-
β-N-甲氨基-L-丙氨酸(β-N-methylamino-L-alanine, BMAA)是一种可由多种蓝藻产生[1]、具有慢性神经毒性的毒素. 毒性研究显示,BMAA可能与肌萎缩性侧索硬化症、阿尔茨海默氏病、帕金森综合症等神经系统退行性疾病有关[2]. 人体可以通过各种各样的形式暴露于BMAA,如食用被污染的水或食物、在受污染的水体中游泳、吸入受BMAA污染的气溶胶等. 随着全球日趋严重的水体富营养化现状,人们对藻毒素的研究逐渐增多,但大部分研究关注重点在微囊藻毒素,由于BMAA检测难度较高(包括多种同分异构体难分离、分子量较小易受各类基质影响、环境中多种赋存形态等)、环境浓度较低[3-4],目前对BMAA的研究非常有限. 本文拟通过对BMAA的检测方法、水环境及各类水产食物的检测水平等进行总结概述,以了解当前人群对BMAA的暴露风险.
水环境和水产品中β-N-甲氨基-L-丙氨酸(BMAA)检测方法和检出情况的研究进展
Research progress on detection methods and detection levels of β-N-methylamino-L-alanine (BMAA) in water environment and aquatic samples
-
摘要: 本文对蓝藻毒素β-N-甲氨基-L-丙氨酸(β-N-methylamino-L-alanine, BMAA)的结构形态、检测方法、环境和食物中的检出情况等方面进行系统综述. 研究结果表明,BMAA主要存在3种赋存形态(游离态、溶解结合态、沉淀结合态);环境和食物中的BMAA类目前主要采用经过AQC衍生的LC-MS/MS法检测,样品需经形态分离后、采用MCX固相萃取小柱处理. 水环境、水产品和藻类保健品中BMAA类的污染已被大量报道. 亚洲、北美洲、欧洲的相关环境和食物中均有一定的检出(检出浓度:水样<0.01—25.3 μg·L-1;藻类<0.01—300 μg·g-1;非鲨鱼水产品中0.08—115.3 μg·g-1;藻类保健品中0.04—0.73 μg·g-1). BMAA存在生物积累和生物放大的现象,水产品中营养级别越高的生物检出浓度就越高,如鲨鱼类产品中检出浓度高达34—2011 μg·g-1,需要引起重视. 我国目前对BMAA的相关研究还很有限,未来应加强检测方法、现场调查、风险评估等相关方面的研究,以全面了解我国人群对BMAA类物质的暴露风险.
-
关键词:
- β-N-甲氨基-L-丙氨酸(BMAA) /
- LC-MS/MS /
- 水环境 /
- 水产品 /
- 藻类产品.
Abstract: This paper systematically reviewed the structure, morphology, detection methods, environment and the level of β-N-methylamino-L-alanine (BMAA) in environment and food samples. The results show that BMAA mainly exists in three forms, including free BMAA, soluble bound BMAA, and precipitated bound BMAA. Currently, BMAAs in the environment and food are mainly detected by the AQC-derived LC-MS/MS method. The samples need to be morphologically separated and processed with MCX solid phase extraction cartridges. The contamination of BMAA has been reported in the water environment, aquatic products and algae health products in Asia, North America and Europe, with the detectable concentrations of < 0.01—25.3 μg·L-1 in water samples , < 0.01—300 μg·g-1 in algae samples, 0.08—115.3 μg·g-1 in non-shark aquatic products and 0.04—0.73 μg·g-1 in algal health products. Due to the bioaccumulation and biomagnification of BMAA, the aquatic products with higher nutrient levels showed higher concentrations. For example, the BMAA levels reported in the shark products were up to 34—2011 μg·g-1. Therefore, more attentions should be paid to these animals. At present, the relevant researches on BMAA in our country are very limited. More efforts should be made in analytical method development, on-site investigation and risk assessments to comprehensively assess the exposure risk of Chinese population to BMAAs. -
表 1 BMAA及其同分异构体的理化性质
Table 1. Physicochemical properties of BMAA and its isomers
物质名称
Substance熔点
Melting point沸点
Boiling point酸度系数
pKa水溶性
Water-solubility稳定性
