-
随着社会经济的快速发展,人类对矿产资源及各类人工合成化学品的消费数量大量增加. 而高强度的人类活动常常导致各类污染物输入水体,包括现有污水处理工艺未能去除的污染物[1-2],突发水污染事件中单次大量输入的污染物[3-5],生产活动中的非目标污染物[6-7]等,各类污染物的大量输入使得水生态环境面临前所未有的压力. 输入水体的污染物可被水体悬浮物吸附逐渐沉降于河床或通过絮凝沉降等突发环境事件应急处置措施短时间内沉降于河床[8-10],汇入沉积物环境. 部分污染物通过沉积物的生物或化学过程降解,但仍有大量的难以降解的金属污染物、有机污染物长期累积在河床沉积物中. 而当水体外在环境条件(如pH、水温、流量等)发生改变时,沉积物中的污染物可能重新释放进入水体[11-12],此时,沉积物成为水体的二次污染源. 沉积物在源与汇的转化之间可能对生物群落乃至整个水生态系统造成危害[13-15].
针对污染物进入沉积物带来的环境风险和生态风险,化学分析是了解沉积物污染程度和生物毒性最基础的工作,其结果直接提供了沉积物中各类元素成分和污染物的含量[16],而生物毒性测试则被认为是判断沉积物中的污染物对生物影响的更为直接且可靠的方法[17-18],因此生物毒性测试在沉积物污染的生态风险评价中逐渐运用. 本文梳理了水生生物毒性测试在沉积物污染评价中的应用,指出了水生生物测试应用于沉积物毒性研究的重要性,并针对目前不同学者的研究,从沉积物基质、受试生物、毒性测试终点3个方面对水生生物测试技术应用的方法学进行了总结归纳,并为今后的发展方向进行了展望,以期为沉积物生物毒性测试标准方法的建立提供参考.
水生生物毒性测试用于沉积物评价的研究进展
Advances in aquatic biotoxicity testing for sediment evaluation
-
摘要: 针对沉积物污染问题的研究目前已建立了不同的评价方法与体系,目前常用的结合生物毒性测试的有效应导向分析(EDA)、沉积物毒性鉴别评价(TIE)、证据权重法(WOE)、物种敏感性分布法(SSD)和沉积物质量基准(SQG)等,这些方法在河流、湖泊等水体沉积物中污染物毒性效应表征及沉积物质量评价方面有重要应用. 本文指出水生生物毒性测试应用的重要性,根据不同学者的研究内容归纳了水生生物毒性测试的方法学,对沉积物进行水生生物毒性测试的基质处理包括直接采用污染沉积物、洁净沉积物加标以及人工配置沉积物,受试生物主要包括浮游植物、浮游动物、底栖动物和鱼类,毒性试验终点包括急性毒性终点和慢性毒性终点;最后指出水生生物测试存在的问题,并对沉积物质量评价未来发展方向进行展望,以期为我国沉积物生物毒性测试标准方法的建立提供参考.Abstract: Various evaluation methods have been developed for the risk assessment of sediment contamination, involving effect-directed analysis (EDA) for biological toxicity testing, sediment toxicity identification evaluation (TIE), weight-of-evidence (WOE), species sensitivity distribution (SSD), sediment quality benchmark (SQG), etc. These methods have been widely applied in toxic effects characterization of contaminants in river and lake sediments as well as in sediment quality evaluation. Aquatic biotoxicity test plays an important role in the above mentioned evaluation methods. In this review, methodology of aquatic biotoxicity testing in different studies were summarized, including treatment of testing substrates, selection of test organisms, and the test endpoints. 3 types of testing substrates were introduced, which were directly use of contaminated sediment, clean sediment spiking, and artificial sediment. 4 groups of widely used tested organisms, phytoplankton, zooplankton, benthic animals and fish, were elaborated. And 2 kinds of test endpoints, acute toxicity endpoints and chronic toxicity endpoints were summarized. Moreover, some problems of aquatic biotoxicity testing, and future development of sediment quality evaluation were discussed, hope to provide some reference in the standard methods establishment for sediment biotoxicity testing in China.
-
Key words:
- sediment toxicity /
- biotoxicity /
- aquatic organisms /
- contaminants.
