-
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)具有来源广、排放量大,且存在潜在致癌风险等特征,因此成为国内外广泛关注的有机污染物. 中国卫生统计数据表明,30年来,大气中PAHs污染增长迅速,同期中国肺癌的发生率也呈倍数增长[1]. 研究表明,中国室外PAHs污染造成的肺癌风险增量为1.6%,在极端高风险地区肺癌风险增量高达44%[2].
流行病学研究表明,呼吸暴露PAHs导致的人群肺癌风险与大气PAHs浓度水平密切相关[3]. 通常而言,大气环境中PAHs浓度水平显著低于职业暴露环境下的浓度水平,以往研究中基于高浓度建立的剂量-效应关系不适用于大气环境暴露的健康风险评估,因此应建立大气PAHs致癌风险与暴露量的定量关系. 当前研究中评估PAHs长期呼吸暴露的肺癌风险的常见方法为基于超额终生致癌风险(Incremental Lifetime Cancer Risk, ILCR)的概率风险模型. 然而风险评估结果存在较大不确定性,尽管相关参数取值的选择是基于大量调查分析,并选取致癌因子的95%置信区间上限来取值. 有研究进一步引入了人群归因模型(population Attributable Fraction, PAF)来对风险评估结果进行对比,以降低模型的不确定性. 如Hong等[4]采用该方法评估了亚洲典型国家(中国、日本、韩国等)的癌症风险水平,同时对比了采用ILCR和PAF两种模型估算的健康风险水平,并表明两者的评估结果呈现良好的线性关系. 此外,大气PAHs的致癌风险与排放源密切相关[5]. 主要排放源在区域的空间异质性分布极大的影响了PAHs的致癌风险分布,给区域尺度下人群的健康管理带来不确定性,尤其是快速城市化区域多污染排放源和人口分布的高度异质性导致城市尺度致癌风险分布空间差异加大. 目前已有研究探讨了大尺度PAHs的风险分布差异[2, 6-8]. 然而对于城市不同区域风险分布差异[9-10]的归因还需要进一步探讨,尤其是不同人群间的风险差异.
本研究以安徽省省会合肥市为案例开展大气PAHs浓度监测与呼吸暴露肺癌风险评价. 安徽近年来经历了快速的城市化过程,省会合肥市的人口和经济的快速增长导致典型的复合源排放特征[11]. 因此,针对该城市区域PAHs暴露肺癌风险分布差异,获取不同模型应用于城市尺度肺癌风险评估的不确定性,为城市尺度下健康风险综合管控提供科学依据.
基于PAF和ICLR模型的大气多环芳烃人体暴露肺癌风险评价:以合肥市为例
Lung cancer risk assessment of the exposure to atmospheric polycyclic aromatic hydrocarbons based on population attributable fraction and incremental lifetime cancer risk models: A case study in Hefei
-
摘要: 城市有机污染物排放引起的致癌风险是当前人群健康研究关注热点. 本研究以安徽省会合肥市为案例,以多环芳烃(PAHs)为研究对象,结合实地采样分析以及超额终生致癌风险模型(ILCR)和人群归因模型(PAF)对城市不同区域、季节、人群的致癌风险进行评估,并采用蒙特卡洛模型解析不同模型的致癌风险评估差异. 研究表明,合肥市大气PAHs暴露所引起的额外肺癌每百万人为9.47,ILCR与PAF模型模拟结果具有较好的一致性,而PAF模型的参数敏感性较高. 合肥城市PAHs的致癌风险的空间分布、季节变化以及人群分布都存在显著的空间异质性:城市中心道路交通高排放区和郊区农业活动强度大区域的致癌风险较高;秋冬PAHs的浓度水平较高导致较高致癌风险;室外活动频繁的成年人致癌风险高,儿童的风险易感性高. 因此,城市人群健康风险综合管控需要系统考虑不同污染排放源的分布差异.
