 43.82 34.26 284.28 322.75 384.67 中值Median 8.24 113 1040 1.68 271.06 36.4 12.35 179.5 296.5 396 标准差SD 0.35 309.3 722.29 1.58 194.3 39.77 51.42 277.34 252.49 148.71 最大值Max 8.86 1104 2616 6.24 611 123 187 904 672 644 最小值Min 7.59 45 261 0.87 21.7 2.82 7.4 32.4 35.2 171 变异系数CV 0.04 1.31 0.64 0.78 0.63 0.91 1.5 0.98 0.78 0.39 注:pH和变异系数无量纲. Note:pH and coefficient of variation dimensionless. 表 3 浅层地下水超标组分统计表(mg·L−1)
Table 3. Statistical table of excessive components of shallow groundwater(mg·L−1)
测试指标
Index样品总数
SamplesⅢ类水标准/(mg·L−1)
Standard最大超标倍数
Maximum excess multiple超标率/%
Excessive rateTDS 232 1000 28.1 86.70 Na+ 232 200 21.5 77.68 F- 232 1.00 11.0 70.82 Mn2+ 232 0.1 32.7 86.27 Cl- 232 250 23.7 78.54 SO42- 232 250 19.4 82.83 总硬度(TH) 232 450 18.0 64.38 表 4 黄河流域下游德州地区地下水水化学组分间的相关系数
Table 4. Correlation coefficient between groundwater hydrochemical components in Dezhou area of the lower Yellow River Basin
TDS K+ Na+ Ca2+ Mg2+ Cl− SO42- HCO3− TDS 1.00 K+ 0.00 1.00 Na+ 0.88* −0.01 1.00 Ca2+ 0.71* −0.04 0.52* 1.00 Mg2+ 0.87* −0.05 0.69* 0.82* 1.00 Cl− 0.92* −0.01 0.77* 0.59* 0.74* 1.00 SO42− 0.86* −0.04 0.67* 0.55* 0.66* 0.90* 1.00 HCO3− 0.18* 0.03 0.23* 0.04 0.16* 0.14* 0.19* 1.00 注:*代表在0.05水平线相关性显著. Note:*Significant correlation at 0.05 level. 表 5 黄河流域下游德州地区地下水组分旋转因子荷载矩阵
Table 5. Rotation Factor Load Matrix of Groundwater Components in Dezhou Area Downstream of the Yellow River Basin
水化学指标
IndexF1 F2 TDS 0.976 0.051 TH 0.923 −0.157 K+ −0.037 0.62 Na+ 0.836 0.153 Ca2+ 0.809 −0.251 Mg2+ 0.926 −0.109 CI− 0.903 0.063 SO42- 0.849 0.101 HCO3− 0.205 0.734 贡献率
(CR)62.199% 11.802% 累积贡献率
(ACR)62.199% 74.001% -
[1] ZHAI Y Z, LEI Y, ZHOU J, et al. The spatial and seasonal variability of the groundwater chemistry and quality in the exploited aquifer in the Daxing District, Beijing, China [J]. Environmental Monitoring and Assessment, 2015, 187(2): 43. doi: 10.1007/s10661-014-4249-9 [2] 吕晓立, 郑跃军, 韩占涛, 等. 城镇化进程中珠江三角洲地区浅层地下水中砷分布特征及成因 [J]. 地学前缘, 2022, 29(3): 88-98. LÜ X L, ZHENG Y J, HAN Z T, et al. Distribution characteristics and causes of arsenic in shallow groundwater in the Pearl River Delta during urbanization [J]. Earth Science Frontiers, 2022, 29(3): 88-98(in Chinese).
[3] 冯娟. 开采条件下德州地区地下水水质演化研究[D]. 青岛: 中国海洋大学, 2011. FENG J. The research on groundwater quality evolution under exploitation conditions in Dezhou[D]. Qingdao: Ocean University of China, 2011(in Chinese).