-
表 1 沉积物水生生物毒性测试常见受试生物及其测试终点
Table 1. Commonly used tested organisms in sediment toxicity tests and the test endpoints
受试生物类型
Subject
organism type污染物类型
Pollutant type沉积物基质
Sediment substrate受试生物
Subject organism测试时长
Test Duration测试终点
Test endpoints参考文献
References浮游植物 Cu、农药 干净沉积物加标 羊角月牙藻 72 h 生长抑制 [55] Cu 干净沉积物加标 小球藻 72 h 生长量 [60] 综合毒性 受污染沉积物 光合藻类 96 h 生长抑制 [83] 综合毒性 受污染沉积物 小球藻、斜生栅藻 96 h 生长抑制 [84] 综合毒性 受污染沉积物 小球藻 96 h 生长抑制 [85] 浮游动物 Cd 干净沉积物加标 蚤状溞 7 d、72 h 死亡率 [86] Cu 干净沉积物加标 大型溞 48 h 死亡率 [16] 重金属 受污染沉积物 大型溞 96 h 生长抑制 [85] 综合毒性 受污染沉积物 卤虫 96 h 中毒症状反应、死亡率 [67] 综合毒性 受污染沉积物 卤虫、猛水溞、大型溞 96 h 死亡率 [87] Cd 干净沉积物加标 大型溞 72 h 生物累积、金属硫蛋白含量、死亡率 [13] 综合毒性 受污染沉积物 卤虫 7 d 卤虫体长、酶活性 [88] 底栖动物 综合毒性 受污染沉积物 桡足类动物 7 d 繁殖力 [77] 无机硒 干净沉积物加标 霍甫水丝蚓 14 d、60 d 生理指标 [89] 氯代阻燃剂 干净沉积物加标 中华圆田螺 32 d 生物积累、氧化应激效应 [90] 重金属 受污染沉积物 双壳类动物 28 d 总抗氧化能力(TAOC)、脂质过氧化(MDA)、溶酶体膜稳定性测定 [91] 重金属 受污染沉积物 摇蚊幼虫 14 d、10 d 死亡率、羽化率 [92] 多环芳烃、
重金属受污染沉积物 太平洋牡蛎 24 h至幼虫孵化 生物积累、金属硫蛋白含量 [93] 氨 干净沉积物加标 淡水贻贝 96 h、10 d 生长量 [94] Cd 干净沉积物加标 铜锈环棱螺 21 d 生物累积、抗氧化酶活性 [95] 五氯酚 干净沉积物加标 淡水单孔蚓 96 h、10 d、14 d、
21 d、28 d存活数、个体体重、体表损伤情况 [96] 重金属 受污染沉积物 河蚬 60 d 软体肌肉组织重金属含量 [97] 鱼类 Zn、Cd 干净沉积物加标 泥鳅 21 d 死亡率、体重变化、渗血率 [45] 四氧化三铁
纳米颗粒干净沉积物加标 斑马鱼胚胎 96 hpf 胚胎发育、氧化应激水平 [58] 综合毒性 污染沉积物 斑马鱼胚胎 5 d 死亡率、基因表达 [82] 汞 受污染沉积物 青鳉鱼胚胎和仔鱼 24 h、48 h、
96 h 、21 d仔鱼畸形率和死亡率、
胚胎孵化率和孵化时间、
胚胎畸形率和胚胎死亡率[98] 农药 干净沉积物加标 太阳鱼、斑马鱼、
食蚊鱼、麦穗鱼96 h 死亡率 [99] 综合毒性 受污染沉积物 斑马鱼胚胎 96 h 致畸性、遗传毒性等 [100] -
[1] WANG Y W, LI X M, LI A, et al. Effect of municipal sewage treatment plant effluent on bioaccumulation of polychlorinated biphenyls and polybrominated diphenyl ethers in the recipient water [J]. Environmental Science & Technology, 2007, 41(17): 6026-6032. [2] 王杜珈, 何帅, 周小霞. 污水处理厂不同单元工艺水中重金属及其纳米颗粒的分布 [J]. 环境科学, 2021, 42(7): 3358-3365. WANG D J, HE S, ZHOU X X. Distribution of heavy metals and their corresponding nanoparticles in different treatment unit processes in the sewage treatment plant [J]. Environmental Science, 2021, 42(7): 3358-3365(in Chinese).
[3] MA Q L, YAO L A, GUO Q W, et al. Long-term impact of accidental pollution on the distribution and risks of metals and metalloids in the sediment of the Longjiang River, China [J]. Environmental Science and Pollution Research International, 2021, 28(2): 1889-1900. doi: 10.1007/s11356-020-10505-9 [4] ZHAO X M, YAO L A, MA Q L, et al. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident [J]. Chemosphere, 2018, 194: 107-116. doi: 10.1016/j.chemosphere.2017.11.127 [5] QU J H, MENG X L, YE X Q, et al. Characteristic variation and original analysis of emergent water source pollution accidents in China between 1985 and 2013 [J]. Environmental Science and Pollution Research International, 2016, 23(19): 19675-19685. doi: 10.1007/s11356-016-7164-5 [6] 师荣光, 周启星, 蔡彦明, 等. 天津郊区土-水界面污染流多环芳烃的污染特征及来源解析 [J]. 环境科学学报, 2010, 30(4): 874-881. SHI R G, ZHOU Q X, CAI Y M, et al. Contamination characteristics and source analyses of PAHs in contaminated flows from soil-water interfaces of Tianjin Suburban Areas, China [J]. Acta Scientiae Circumstantiae, 2010, 30(4): 874-881(in Chinese).
[7] 赵建亮, 应光国, 魏东斌, 等. 水体和沉积物中毒害污染物的生态风险评价方法体系研究进展 [J]. 生态毒理学报, 2011, 6(6): 577-588. ZHAO J L, YING G G, WEI D B, et al. Ecological risk assessment methodology of toxic pollutants in surface water and sediments: A review [J]. Asian Journal of Ecotoxicology, 2011, 6(6): 577-588(in Chinese).
[8] 郎庆成, 张玲, 赵斌, 等. 重金属污染事件应急处理技术探讨: 以广西龙江镉污染事件为例 [J]. 再生资源与循环经济, 2012, 5(3): 39-40. LANG Q C, ZHANG L, ZHAO B, et al. Analysis on emergency management of heavy metal pollution incidents: A case study on Guangxi Longjiang cadmium pollution [J]. Recyclable Resources and Circular Economy, 2012, 5(3): 39-40(in Chinese).
[9] 邴永鑫, 卓琼芳, 黄大伟, 等. 某尾矿库泄漏次生突发水环境锑污染事件的应急处置 [J]. 环境工程学报, 2021, 15(9): 2888-2894. BING Y X, ZHUO Q F, HUANG D W, et al. Emergency disposal of a sudden water environmental accident with antimony pollution caused by leakage of tailings pond [J]. Chinese Journal of Environmental Engineering, 2021, 15(9): 2888-2894(in Chinese).