-
关键词:
- 多环芳烃(PAHs) /
- 人群归因模型 /
- 超额终生致癌风险 /
- 暴露肺癌风险
Abstract: The cancer risk caused by exposure to atmospheric organic pollutants in cities has raised increasing global concern. However, the spatial characteristics of the cancer risk in cities remain largely unknown because there are large differences in the distribution of pollution source and population density. In this study, we analyzed the 16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) in the atmosphere in Hefei, the capital city of Anhui province, over one year period. We also estimated the lung cancer risk caused by exposure to atmospheric PAHs based on the population attributable fraction (PAF) and incremental lifetime cancer risk (ILCR) models. Results indicated that the average excess inhalation risk were 9.47 cancer cases per million people. The overall PAF value was 0.78‰, coinciding well with the ILCR value. The cancer risk at urban sites were noticeably higher than those at tourist area site and rural site. The cancer risk was higher in winter and autumn than those in summer and spring. Adults had higher risk of lung cancer than children and adolescents. -
表 1 终身致癌风险暴露模型参数
Table 1. Parameters for estimating the ICLR values
参数
Parameters少儿
Child青少年
Adolescent成人
Adult呼吸速率IR/(m3·h–1) 1.1±0.07 1.4±0.04 1.5±0.05 暴露时间ET/(h·d–1) 2.5±0.1 1.67±0.1 3.68±0.2 暴露频率EF/(d·a–1) 365 365 365 持续暴露时间ED/a 11 6 53 终身暴露时间AT/d 25550 25550 25550 体重(BW)/kg 19.0±6.28 47.3±7.30 60.8±3.97 CSF/(kg·d–1·mg–1) 3.9±1.8 3.9±1.8 3.9±1.8 表 2 不同国家和地区PAHs肺癌风险的PAF值对比(‰)
Table 2. Comparation of the PAF values in literatures among different countries and regions
国家/地区
Country/region采样点
Site样本数
Sample number采样时间
Sampling durationPAHs种类数
PAH numberPAF均值
Averaged PAF value参考文献
Reference中国 城镇和郊区 — 2003 16 16‰ [2] 中国 城镇和郊区 176 2012-2013 47 8.8‰ [19] 韩国 城镇和郊区 176 2012-2013 47 0.85‰ [19] 日本 城镇和郊区 176 2012-2013 47 0.38‰ [19] 北京 城镇和郊区 10 2013-2014 39 71‰ [20] 晋中 城镇和郊区 10 2013-2014 39 77‰ [20] 合肥 城镇和郊区 6 2019 16 0.78‰ 本研究 中国 郊区 114 2013 16 3.38‰ [21] 表 3 不同国家和地区PAHs肺癌风险的ILCR值对比
Table 3. Comparation of the ICLR values among different countries and regions
国家/地区
Country/region样本数
Sample number采样时间
Sampling durationPAHs种类数
PAH numberILCR 参考文献
Reference儿童
Child青少年
Adolescent成人
Adult北京 10 2013—2014 39 1.78×10−4 2.01×10−4 3.40×10−4 [21] 太原 16 2009—2010 15 1.74×10−6 — 7.95×10−6 [24] 环渤海 7258 2010—2019 7 2.70×10−5 2.40×10−5 1.88×10−5 [25] 广州 96 2010 16 3.03×10−6 — 2.92×10−6 [26] 合肥 6 2021 16 6.59×10−8 1.23×10−8 1.99×10−7 本研究 巴基斯坦 21 2021 16 1.40×10−5 4.76×10−6 2.58×10−5 [27] 坎普尔 24 2013—2014 16 2.08×10−5 — 3.57×10−5 [28] -
[1] 阿米拉, 耿柠波, 曹蓉, 等. 大气颗粒物中典型有机物的分析方法和污染特征研究进展 [J]. 环境化学, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204 A M L, GENG N B, CAO R, et al. Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter [J]. Environmental Chemistry, 2021, 40(12): 3774-3786(in Chinese). doi: 10.7524/j.issn.0254-6108.2020081204