[4] 侯国华, 高茂生, 党显璋. 唐山曹妃甸浅层地下水水化学特征及咸化成因 [J]. 地学前缘, 2019, 26(6): 49-57. doi: 10.13745/j.esf.sf.2019.8.10 HOU G H, GAO M S, DANG X Z. Hydrochemical characteristics and salinization causes of shallow groundwater in Caofeidian, Tangshan City [J]. Earth Science Frontiers, 2019, 26(6): 49-57(in Chinese). doi: 10.13745/j.esf.sf.2019.8.10
[5] 彭红霞, 侯清芹, 曾敏, 等. 雷州半岛地下水化学特征及控制因素分析 [J]. 环境科学, 2021, 42(11): 5375-5383. PENG H X, HOU Q Q, ZENG M, et al. Hydrochemical characteristics and controlling factors of groundwater in the Leizhou peninsula [J]. Environmental Science, 2021, 42(11): 5375-5383(in Chinese).
[6] 赵全升, 冯娟, 安乐生. 德州市浅层地下水水质演化 [J]. 吉林大学学报(地球科学版), 2010, 40(5): 1075-1082. ZHAO Q S, FENG J, AN L S. Shallow groundwater quality evolution in Dezhou City [J]. Journal of Jilin University (Earth Science Edition), 2010, 40(5): 1075-1082(in Chinese).
[7] 段晓飞, 孙晓晓, 杨亚宾, 等. 鲁北平原地面沉降现状与机理分析 [J]. 山东国土资源, 2018, 34(10): 86-92. DUAN X F, SUN X X, YANG Y B, et al. Present condition and mechanism analysis on land subsidence in northern Shandong plain [J]. Shandong Land and Resources, 2018, 34(10): 86-92(in Chinese).
[8] 贾超, 张少鹏, 孙晓晓, 等. 鲁西北平原地下水开采与地面沉降的相关性 [J]. 中国科技论文, 2021, 16(2): 173-180. JIA C, ZHANG S P, SUN X X, et al. Correlation between groundwater exploitation and land subsidence in northwest plain of Shandong Province [J]. China Sciencepaper, 2021, 16(2): 173-180(in Chinese).
[9] 周晓勇. 德州地区地下水流场参数反演及地层蠕变效应分析研究[D]. 济南: 山东大学, 2017. ZHOU X Y. Back analysis of seepage field parameters and research of stratum creep effect in Dezhou City[D]. Jinan: Shandong University, 2017(in Chinese).
[10] 冯颖, 吴清华, 刘帅. 德州市深层地下水水化学动态演化 [J]. 山东国土资源, 2019, 35(4): 51-55. doi: 10.12128/j.issn.1672-6979.2019.04.007 FENG Y, WU Q H, LIU S. Dynamic evolution of hydrochemistry in deep groundwater in Dezhou City [J]. Shandong Land and Resources, 2019, 35(4): 51-55(in Chinese). doi: 10.12128/j.issn.1672-6979.2019.04.007
[11] 纪洪磊, 杨亚宾, 张永伟, 等. 鲁北平原第四纪沉积特征及地面沉降模式分析[J]. 地质学报, 2019, 93(S1): 241-250. JI H L, YANG Y B, ZHANG Y W, et al. Quaternary sedimentary characteristics and land subsidence model in North Shandong Plain[J]. Acta Geologica Sinica, 2019, 93(Sup 1): 241-250(in Chinese).
[12] 赵全升, 冯娟, 安乐生. 德州市深层地下水水质演化研究 [J]. 地理科学, 2009, 29(5): 766-772. ZHAO Q S, FENG J, AN L S. Deep groundwater water quality evolution in Dezhou City [J]. Scientia Geographica Sinica, 2009, 29(5): 766-772(in Chinese).
[13] 张涛, 蔡五田, 李颖智, 等. 尼洋河流域水化学特征及其控制因素 [J]. 环境科学, 2017, 38(11): 4537-4545. ZHANG T, CAI W T, LI Y Z, et al. Major ionic features and their possible controls in the water of the niyang river basin [J]. Environmental Science, 2017, 38(11): 4537-4545(in Chinese).
[14] 冯建国, 赫明浩, 李贵恒, 等. 泰莱盆地孔隙水水化学特征及其控制因素分析 [J]. 环境化学, 2019, 38(11): 2594-2600. FENG J G, HE M H, LI G H, et al. Analysis of hydrochemical characteristics and controlling factors of porewater in the Tailai Basin [J]. Environmental Chemistry, 2019, 38(11): 2594-2600(in Chinese).