[10] 陈思莉, 黄大伟, 张政科, 等. 流域突发水污染事件应急处置工程削污技术 [J]. 环境工程学报, 2021, 15(7): 2233-2238. CHEN S L, HUANG D W, ZHANG Z K, et al. Pollution reduction technologies for emergent water pollution disposal in river basins [J]. Chinese Journal of Environmental Engineering, 2021, 15(7): 2233-2238(in Chinese).
[11] 卓琼芳, 许振成, 虢清伟, 等. 聚铝混凝沉淀物含镉絮体稳定性评估[J]. 中国环境科学, 2013, 33(S1): 245-248. ZHUO Q F, XU Z C, GUO Q W, et al. Estimation of the stability of cadmium flocs[J]. China Environmental Science, 2013, 33(Sup 1): 245-248(in Chinese).
[12] 柳王荣, 虢清伟, 杨仁斌, 等. 镉污染应急处置含镉絮体稳定性实验研究 [J]. 环境科学, 2013, 34(5): 1797-1801. LIU W R, GUO Q W, YANG R B, et al. Experimental studies on stability of flocs from cadmium pollution emergency treatment [J]. Environmental Science, 2013, 34(5): 1797-1801(in Chinese).
[13] LI X M, PENG W H, JIANG Y Y, et al. The Daphnia magna role to predict the cadmium toxicity of sediment: Bioaccumlation and biomarker response [J]. Ecotoxicology and Environmental Safety, 2017, 138: 206-214. doi: 10.1016/j.ecoenv.2017.01.002 [14] BROOKS B W, TURNER P K, STANLEY J K, et al. Waterborne and sediment toxicity of fluoxetine to select organisms [J]. Chemosphere, 2003, 52(1): 135-142. doi: 10.1016/S0045-6535(03)00103-6 [15] YI X Y, LI H Z, MA P, et al. Identifying the causes of sediment-associated toxicity in urban waterways in South China: Incorporating bioavailability-based measurements into whole-sediment toxicity identification evaluation [J]. Environmental Toxicology and Chemistry, 2015, 34(8): 1744-1750. doi: 10.1002/etc.2970 [16] CAIRNS M A, NEBEKER A V, GAKSTATTER J H, et al. Toxicity of copper-spiked sediments to freshwater invertebrates [J]. Environmental Toxicology and Chemistry, 1984, 3(3): 435-445. doi: 10.1002/etc.5620030308 [17] PICONE M, BERGAMIN M, LOSSO C, et al. Assessment of sediment toxicity in the Lagoon of Venice (Italy) using a multi-species set of bioassays [J]. Ecotoxicology and Environmental Safety, 2016, 123: 32-44. doi: 10.1016/j.ecoenv.2015.09.002 [18] SIMPSON S L, CAMPANAO, HO K T. Marine ecotoxicology [M]. Academic Press: San Diego, USA, 2016: 199-237. [19] 范成新, 刘敏, 王圣瑞, 等. 近20年来我国沉积物环境与污染控制研究进展与展望 [J]. 地球科学进展, 2021, 36(4): 346-374. FAN C X, LIU M, WANG S R, et al. Research progress and prospect of sediment environment and pollution control in China in recent 20 years [J]. Advances in Earth Science, 2021, 36(4): 346-374(in Chinese).
[20] OLIFF W D, BERRISFORD C D, TURNER W D, et al. The ecology and chemistry of sandy beaches and nearshore submarine sediments of Natal-Ⅱ: Pollution criteria for nearshore sediments of the Natal coast [J]. Water Research, 1967, 1(2): 131-146. doi: 10.1016/0043-1354(67)90080-2 [21] WOODIN S A. Polychaete abundance patterns in a marine soft-sediment environment: The importance of biological interactions [J]. Ecological Monographs, 1974, 44(2): 171-187. doi: 10.2307/1942310 [22] BURTON G A. Assessing the toxicity of freshwater sediments [J]. Environmental Toxicology and Chemistry, 1991, 10(12): 1585-1627. doi: 10.1002/etc.5620101204 [23] BURTON A G, PITT R, CLARK S. The role of traditional and novel toxicity test methods in assessing stormwater and sediment contamination [J]. Critical Reviews in Environmental Science and Technology, 2000, 30(4): 413-447. doi: 10.1080/10643380091184228 [24] BRACK W. Effect-directed analysis: A promising tool for the identification of organic toxicants in complex mixtures? [J]. Analytical and Bioanalytical Chemistry, 2003, 377(3): 397-407. doi: 10.1007/s00216-003-2139-z [25] U S. EPA (United States Environmental Protection Agency). Sediment Toxicity Identification Evaluation (TIE) Phase Ⅰ Ⅱ and Ⅲ Guidance Document[S]. Washington DC: Office of Water, Office of Science and Technology, EPA/600/R-07/080, 2007. [26] BRACK W, AIT-AISSA S, BURGESS R M, et al. Effect-directed analysis supporting monitoring of aquatic environments—An in-depth overview [J]. Science of the Total Environment, 2016, 544: 1073-1118. doi: 10.1016/j.scitotenv.2015.11.102 [27] 曲广波, 史建波, 江桂斌. 效应引导的污染物分析与识别方法 [J]. 化学进展, 2011, 23(11): 2389-2398. QU G B, SHI J B, JIANG G B. Development and application of effect-directed analysis in environmental research [J]. Progress in Chemistry, 2011, 23(11): 2389-2398(in Chinese).