[2] ZHANG Y X, TAO S, SHEN H Z, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21063-21067. doi: 10.1073/pnas.0905756106 [3] PETIT P, MAÎTRE A, PERSOONS R, et al. Lung cancer risk assessment for workers exposed to polycyclic aromatic hydrocarbons in various industries [J]. Environment International, 2019, 124: 109-120. doi: 10.1016/j.envint.2018.12.058 [4] HONG W J, JIA H L, MA W L, et al. Distribution, fate, inhalation exposure and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in some Asian countries [J]. Environmental Science & Technology, 2016, 50(13): 7163-7174. [5] 陈琳钰, 陈仙仙, 何欢, 等. 室内灰尘中多环芳烃及其衍生物的赋存与人体暴露研究进展 [J]. 环境化学, 2021, 40(2): 404-415. doi: 10.7524/j.issn.0254-6108.2020062304 CHEN L Y, CHEN X X, HE H, et al. Occurrence and human exposure of polycyclic aromatic hydrocarbons and their derivatives in indoor dust: A review of recent studies [J]. Environmental Chemistry, 2021, 40(2): 404-415(in Chinese). doi: 10.7524/j.issn.0254-6108.2020062304
[6] SHEN H Z, TAO S, LIU J F, et al. Global lung cancer risk from PAH exposure highly depends on emission sources and individual susceptibility [J]. Scientific Reports, 2014, 4: 6561. doi: 10.1038/srep06561 [7] SHRIVASTAVA M, LOU S J, ZELENYUK A, et al. Global long-range transport and lung cancer risk from polycyclic aromatic hydrocarbons shielded by coatings of organic aerosol [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(6): 1246-1251. doi: 10.1073/pnas.1618475114 [8] MORADI M, HUNG H, LI J, et al. Assessment of alkylated and unsubstituted polycyclic aromatic hydrocarbons in air in urban and semi-urban areas in Toronto, Canada [J]. Environmental Science & Technology, 2022, 56(5): 2959-2967. [9] 夏冰心, 吉正元, 韩新宇, 等. 玉溪市大气颗粒物中PAHs污染特征与健康风险评估 [J]. 环境化学, 2020, 39(8): 2093-2104. doi: 10.7524/j.issn.0254-6108.2019061002 XIA B X, JI Z Y, HAN X Y, et al. Pollution characteristics and health risk assessment of PAHs in atmospheric particulates in Yuxi City [J]. Environmental Chemistry, 2020, 39(8): 2093-2104(in Chinese). doi: 10.7524/j.issn.0254-6108.2019061002
[10] 董小艳, 王琼, 杨一兵, 等. 2017年春节期间北京市城区和郊区大气PM2.5及其中多环芳烃的污染特征 [J]. 环境化学, 2018, 37(10): 2191-2198. doi: 10.7524/j.issn.0254-6108.2017122503 DONG X Y, WANG Q, YANG Y B, et al. Characterization of ambient PM2.5 and PAHs during 2017 Spring Festival in urban and suburb areas of Beijing [J]. Environmental Chemistry, 2018, 37(10): 2191-2198(in Chinese). doi: 10.7524/j.issn.0254-6108.2017122503
[11] 夏琳琳, 魏建峰, 杨琦玲, 等. 安徽燃煤电厂多环芳烃的历史排放量及影响因素分析 [J]. 环境化学, 2022, 41(8): 2606-2613. doi: 10.7524/j.issn.0254-6108.2021041702 XIA L L, WEI J F, YANG Q L, et al. The historical emissions of polycyclic aromatic hydrocarbons(PAHs)from coal-fired power plants in Anhui and influencing factors [J]. Environmental Chemistry, 2022, 41(8): 2606-2613(in Chinese). doi: 10.7524/j.issn.0254-6108.2021041702
[12] CAI F X, WANG R W, CAI J W, et al. Investigation of the maturation effects on biomarker distributions in bituminous coals [J]. Organic Geochemistry, 2022, 173: 104496. doi: 10.1016/j.orggeochem.2022.104496 [13] WU C C, BAO L J, GUO Y, et al. Barbecue fumes: An overlooked source of health hazards in outdoor settings? [J]. Environmental Science & Technology, 2015, 49(17): 10607-10615. [14] ARMSTRONG B, HUTCHINSON E, UNWIN J, et al. Lung cancer risk after exposure to polycyclic aromatic hydrocarbons: A review and meta-analysis [J]. Environmental Health Perspectives, 2004, 112(9): 970-978. doi: 10.1289/ehp.6895 [15] GIBBS G W. Estimating residential polycyclic aromatic hydrocarbon (PAH) related lung cancer risks using occupational data [J]. The Annals of Occupational Hygiene, 1997, 41: 