StabilityBMAA 177℃ 284.2℃ 2.1 易溶于水 稳定,不易分解 DAB 144℃ 220.7℃ 1.8 AEG 140-143℃ 290℃ 2.2 表 2 2018-2022年LC-MS/MS法在不同介质中BMAA及其同分异构体的检出限
Table 2. Detection limits of BMAA and its isomers in different matrixes from 2018 to 2022 by LC-MS/MS
样本类型
Type of matrix是否衍生
Derivatization检测物质
Type of toxin检出限/(μg·L−1)
Detection of limit参考文献
ReferencesBMAA BAMA DAB AEG 水 水库水 直接进样 总BMAA、
总DAB、
总AEG0.015 NR 0.0091 0.0061 [19] 地表水 FMOCa衍生 游离态BMAA、
游离态BAMA、
游离态DAB、
游离态AEG0.005 0.005 0.003 0.002 [20] 藻类 淡水及海洋藻类 AQC衍生 总BMAA、
总DAB、
总AEG0.01 NR 0.01 0.01 [21] 水华藻类 EZ:faast衍生b 游离态BMAA、
游离态DAB0.02 NR 0.04 NR [22] 生物结皮c AQC衍生 总BMAA、
总BAMA、
总DAB、
总AEG0.01 0.037 0.01 0.01 [23] 生物基质 藻类、贝类、血浆、脑脊液 AQC衍生 总BMAA、
总DAB、
总AEG0.01 NR 0.01 0.01 [24] 贝类 AQC衍生 总溶解态BMAA、
总溶解态DAB0.31d NR 0.013d NR [25] 藻类相关产品 螺旋藻天然保健品 AQC衍生 总BMAA、
总DAB、
总AEG0.187 NR 0.187 0.187 [26] 螺旋藻粉 AQC衍生 总BMAA、
总DAB、
总AEG0.01 NR 0.02 0.01 [27] 注:NR:Not Report, 未报道;aFMOC(9-fluorenylmethyl chlorofor mate):9-芴基甲基氯甲酸酯;b一种游离氨基酸衍生试剂盒;c一种沙漠地表覆被类型;d检出限单位为μg·g−1. 表 3 BMAA在我国部分水环境中的检出情况
Table 3. Detection of BMAA in some water environments in China
样品类别
Species检测地点
Location检出浓度
Concentration存在形态
Existence前处理
Pretreatment参考文献
References水体
(湖泊水+海水+水库水)太湖无锡流域 0.129/0.105 游离态/沉淀结合态BMAA 直接分析法 [35] 南京玄武湖 0.628/0.072 豫园景观湖 0.697/0.116 南昌孔目湖 1.648/0.19 南山景观湖 0.486/0.215 云南滇池 1.493/0.359 安徽巢湖 0.108/0.099 武汉东湖 <0.01 洞庭湖 <0.01 杭州西湖 <0.01 大连海域 <0.01 滨海流域 <0.01 青岛流域 <0.01 厦门海域 <0.01 密云水库 <0.01 深圳水库 <0.01 太湖 0.23a 总BMAA 直接分析法 [32] 蓝藻有机肥 太湖 1.8—16.3/3.43—13.67 游离态/沉淀结合态BMAA AQC-衍生法 [46] 水体 湖州市淡水养殖池塘 3.081—3.203a 总BMAA AQC-衍生法 [44] 底泥 0.681—0.711 浮游植物 青岛胶州湾 0.03—1.00 总溶解态BMAA 直接分析法 [45] 注:a检出浓度单位为μg·L−1,未带上标的检出浓度单位为μg·g−1. 表 4 BMAA在我国水产品中的检出情况
Table 4. Detection of BMAA in Chinese aquatic products
样品类别
Species样品名称
Samples检测地点
Location检出浓度/(μg·g−1)
Concentration存在形态
Existence前处理
Pretreatment参考文献
References软体动物 扁玉螺 黄海海域 3.54/20.92 游离态/总溶解态BMAA 直接分析法 [9] 脉红螺 0.64 栉江珧 2.57 菲律宾蛤仔 0.86 扁玉螺 1.76/4.07 AQC-衍生法 脉红螺 0.40 栉江珧 1.17 菲律宾蛤仔 0.51 背角无齿蚌 太湖贡湖湾 0.147—0.173/3.26—3.78 游离态/沉淀结合态BMAA AQC-衍生法 [60] 铜锈环棱螺 0.09—0.141/3.154—3.786 厚壳贻贝 舟山市 0.45 游离态BMAA 直接分析法 [55] 长竹蛏 荣成市 0.66 软体动物 扁玉螺 荣成市 2.15 游离态BMAA 直接分析法 [55] 大连市 3.97 连云港市 0.99 莱州市 0.86 青岛市 1.43 河蚬 湖州市淡水
养殖池塘0.528—0.540 总BMAA AQC-衍生法 [44] 铜锈环棱螺 1.015—1.065 贻贝 太湖贡湖湾 2.437—4.663 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [5] 淡水蜗牛 0.63—3.85 亚洲蛤 0.80—6.72 河蚬 太湖 1.27—4.01 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [54] 无齿蚌 0.28—4.92 甲壳动物 日本沼虾 湖州市淡水
养殖池塘0.456—0.468 总BMAA AQC-衍生法 [44] 中华绒螯蟹 0.543—0.555 日本沼虾 太湖贡湖湾 0.044—0.076/0.888—1.132 游离态/沉淀结合态BMAA AQC-衍生法 [60] 太湖秀丽白虾 ND/0.078—0.162 淡水蟹 太湖贡湖湾 5.727—11.793 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [5] 螃蟹 6.479—6.481 淡水虾 0.177—1.903 西伯利亚对虾 0.104—0.136 对虾 3.141—7.099 日本沼虾 太湖 0.65—3.45 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [54] 中华绒螯蟹 1.82—4.16 鱼类 草鱼 太湖 1.78—3.10 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [54] 青鱼 2.95—5.47 青鱼 湖州市淡水