[28] 马千驰, 刘艳娜, 史建波, 等. 生物效应导向的污染物分析研究新进展 [J]. 中国科学:化学, 2018, 48(10): 1195-1206. doi: 10.1360/N032018-00092 MA Q C, LIU Y N, SHI J B, et al. Effect-directed analysis in environment research: Current status and future challenges [J]. Scientia Sinica Chimica, 2018, 48(10): 1195-1206(in Chinese). doi: 10.1360/N032018-00092
[29] 王子健, 骆坚平, 查金苗. 水体沉积物毒性鉴别与评价研究进展 [J]. 环境污染与防治, 2009, 31(12): 35-41. doi: 10.3969/j.issn.1001-3865.2009.12.023 WANG Z J, LUO J P, ZHA J M. A review on progress of sediment toxicity identification and evaluation [J]. Environmental Pollution & Control, 2009, 31(12): 35-41(in Chinese). doi: 10.3969/j.issn.1001-3865.2009.12.023
[30] POSTHUMA L, SUTER G W, TRAAS T P. Species sensitivity distributions in ecotoxicology[M]. Lewis Publishers: Boca Raton, USA, 2002, 3-10. [31] HOPE B K, CLARKSON J R. A strategy for using weight-of-evidence methods in ecological risk assessments [J]. Human and Ecological Risk Assessment:An International Journal, 2014, 20(2): 290-315. doi: 10.1080/10807039.2013.781849 [32] 曾勇, 孙霄, 赖雨薇, 等. 基于物种敏感性分布的多环芳烃水生态系统风险评价方法与应用 [J]. 生态毒理学报, 2020, 15(5): 235-243. ZENG Y, SUN X, LAI Y W, et al. Aquatic ecosystem risk assessment of polycyclic aromatic hydrocarbons based on species sensitivity distribution [J]. Asian Journal of Ecotoxicology, 2020, 15(5): 235-243(in Chinese).
[33] 蒋宇霞, 刘有胜, 应光国. 沉积物质量综合评价及应用证据权重法的案例分析 [J]. 生态毒理学报, 2015, 10(3): 71-82. JIANG Y X, LIU Y S, YING G G. Integrated sediment quality assessment: A case study based on weight of evidence approach [J]. Asian Journal of Ecotoxicology, 2015, 10(3): 71-82(in Chinese).
[34] U S EPA (United States Environmental Protection Agency). Guidelines for ecological risk assessment[S]. EPA/630/R-95/002F, 1998. [35] Science Advisory Board for Contaminated Sites in British Columbia. Guidance for a weight of evidence approach in conducting detailed ecological risk assessments (DERAs) in British Columbia[S]. Bellevue: Exponent, 2010. [36] Environment Agency. Ecological Risk Assessment: A public consultation on a framework and methods for assessing harm to ecosystems from contaminants in soil[S]. Bristol: Environment Agency, 2003. [37] SMITH S L, MACDONALD D D, KEENLEYSIDE K A, et al. A preliminary evaluation of sediment quality assessment values for freshwater ecosystems [J]. Journal of Great Lakes Research, 1996, 22(3): 624-638. doi: 10.1016/S0380-1330(96)70985-1 [38] CHAPMAN P M. Sediment quality criteria from the sediment quality triad: An example [J]. Environmental Toxicology and Chemistry, 1986, 5(11): 957-964. doi: 10.1002/etc.5620051104 [39] BURTON J A. Sediment quality criteria in use around the world [J]. Limnology, 2002, 3(2): 65-76. doi: 10.1007/s102010200008 [40] 钟文珏, 曾毅, 祝凌燕. 水体沉积物质量基准研究现状 [J]. 生态毒理学报, 2013, 8(3): 285-294. doi: 10.7524/AJE.1673-5897.20111113003 ZHONG W J, ZENG Y, ZHU L Y. Current research status of sediment quality criteria [J]. Asian Journal of Ecotoxicology, 2013, 8(3): 285-294(in Chinese). doi: 10.7524/AJE.1673-5897.20111113003
[41] ZHU L, LIU J W, XU S G, et al. Deposition behavior, risk assessment and source identification of heavy metals in reservoir sediments of Northeast China [J]. Ecotoxicology and Environmental Safety, 2017, 142: 454-463. doi: 10.1016/j.ecoenv.2017.04.039 [42] 曾毅, 钟文珏, 祝凌燕, 等. 太湖地区全沉积物毒性识别评估研究 [J]. 中国科学:化学, 2012, 42(8): 1234-1241. doi: 10.1360/032011-859 ZENG Y, ZHONG W J, ZHU L Y, et al. Toxicity identification evaluation(TIE) on the whole sediments collected from Taihu Lake, China [J]. Scientia Sinica Chimica, 2012, 42(8): 1234-1241(in Chinese). doi: 10.1360/032011-859
[43] 熊捷迁, 弓晓峰, 江良, 等. 鄱阳湖水体沉积物中Zn、Cd对底栖生物的毒性效应及基准验证 [J]. 湖泊科学, 2021, 33(6): 1687-1700. doi: 10.18307/2021.0607 XIONG J Q, GONG X F, JIANG L, et al. Toxic effects of zinc and cadmium on the benthic organisms in sediments of Lake Poyang and verification of quality guideline [J]. Journal of Lake Sciences, 2021, 33(6): 1687-1700(in Chinese). doi: 10.18307/2021.0607