49-53. [16] WANG S B, JI Y Q, ZHAO J B, et al. Source apportionment and toxicity assessment of PM2.5-bound PAHs in a typical iron-steel industry city in northeast China by PMF-ILCR [J]. Science of the Total Environment, 2020, 713: 136428. doi: 10.1016/j.scitotenv.2019.136428 [17] HONG W J, JIA H L, YANG M, et al. Distribution, seasonal trends, and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in North China: A three-year case study in Dalian City [J]. Ecotoxicology and Environmental Safety, 2020, 196: 110526. doi: 10.1016/j.ecoenv.2020.110526 [18] WANG G Y, WANG Y, YIN W J, et al. Seasonal exposure to PM2.5-bound polycyclic aromatic hydrocarbons and estimated lifetime risk of cancer: A pilot study [J]. Science of the Total Environment, 2020, 702: 135056. doi: 10.1016/j.scitotenv.2019.135056 [19] 洪文俊. 亚洲五国大气土壤中PAHs分布特征及健康风险评价[D]. 大连: 大连海事大学, 2016. HONG W J. Air and soil distribution, transport and ecological risk of polycyclic aromatic hydrocarbons in five Asian countries[D]. Dalian: Dalian Maritime University, 2016 (in Chinese).
[20] 王蕊. 我国部分地区大气可吸入颗粒物中多环芳烃的初步研究[D]. 乌鲁木齐: 新疆大学, 2015. WANG R. The preliminary study of PM10-bound polycyclic aromatic hydrocarbons during winter and summer in some region, China[D]. Urumqi: Xinjiang University, 2015 (in Chinese).
[21] NIU L L, XU C, ZHOU Y T, et al. Tree bark as a biomonitor for assessing the atmospheric pollution and associated human inhalation exposure risks of polycyclic aromatic hydrocarbons in rural China [J]. Environmental Pollution, 2019, 246: 398-407. doi: 10.1016/j.envpol.2018.12.019 [22] SHEN H Z, HUANG Y, WANG R, et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions [J]. Environmental Science & Technology, 2013, 47(12): 6415-6424. [23] 赵旭辉, 史天哲, 马啸, 等. 江淮地区城市O3污染过程的非典型特征及其前体物来源分析 [J]. 环境化学, 2022, 41(3): 834-849. doi: 10.7524/j.issn.0254-6108.2021062401 ZHAO X H, SHI T Z, MA X, et al. Atypical characteristics of urban O3 pollution process and the source analysis of precursor pollutants in Yangtze-Huaihe Region [J]. Environmental Chemistry, 2022, 41(3): 834-849(in Chinese). doi: 10.7524/j.issn.0254-6108.2021062401
[24] XIA Z H, DUAN X L, TAO S, et al. Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China [J]. Environmental Pollution, 2013, 173: 150-156. doi: 10.1016/j.envpol.2012.10.009 [25] ZHANG X, WANG X L, ZHAO X L, et al. Using deterministic and probabilistic approaches to assess the human health risk assessment of 7 polycyclic aromatic hydrocarbons [J]. Journal of Cleaner Production, 2022, 331: 129811. [26] WANG W, HUANG M J, KANG Y, et al. Polycyclic aromatic hydrocarbons (PAHs) in urban surface dust of Guangzhou, China: Status, sources and human health risk assessment [J]. Science of the Total Environment, 2011, 409(21): 4519-4527. [27] AAMIR M, YIN S S, LIU Y X, et al. Dietary exposure and cancer risk assessment of the Pakistani population exposed to polycyclic aromatic hydrocarbons [J]. Science of the Total Environment, 2021, 757: 143828. doi: 10.1016/j.scitotenv.2020.143828 [28] SINGH D K, GUPTA T. Effect through inhalation on human health of PM1 bound polycyclic aromatic hydrocarbons collected from foggy days in northern part of India [J]. Journal of Hazardous Materials, 2016, 306: 257-268. doi: 10.1016/j.jhazmat.2015.11.049