养殖池塘0.358—0.370 总BMAA AQC-衍生法 [44] 鲫 0.482—0.494 麦穗鱼 太湖贡湖湾 0.038—0.102/0.07—0.13 游离态/沉淀结合态BMAA AQC-衍生法 [60] 梅鲚鱼 ND/6.96—7.72 鲢鱼 0.121—0.159/10.27—11.31 黄颡鱼 0.52—0.60/8.67—9.45 鳑鲏 武汉官桥湖 0.038—0.448/ND 游离态/沉淀结合态BMAA AQC-衍生法 [53] 鲫 0.086—0.166/ND 鲤 0.1—0.5/0.233—0.393 鲢 0.01—0.046/ND 鳙 0.018—0.06/ND 鳊 0.631—1.121/0.001—0.003 鱼类 太湖贡湖湾 0.049—49.31 游离态BMAA+沉淀结合态BMAA AQC-衍生法 [5] 注:ND:Not Detected, 未检测到. -
[1] COX P A, BANACK S A, MURCH S J, et al. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(14): 5074-5078. doi: 10.1073/pnas.0501526102 [2] SPENCER P S, NUNN P B, HUGON J, et al. Guam amyotrophic lateral sclerosis-parkinsonism-dementia linked to a plant excitant neurotoxin [J]. Science, 1987, 237(4814): 517-522. doi: 10.1126/science.3603037 [3] CHERNOFF N, HILL D J, DIGGS D L, et al. A critical review of the postulated role of the non-essential amino acid, β-N-methylamino-L-alanine, in neurodegenerative disease in humans [J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2017, 20(4): 1-47. [4] MANOLIDI K, TRIANTIS T M, KALOUDIS T, et al. Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria-based food supplements [J]. Journal of Hazardous Materials, 2019, 365: 346-365. doi: 10.1016/j.jhazmat.2018.10.084 [5] JIAO Y Y, CHEN Q K, CHEN X, et al. Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-L-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk [J]. Science of the Total Environment, 2014, 468/469: 457-463. doi: 10.1016/j.scitotenv.2013.08.064 [6] RÉVEILLON D, SÉCHET V, HESS P, et al. Systematic detection of BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts [J]. Toxicon, 2016, 110: 35-46. doi: 10.1016/j.toxicon.2015.11.011 [7] SCHNEIDER T, SIMPSON C, DESAI P, et al. Neurotoxicity of isomers of the environmental toxin L-BMAA [J]. Toxicon, 2020, 184: 175-179. doi: 10.1016/j.toxicon.2020.06.014 [8] GALLO-TORRES H E, HEIMER E, SCHEIDL F, et al. The gastrointestinal absorption, tissue distribution, urinary excretion and metabolism of N-(2-aminoethyl)-Glycine (AEG) in the rat [J]. Life Sciences, 1980, 27(24): 2347-2357. doi: 10.1016/0024-3205(80)90504-4 [9] 王超, 邱江兵, 宋甲亮, 等. 不同液相色谱-质谱联用法分析贝类样品中神经毒素β-N-甲氨基-L-丙氨酸的比较 [J]. 中国渔业质量与标准, 2021, 11(1): 34-45. WANG C, QIU J B, SONG J L, et al. A comparative study on the analytical performance of different liquid chromatography coupled with tandem mass spectrometry for neurotoxin β-N-methylamino-L-alanine in mollusks [J]. Chinese Fishery Quality and Standards, 2021, 11(1): 34-45(in Chinese).