[44] 王利娜, 周俊丽, 赵艳芳, 等. 海河流域中部表层沉积物中重金属分布特征及污染评价 [J]. 水资源保护, 2021, 37(5): 147-152. doi: 10.3880/j.issn.1004-6933.2021.05.022 WANG L N, ZHOU J L, ZHAO Y F, et al. Distribution characteristics and pollution assessment of heavy metals in the surface sediments in the middle of Haihe River Basin [J]. Water Resources Protection, 2021, 37(5): 147-152(in Chinese). doi: 10.3880/j.issn.1004-6933.2021.05.022
[45] 布吉红, 陈辉辉, 许宜平, 等. 辽河表层沉积物重金属生态风险与综合毒性表征 [J]. 生态毒理学报, 2014, 9(1): 24-34. doi: 10.7524/AJE.1673-5897.20130117001 BU J H, CHEN H H, XU Y P, et al. Ecological risk of interstitial water heavy metals and toxicity characterization of surface sediments in branches of Liaohe River [J]. Asian Journal of Ecotoxicology, 2014, 9(1): 24-34(in Chinese). doi: 10.7524/AJE.1673-5897.20130117001
[46] 徐泽锋, 赵晓丽, 赵建, 等. 长江流域沉积物重金属污染特征及优控因子筛选[J]. 中国海洋大学学报(自然科学版), 2020, 50(S1): 101-109. XU Z F, ZHAO X L, ZHAO J, et al. Inspiration for priority control of heavy metals in sediments of Yangtze River Basin[J]. Periodical of Ocean University of China, 2020, 50(Sup 1): 101-109(in Chinese).
[47] OECD(Organization for Economic Co-operation and Development). OECD guides for the testing of chemicals, sediment-water chironomid toxicity test using spiked sediment 218[S]. 2004. [48] OECD. Test No. 225: Sediment-water Lumbriculus toxicity test using spiked sediment[S]. 2007. [49] OECD. Test No. 233: Sediment-water Chironomid life-cycle toxicity test using spiked water or spiked sediment[S]. 2010. [50] ZHANG Y F, SPADARO D A, KING J J, et al. Improved prediction of sediment toxicity using a combination of sediment and overlying water contaminant exposures [J]. Environmental Pollution, 2020, 266: 115187. doi: 10.1016/j.envpol.2020.115187 [51] 裴舟韬, 徐柔柔, 高月香, 等. 城市黑臭河道治理前后沉积物对大型溞的毒性变化监测与评价 [J]. 环境监控与预警, 2020, 12(4): 6-11. PEI Z T, XU R R, GAO Y X, et al. Toxicity changes of urban black and odorous river sediment on Daphnia magna before and after remediation [J]. Environmental Monitoring and Forewarning, 2020, 12(4): 6-11(in Chinese).
[52] MASSEI R, HOLLERT H, KRAUSS M, et al. Toxicity and neurotoxicity profiling of contaminated sediments from Gulf of Bothnia (Sweden): A multi-endpoint assay with Zebrafish embryos [J]. Environmental Sciences Europe, 2019, 31: 8. doi: 10.1186/s12302-019-0188-y [53] 布吉红, 陈辉辉, 许宜平, 等. 河流表层沉积物活体毒性甄别和毒性因子初探 [J]. 环境科学学报, 2013, 33(10): 2885-2891. BU J H, CHEN H H, XU Y P, et al. Exploration of toxicity factor and in vivo toxicity identification evaluation of surface sediments [J]. Acta Scientiae Circumstantiae, 2013, 33(10): 2885-2891(in Chinese).
[54] 韩雨薇, 张彦峰, 陈萌, 等. 沉积物中重金属Pb和Cd对河蚬的毒性效应研究 [J]. 生态毒理学报, 2015, 10(4): 129-137. doi: 10.7524/AJE.1673-5897.20150120003 HAN Y W, ZHANG Y F, CHEN M, et al. Toxicity of Pb/Cd-spiked freshwater sediments to Corbicula fluminea [J]. Asian Journal of Ecotoxicology, 2015, 10(4): 129-137(in Chinese). doi: 10.7524/AJE.1673-5897.20150120003
[55] YANG J H, XIE Y W, JEPPE K, et al. Sensitive community responses of microbiota to copper in sediment toxicity test [J]. Environmental Toxicology and Chemistry, 2018, 37(2): 599-608. doi: 10.1002/etc.3980 [56] BIHANIC F L, PERRICHON P, LANDI L, et al. Development of a reference artificial sediment for chemical testing adapted to the MELA sediment contact assay [J]. Environmental Science and Pollution Research International, 2014, 21(24): 13689-13702. doi: 10.1007/s11356-014-2607-3 [57] U S EPA. Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates[R]. 1994. [58] 文婷, 隋彦伯, 周雅娜, 等. 人工沉积物中四氧化三铁纳米颗粒对斑马鱼胚胎发育和氧化应激水平的影响 [J]. 生态毒理学报, 2021, 16(6): 191-200. WEN T, SUI Y B, ZHOU Y N, et al. Effects of Fe3O4 nanoparticles on development and oxidative stress in zebrafish embryo exposed to artificial sediment [J]. Asian Journal of Ecotoxicology, 2021, 16(6): 191-200(in Chinese).