[15] 孟舒然, 吕敦玉, 王翠玲, 等. 郑州市中牟县地下水水化学特征及控制因素 [J]. 环境化学, 2022, 41(3): 977-986. doi: 10.7524/j.issn.0254-6108.2021010802 MENG S R, LV D Y, WANG C L, et al. Research of groundwater chemical characteristics and controlling factors in Zhongmu County, Zhengzhou City [J]. Environmental Chemistry, 2022, 41(3): 977-986(in Chinese). doi: 10.7524/j.issn.0254-6108.2021010802
[16] REN C B, ZHANG Q Q. Groundwater chemical characteristics and controlling factors in a region of northern China with intensive human activity [J]. International Journal of Environmental Research and Public Health, 2020, 17(23): 9126. doi: 10.3390/ijerph17239126 [17] 吴起鑫, 韩贵琳, 李富山, 等. 珠江源区南、北盘江丰水期水化学组成特征及来源分析 [J]. 环境化学, 2015, 34(7): 1289-1296. doi: 10.7524/j.issn.0254-6108.2015.07.2014120303 WU Q X, HAN G L, LI F S, et al. Characteristic and source analysis of major ions in Nanpanjiang and Beipanjiang at the upper Pearl River during the wet season [J]. Environmental Chemistry, 2015, 34(7): 1289-1296(in Chinese). doi: 10.7524/j.issn.0254-6108.2015.07.2014120303
[18] 孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究: 以广西大溶江、灵渠流域为例 [J]. 环境科学, 2016, 37(1): 123-131. SUN P G, YU S, MO F Z, et al. Hydrochemical characteristics and influencing factors in different geological background: A case study in Darongjiang and Lingqu Basin, Guangxi, China [J]. Environmental Science, 2016, 37(1): 123-131(in Chinese).
[19] 郑涛, 焦团理, 胡波, 等. 涡河流域中部地区地下水化学特征及其成因分析 [J]. 环境科学, 2021, 42(2): 766-775. doi: 10.13227/j.hjkx.202006037 ZHENG T, JIAO T L, HU B, et al. Hydrochemical characteristics and origin of groundwater in the central Guohe River basin [J]. Environmental Science, 2021, 42(2): 766-775(in Chinese). doi: 10.13227/j.hjkx.202006037
[20] GIBBS R J. Mechanisms controlling world water chemistry [J]. Science, 1970, 170(3962): 1088-1090. doi: 10.1126/science.170.3962.1088 [21] WEI H Y, LIANG X J, LIU S H, et al. Hydrochemical evolution of groundwater in Dehui, China [J]. Water, 2020, 12(12): 3378. doi: 10.3390/w12123378 [22] 余东, 周金龙, 魏兴, 等. 新疆喀什地区西部潜水水化学特征及演化规律分析 [J]. 环境化学, 2021, 40(8): 2493-2504. YU D, ZHOU J L, WEI X, et al. Analysis of chemical characteristics and evolution of phreatic water in Western Kashgar Prefecture, Xinjiang [J]. Environmental Chemistry, 2021, 40(8): 2493-2504(in Chinese).