[59] 赵中华, 张路, 于鑫. 水体沉积物毒性的评价方法 [J]. 环境与健康杂志, 2007, 24(5): 360-363. doi: 10.3969/j.issn.1001-5914.2007.05.034 ZHAO Z H, ZHANG L, YU X. Methods for sediment toxicity evaluation [J]. Journal of Environment and Health, 2007, 24(5): 360-363(in Chinese). doi: 10.3969/j.issn.1001-5914.2007.05.034
[60] 刘国光, 王莉霞, 徐海娟, 等. 水生生物毒性试验研究进展 [J]. 环境与健康杂志, 2004, 21(6): 419-421. doi: 10.3969/j.issn.1001-5914.2004.06.033 LIU G G, WANG L X, XU H J, et al. The progress of aquatic toxicity test [J]. Journal of Environment and Health, 2004, 21(6): 419-421(in Chinese). doi: 10.3969/j.issn.1001-5914.2004.06.033
[61] 邓惜汝, 鲜啟鸣, 孙成. 林丹、毒死蜱对淡水藻类毒性效应的比较研究 [J]. 生态环境学报, 2014, 23(3): 472-476. doi: 10.3969/j.issn.1674-5906.2014.03.016 DENG X R, XIAN Q M, SUN C. Toxic effects of Lindane and Chlorpyrifos on freshwater algae [J]. Ecology and Environmental Sciences, 2014, 23(3): 472-476(in Chinese). doi: 10.3969/j.issn.1674-5906.2014.03.016
[62] MOREIRA S M, MOREIRA-SANTOS M, GUILHERMINO L, et al. Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability [J]. Enzyme and Microbial Technology, 2006, 38(1/2): 135-141. [63] ZHANG L J, YING G G, CHEN F, et al. Development and application of whole-sediment toxicity test using immobilized freshwater microalgae Pseudokirchneriella subcapitata [J]. Environmental Toxicology and Chemistry, 2012, 31(2): 377-386. doi: 10.1002/etc.734 [64] PEI Z T, XU R R, LIU H Y, et al. Development and application of a novel whole sediment toxicity test using immobilized sediment and Chlorella vulgaris [J]. Ecotoxicology and Environmental Safety, 2020, 189: 109979. doi: 10.1016/j.ecoenv.2019.109979 [65] 张艳, 郑琳, 陈碧鹃, 等. 悬浮物对浮游植物和浮游动物的急性毒性效应 [J]. 渔业科学进展, 2014, 35(2): 16-21. doi: 10.3969/j.issn.1000-7075.2014.02.003 ZHANG Y, ZHENG L, CHEN B J, et al. Acute toxicological effects of suspended solids on phytoplankton and zooplankton [J]. Progress in Fishery Sciences, 2014, 35(2): 16-21(in Chinese). doi: 10.3969/j.issn.1000-7075.2014.02.003
[66] NEBEKER A V, CAIRNS M A, GAKSTATTER J H, et al. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates [J]. Environmental Toxicology and Chemistry, 1984, 3(4): 617-630. doi: 10.1002/etc.5620030412 [67] 李纯厚, 林燕棠, 杨美兰, 等. 南方某港疏浚淤泥溶出液对海洋浮游动物的毒性实验 [J]. 热带海洋, 1998, 17(1): 71-77. LI C H, LIN Y T, YANG M L, et al. Toxicity tests of sludge solution from a port of South China Sea to marine zooplankton [J]. Tropic Oceanology, 1998, 17(1): 71-77(in Chinese).
[68] 范文宏, 段勇, 林爽, 等. 水体沉积物结合态镉对大型溞(Daphnia magna)的生物毒性研究 [J]. 生态毒理学报, 2009, 4(4): 544-551. FAN W H, DUAN Y, LIN S, et al. The biotoxicity of cadmium associated with fresh-water sediment to the Daphnia magna [J]. Asian Journal of Ecotoxicology, 2009, 4(4): 544-551(in Chinese).
[69] WU M C, DAHMS H U, LIU C H, et al. Estuarine sediment toxicity testing with an indigenous subtropical amphipod [J]. Marine Pollution Bulletin, 2021, 162: 111797. doi: 10.1016/j.marpolbul.2020.111797 [70] 沈洪艳, 张红燕, 刘丽, 等. 淡水沉积物中重金属对底栖生物毒性及其生物有效性研究 [J]. 环境科学学报, 2014, 34(1): 272-280. SHEN H Y, ZHANG H Y, LIU L, et al. Bio-Toxicity and bioavailability of metal-spiked freshwater sediments to benthic invertebrates [J]. Acta Scientiae Circumstantiae, 2014, 34(1): 272-280(in Chinese).
[71] 邓鑫, 周祥, 刘志红, 等. Cd2+对伸展摇蚊及黄色羽摇蚊幼虫的毒性效应研究 [J]. 农业环境科学学报, 2015, 34(9): 1640-1645. doi: 10.11654/jaes.2015.09.002 DENG X, ZHOU X, LIU Z H, et al. Toxic effects of cadmium on larvae of Chironomus riparius and Chironomus flaviplumus [J]. Journal of Agro-Environment Science, 2015, 34(9): 1640-1645(in Chinese). doi: 10.11654/jaes.2015.09.002
[72] MARTINEZ E A, MOORE B C, SCHAUMLOFFEL J, et al. Morphological abnormalities in Chironomus tentans exposed to cadmium—and copper-spiked sediments [J]. Ecotoxicology and Environmental Safety, 2003, 55(2): 204-212. doi: 10.1016/S0147-6513(02)00136-7 [73] ECHOLS B S. Toxicity evaluation of Louisiana nearshore marsh sediments following the Deepwater Horizon oil spill [J]. Marine Pollution Bulletin, 2021, 168: 112380. doi: 10.1016/j.marpolbul.2021.112380 [74] BOUR A, HAARR A, KEITER S, et al. Environmentally relevant microplastic exposure affects sediment-dwelling bivalves [J]. Environmental Pollution, 2018, 236: 652-660. doi: 10.1016/j.envpol.2018.02.006 [75] HALLARE A V, SEILER T B, HOLLERT H. The versatile, changing, and advancing roles of fish in sediment toxicity assessment—a review [J]. Journal of Soils and Sediments, 2011, 11(1): 141-173. doi: 10.1007/s11368-010-0302-7 [76] CAMARGO J B D A, CRUZ A C F, CAMPOS B G, et al. Use, development and improvements in the protocol of whole-sediment toxicity identification evaluation using benthic copepods [J]. Marine Pollution Bulletin, 2015, 91(2): 511-517. doi: 10.1016/j.marpolbul.2014.10.015 [77] 俞云鹏. 湛江近海沉积物PCBs对斑马鱼肠组织结构、微生物和细胞因子的影响[D]. 湛江: 广东海洋大学, 2018. YU Y P. Effect of PCBs extracted from sediments in Zhanjiang offshore on histological structure, microflora and cytokines of zebrafish intestine[D]. Zhanjiang: Guangdong Ocean University, 2018(in Chinese).
[78] 赵艳民, 张雷, 秦延文, 等. 镉“加标”沉积物对泥鳅(Misgurnus anguillicaudatus)生物毒性研究 [J]. 生态毒理学报, 2011, 6(1): 80-86. ZHAO Y M, ZHANG L, QIN Y W, et al. Bio-toxicity of cadmium-spiked sediments to Misgurnus anguillicaudatus [J]. Asian Journal of Ecotoxicology, 2011, 6(1): 80-86(in Chinese).
[79] 钟文珏, 张瑜, 祝凌燕. 沉积物中芘对淡水底栖动物的急慢性毒性效应 [J]. 中国环境科学, 2017, 37(7): 2765-2772. doi: 10.3969/j.issn.1000-6923.2017.07.043 ZHONG W J, ZHANG Y, ZHU L Y. Acute and chronic toxic effects of Pyrene on the benthic organisms in sediments [J]. China Environmental Science, 2017, 37(7): 2765-2772(in Chinese). doi: 10.3969/j.issn.1000-6923.2017.07.043
[80] BETTINETTI R, GIAREI C, PROVINI A. Chemical analysis and sediment toxicity bioassays to assess the contamination of the River Lambro (Northern Italy) [J]. Archives of Environmental Contamination and Toxicology, 2003, 45(1): 72-78. doi: 10.1007/s00244-002-0126-6 [81] 韩雨薇, 钟文珏, 张彦峰, 等. 沉积物中Pb和Cd对泥鳅的毒性效应及其基准阈值的验证 [J]. 环境科学研究, 2015, 28(7): 1078-1084. HAN Y W, ZHONG W J, ZHANG Y F, et al. Toxicities of Pb/Cd-spiked freshwater sediments to Misgurnus anguillicaudatus and assessment of Pb/Cd sediment quality guidelines [J]. Research of Environmental Sciences, 2015, 28(7): 1078-1084(in Chinese).
[82] BOULANGER E, BARST B D, ALLOY M M, et al. Assessment of environmentally contaminated sediment using a contact assay with early life stage zebrafish (Danio rerio) [J]. Science of the Total Environment, 2019, 659: 950-962. doi: 10.1016/j.scitotenv.2018.12.265 [83] 王子健, 马梅, 杜青, 等. 乐安江鄱阳湖河口沉积物样品生态效应的初步评价 [J]. 环境化学, 1993, 12(5): 342-346. WANG Z J, MA M, DU Q, et al. Preliminary ecotoxicological assessment of sediment samples from lean river estuary near Poyang Lake [J]. Environmental Chemistry, 1993, 12(5): 342-346(in Chinese).
[84] 马梅, 童中华, 王怀瑾, 等. 乐安江水和沉积物样品的生物毒性评估 [J]. 环境化学, 1997, 16(2): 167-171. MA M, TONG Z H, WANG H J, et al. Assessing the biological toxicity of water and sediment from lean river [J]. Environmental Chemistry, 1997, 16(2): 167-171(in Chinese).
[85] 王翔, 聂湘平, 黄卓尔, 等. 广州城市河涌沉积物浸出液对水生生物的急性毒性 [J]. 生态毒理学报, 2006, 1(2): 180-185. WANG X, NIE X P, HUANG Z E, et al. Toxicity of the lixivium of the sediment from 6 streams of Guangzhou to aquatic organisms [J]. Asian Journal of Ecotoxicology, 2006, 1(2): 180-185(in Chinese).