[23] LIU J T, PENG Y M, LI C S, et al. Characterization of the hydrochemistry of water resources of the Weibei Plain, Northern China, as well as an assessment of the risk of high groundwater nitrate levels to human health [J]. Environmental Pollution, 2021, 268: 115947. doi: 10.1016/j.envpol.2020.115947 [24] 张涛, 王明国, 张智印, 等. 然乌湖流域地表水水化学特征及控制因素 [J]. 环境科学, 2020, 41(9): 4003-4010. doi: 10.13227/j.hjkx.202002080 ZHANG T, WANG M G, ZHANG Z Y, et al. Hydrochemical characteristics and possible controls of the surface water in ranwu lake basin [J]. Environmental Science, 2020, 41(9): 4003-4010(in Chinese). doi: 10.13227/j.hjkx.202002080
[25] 李状, 苏晶文, 董长春, 等. 安徽马鞍山市当涂地区地下水水化学特征及演化机制[J]. 中国地质, 2022, 49(5) : 1509-1526. LI Z, SU J W, DONG C C, et al. Hydrochemistry characteristics and evolution mechanisms of the groundwater in Dangtu Area, Maanshan[J]. Geology in China, 2022, 49(5): 1509-1526(in Chinese),
[26] 崔佳琪, 李仙岳, 史海滨, 等. 河套灌区地下水化学演变特征及形成机制 [J]. 环境科学, 2020, 41(9): 4011-4020. doi: 10.13227/j.hjkx.202003150 CUI J Q, LI X Y, SHI H B, et al. Chemical evolution and formation mechanism of groundwater in Hetao irrigation area [J]. Environmental Science, 2020, 41(9): 4011-4020(in Chinese). doi: 10.13227/j.hjkx.202003150
[27] MAGARITZ M, NADLER A, KOYUMDJISKY H, et al. The use of Na/Cl ratios to trace solute sources in a semiarid zone [J]. Water Resources Research, 1981, 17(3): 602-608. doi: 10.1029/WR017i003p00602 [28] SAMI K. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa [J]. Journal of Hydrology, 1992, 139(1/2/3/4): 27-48. [29] 唐金平, 张强, 胡漾, 等. 湔江冲洪积扇地下水化学特征及控制因素分析 [J]. 环境科学, 2019, 40(7): 3089-3098. doi: 10.13227/j.hjkx.201901006 TANG J P, ZHANG Q, HU Y, et al. Groundwater chemical characteristics and analysis of their controlling factors in an alluvial fan of Jianjiang River [J]. Environmental Science, 2019, 40(7): 3089-3098(in Chinese). doi: 10.13227/j.hjkx.201901006
[30] 余伟, 杨海全, 郭建阳, 等. 贵州草海水化学特征及离子来源分析 [J]. 地球与环境, 2021, 49(1): 32-41. YU W, YANG H Q, GUO J Y, et al. Hydrochemical characteristics and major ion sources of lake Caohai in Guizhou Province [J]. Earth and Environment, 2021, 49(1): 32-41(in Chinese).
[31] 房丽晶, 高瑞忠, 贾德彬, 等. 草原流域地下水化学时空特征及环境驱动因素: 以内蒙古巴拉格尔河流域为例 [J]. 中国环境科学, 2021, 41(5): 2161-2169. FANG L J, GAO R Z, JIA D B, et al. Spatial-temporal characteristics of groundwater quality and its environmental driving factors of Steppe Basin—taken Balaguer River Basin of Inner Mongolia for instance [J]. China Environmental Science, 2021, 41(5): 2161-2169(in Chinese).
[32] FAN B L, ZHAO Z Q, TAO F X, et al. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River Basin: A comparison among the upstream, midstream and downstream [J]. Journal of Asian Earth Sciences, 2014, 96: 17-26. doi: 10.1016/j.jseaes.2014.09.005 [33] 魏善明, 丁冠涛, 袁国霞, 等. 山东省东汶河沂南地区地下水水化学特征及形成机理 [J]. 地质学报, 2021, 95(6): 1973-1983. doi: 10.3969/j.issn.0001-5717.2021.06.021 WEI S M, DING G T, YUAN G X, et al. Hydrochemical characteristics and formation mechanism of groundwater in Yi'nan, East Wenhe River Basin in Shandong Province [J]. Acta Geologica Sinica, 2021, 95(6): 1973-1983(in Chinese). doi: 10.3969/j.issn.0001-5717.2021.06.021
[34] 王攀, 靳孟贵, 路东臣. 河南省永城市浅层地下水化学特征及形成机制 [J]. 地球科学, 2020, 45(6): 2232-2244. WANG P, JIN M G, LU D C. Hydrogeochemistry characteristics and formation mechanism of shallow groundwater in Yongcheng City, Henan Province [J]. Earth Science, 2020, 45(6): 2232-2244(in Chinese).
[35] 于开宁, 田剑, 刘景涛, 等. 兰州市地下水化学特征及演化模拟 [J]. 地质与勘探, 2022, 58(4): 895-904. YU K N, TIAN J, LIU J T, et al. Hydrochemical characteristics and evolution simulation of groundwater in Lanzhou City [J]. Geology and Exploration, 2022, 58(4): 895-904(in Chinese).