[86] MORAN P W, NOWELL L H, KEMBLE N E, et al. Influence of sediment chemistry and sediment toxicity on macroinvertebrate communities across 99 wadable streams of the Midwestern USA [J]. Science of the Total Environment, 2017, 599/600: 1469-1478. doi: 10.1016/j.scitotenv.2017.05.035 [87] 修瑞琴, 许永香, 高世荣, 等. 环境生物测试技术对沉积物的毒性评价研究 [J]. 卫生研究, 1994, 23(1): 14-17. doi: 10.19813/j.cnki.weishengyanjiu.1994.01.005 XIU R Q, XU Y X, GAO S R, et al. Toxicity evaluation of sediments by environmental bioassay techniques [J]. Journal of Hygiene Research, 1994, 23(1): 14-17(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.1994.01.005
[88] 晁敏, 伦凤霞, 王云龙, 等. 长江口南支沉积物对卤虫的毒性效应研究 [J]. 生态环境学报, 2010, 19(5): 1020-1024. doi: 10.3969/j.issn.1674-5906.2010.05.003 CHAO M, LUN F X, WANG Y L, et al. Study on the sediments toxicity of south branch of Yangtze River Estuary to Artemia salina [J]. Ecology and Environmental Sciences, 2010, 19(5): 1020-1024(in Chinese). doi: 10.3969/j.issn.1674-5906.2010.05.003
[89] 李潇, 李丹, 罗艺璇, 等. 沉积物中无机硒对霍甫水丝蚓的生物效应研究 [J]. 生态毒理学报, 2021, 16(3): 208-217. LI X, LI D, LUO Y X, et al. Biological effects of inorganic selenium in sediments on Limnodrilus hoffmeisteri [J]. Asian Journal of Ecotoxicology, 2021, 16(3): 208-217(in Chinese).
[90] 周珊珊, 董敏峰, 张莉娜. 沉积物中的得克隆在中华圆田螺体内的积累及氧化应激效应 [J]. 浙江工业大学学报, 2019, 47(4): 457-461. ZHOU S S, DONG M F, ZHANG L N. Bioaccumulation and oxidative stress of sediment-bounded dechloraneplus in Cipangopaludina chinensis [J]. Journal of Zhejiang University of Technology, 2019, 47(4): 457-461(in Chinese).
[91] AMATO E D, MARASINGHE WADIGE C P M, TAYLOR A M, et al. Field and laboratory evaluation of DGT for predicting metal bioaccumulation and toxicity in the freshwater bivalve Hyridella australis exposed to contaminated sediments [J]. Environmental Pollution, 2018, 243: 862-871. doi: 10.1016/j.envpol.2018.09.004 [92] ZHANG Y F, HAN Y W, YANG J X, et al. Toxicities and risk assessment of heavy metals in sediments of Taihu Lake, China, based on sediment quality guidelines [J]. Journal of Environmental Sciences, 2017, 62: 31-38. doi: 10.1016/j.jes.2017.08.002 [93] GEFFARD O, GEFFARD A, HIS E, et al. Assessment of the bioavailability and toxicity of sediment-associated polycyclic aromatic hydrocarbons and heavy metals applied to Crassostrea gigas embryos and larvae [J]. Marine Pollution Bulletin, 2003, 46(4): 481-490. doi: 10.1016/S0025-326X(02)00451-4 [94] NEWTON T J, ALLRAN J W, O'DONNELL J A, et al. Effects of ammonia on juvenile unionid mussels (Lampsilis cardium) in laboratory sediment toxicity tests [J]. Environmental Toxicology and Chemistry, 2003, 22(11): 2554-2560. doi: 10.1897/02-342 [95] 龙奕, 刘珊珊, 王萌, 等. 纳米Al2O3和Cd联合暴露对铜锈环棱螺体内Cd的生物积累和抗氧化酶活性的影响 [J]. 生态毒理学报, 2015, 10(2): 216-223. LONG Y, LIU S S, WANG M, et al. Effects of Cd and Al2O3-NPs co-exposure on bioaccumulation of Cd and antioxidase enzyme activities in Bellamya aeroginosa [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 216-223(in Chinese).
[96] 钟文珏, 张瑜, 韩雨薇, 等. 沉积物中五氯酚对底栖生物的急慢性毒性效应 [J]. 生态毒理学报, 2015, 10(1): 297-304. ZHONG W J, ZHANG Y, HAN Y W, et al. Acute and chronic toxic effects of pentachlorophenol on the benthic organisms in sediments [J]. Asian Journal of Ecotoxicology, 2015, 10(1): 297-304(in Chinese).
[97] 丁园, 赵帼平, 刘运坤, 等. 污泥重金属在河蚬体内富集及毒性研究 [J]. 江西农业大学学报, 2014, 36(6): 1393-1397. DING Y, ZHAO G P, LIU Y K, et al. Accumulation and toxicity characteristics of heavy metal in sewage sludge contained in Corbicula fluminea [J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(6): 1393-1397(in Chinese).
[98] 林晶, 闫海鱼, 荆敏, 等. 河流汞污染对青鳉鱼早期发育的毒性影响 [J]. 生态学杂志, 2020, 39(5): 1706-1714. doi: 10.13292/j.1000-4890.202005.002 LIN J, YAN H Y, JING M, et al. Toxic effects of river mercury contamination on early development of Oryzias latipes [J]. Chinese Journal of Ecology, 2020, 39(5): 1706-1714(in Chinese). doi: 10.13292/j.1000-4890.202005.002
[99] 赵颖. 淡水鱼类对3种农药的敏感性分布(SSDs)初探[D]. 杭州: 浙江大学, 2013. ZHAO Y. Tentative exploration of sensitivity distribution (SSDs) on freshwater fish to 3 kinds of pesticides[D]. Hangzhou: Zhejiang University, 2013(in Chinese).
[100] BOEHLER S, STRECKER R, HEINRICH P, et al. Assessment of urban stream sediment pollutants entering estuaries using chemical analysis and multiple bioassays to characterise biological activities [J]. Science of The Total Environment, 2017, 593-594: 498-507. doi: 10.1016/j.scitotenv.2017.03.209