[10] HOEFFER C A, KLANN E. mTOR signaling: At the crossroads of plasticity, memory and disease [J]. Trends in Neurosciences, 2010, 33(2): 67-75. doi: 10.1016/j.tins.2009.11.003 [11] CHONG Z Z, SHANG Y C, WANG S H, et al. A critical kinase cascade in neurological disorders: PI 3-K, Akt, and mTOR [J]. Future Neurology, 2012, 7(6): 733-748. doi: 10.2217/fnl.12.72 [12] PAPAPETROPOULOS S. Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-L-alanine (BMAA) paradigm [J]. Neurochemistry International, 2007, 50(7/8): 998-1003. [13] EMMONS R V, KARAJ E, CUDJOE E, et al. Leveraging multi-mode microextraction and liquid chromatography stationary phases for quantitative analysis of neurotoxin β-N-methylamino-L-alanine and other non-proteinogenic amino acids [J]. Journal Of Chromatography A, 2022, 1685: 463636. doi: 10.1016/j.chroma.2022.463636 [14] PAGLIARA P, DE BENEDETTO G E, FRANCAVILLA M, et al. Bioactive potential of two marine picocyanobacteria belonging to cyanobium and synechococcus genera[J]. Microorganisms, 2021, 9(10):2048. [15] ZHAO P, QIU J B, LI A F, et al. Matrix effect of diverse biological samples extracted with different extraction ratios on the detection of β-N-methylamino-L-alanine by two common LC-MS/MS analysis methods [J]. Toxins, 2022, 14(6): 387. doi: 10.3390/toxins14060387 [16] ROSÉN J, WESTERBERG E, HELLENÄS K E, et al. A new method for analysis of underivatized free β-methylamino-alanine: Validation and method comparison [J]. Toxicon, 2016, 121: 105-108. doi: 10.1016/j.toxicon.2016.08.021 [17] FAASSEN E J, GILLISSEN F, LÜRLING M. A comparative study on three analytical methods for the determination of the neurotoxin BMAA in cyanobacteria [J]. PLoS One, 2012, 7(5): e36667. doi: 10.1371/journal.pone.0036667 [18] BISHOP S L, MURCH S J. A systematic review of analytical methods for the detection and quantification of β-N-methylamino-L-alanine (BMAA) [J]. Analyst, 2019, 145(1): 13-28. [19] APARICIO-MURIANA M M, CARMONA-MOLERO R, LARA F J, et al. Multiclass cyanotoxin analysis in reservoir waters: Tandem solid-phase extraction followed by zwitterionic hydrophilic interaction liquid chromatography-mass spectrometry [J]. Talanta, 2022, 237: 122929. doi: 10.1016/j.talanta.2021.122929 [20] VO DUY S, MUNOZ G, DINH Q T, et al. Analysis of the neurotoxin β-N-methylamino-L-alanine (BMAA) and isomers in surface water by FMOC derivatization liquid chromatography high resolution mass spectrometry [J]. PLoS One, 2019, 14(8): e0220698. doi: 10.1371/journal.pone.0220698 [21] METCALF J S, BANACK S A, WESSEL R A, et al. Toxin analysis of freshwater cyanobacterial and marine harmful algal blooms on the west coast of Florida and implications for estuarine environments [J]. Neurotoxicity Research, 2021, 39(1): 27-35. doi: 10.1007/s12640-020-00248-3 [22] MAIN B J, BOWLING L C, PADULA M P, et al. Detection of the suspected neurotoxin β-methylamino-L-alanine (BMAA) in cyanobacterial blooms from multiple water bodies in Eastern Australia [J]. Harmful Algae, 2018, 74: 10-18. doi: 10.1016/j.hal.2018.03.004 [23] CHATZIEFTHIMIOU A D, BANACK S A, COX P A. Biocrust-produced cyanotoxins are found vertically in the desert soil profile [J]. Neurotoxicity Research, 2021, 39(1): 42-48. doi: 10.1007/s12640-020-00224-x [24] BANACK S A. Second laboratory validation of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2, 4-diaminobuytric acid by ultra-performance liquid chromatography and tandem mass spectrometry [J]. Neurotoxicity Research, 2021, 39(1): 107-116. doi: 10.1007/s12640-020-00208-x [25] LI A, HU Y, SONG J, et al. Ubiquity of the neurotoxin β-N-methylamino-L-alanine and its isomers confirmed by two different mass spectrometric methods in diverse marine mollusks [J]. Toxicon, 2018, 151: 129-136. doi: 10.1016/j.toxicon.2018.07.004 [26] GLOVER W B, BAKER T C, MURCH S J, et al. Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in food products containing cyanobacteria by ultra-performance liquid chromatography and tandem mass spectrometry: Single-laboratory validation [J]. Journal of AOAC International, 2015, 98(6): 1559-1565. doi: 10.5740/jaoacint.15-084 [27] BAKER T C, TYMM F J M, MURCH S J. Assessing environmental exposure to β-N-methylamino-L-alanine (BMAA) in complex sample matrices: A comparison of the three most popular LC-MS/MS methods [J]. Neurotoxicity Research, 2018, 33(1): 43-54. doi: 10.1007/s12640-017-9764-3 [28] TYMM F J M, BISHOP S L, MURCH S J. A single laboratory validation for the analysis of underivatized β-N-methylamino-L-alanine (BMAA) [J]. Neurotoxicity Research, 2021, 39(1): 49-71. doi: 10.1007/s12640-019-00137-4 [29] LAGE S, ANNADOTTER H, RASMUSSEN U, et al. Biotransfer of β-N-methylamino-L-alanine (BMAA) in a eutrophicated freshwater lake [J]. Marine Drugs, 2015, 13(3): 1185-1201. doi: 10.3390/md13031185 [30] LAGE S, BURIAN A, RASMUSSEN U, et al. BMAA extraction of cyanobacteria samples: Which method to choose? [J]. Environmental Science and Pollution Research International, 2016, 23(1): 338-350. doi: 10.1007/s11356-015-5266-0 [31] CERVANTES CIANCA R C, BAPTISTA M S, LOPES V R, et al. The non-protein amino acid β-N-methylamino-L-alanine in portuguese cyanobacterial isolates [J]. Amino Acids, 2012, 42(6): 2473-2479. doi: 10.1007/s00726-011-1057-1 [32] CAO Y, HU S Y, GONG T T, et al. Decomposition of β-N-methylamino-L-alanine (BMAA) and 2,4-diaminobutyric acid (DAB) during chlorination and consequent disinfection byproducts formation [J]. Water Research, 2019, 159: 365-374. doi: 10.1016/j.watres.2019.05.007 [33] VIOLI J P, MITROVIC S M, COLVILLE A, et al. Prevalence of β-methylamino-L-alanine (BMAA) and its isomers in freshwater cyanobacteria isolated from eastern Australia [J]. Ecotoxicology and Environmental Safety, 2019, 172: 72-81. doi: 10.1016/j.ecoenv.2019.01.046 [34] CHATZIEFTHIMIOU A D, DEITCH E J, GLOVER W B, et al. Analysis of neurotoxic amino acids from marine waters, microbial mats, and seafood destined for human consumption in the Arabian Gulf [J]. Neurotoxicity Research, 2018, 33(1): 143-152. doi: 10.1007/s12640-017-9772-3 [35] 闫博引. 蓝藻神经毒素BMAA在水中赋存状态及氧化降解机制[D]. 哈尔滨: 哈尔滨工业大学, 2020. YAN B Y. Occurrence state and oxidative degragation mechanism of cyanobacterial neurotoxin BMAA in water[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
[36] FAASSEN E J, ANTONIOU M G, BEEKMAN-LUKASSEN W, et al. A collaborative evaluation of LC-MS/MS based methods for BMAA analysis: Soluble bound BMAA found to be an important fraction [J]. Marine Drugs, 2016, 14(3): 45. doi: 10.3390/md14030045 [37] LANCE E, ARNICH N, MAIGNIEN T, et al. Occurrence of β-N-methylamino-L-alanine (BMAA) and isomers in aquatic environments and aquatic food sources for humans [J]. Toxins, 2018, 10(2): 83. doi: 10.3390/toxins10020083 [38] COMBES A, EL ABDELLAOUI S, SARAZIN C, et al. Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-L-alanine in complex environmental samples [J]. Analytica Chimica Acta, 2013, 771: 42-49. doi: 10.1016/j.aca.2013.02.016 [39] AL-SAMMAK M A, HOAGLAND K D, CASSADA D, et al. Co-occurrence of the cyanotoxins BMAA, DABA and Anatoxin-a in Nebraska reservoirs, fish, and aquatic plants [J]. Toxins, 2014, 6(2): 488-508. doi: 10.3390/toxins6020488 [40] CRAIGHEAD D, METCALF J S, BANACK S A, et al. Presence of the neurotoxic amino acids β-N-methylamino-L-alanine (BMAA) and 2, 4-diaminobutyric acid (DAB) in shallow springs from the Gobi Desert [J]. Amyotrophic Lateral Sclerosis, 2009, 10(sup2): 96-100. doi: 10.3109/17482960903278469 [41] FAASSEN E J, GILLISSEN F, ZWEERS H A J, et al. Determination of the neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (α-, γ-diaminobutyric acid) by LC-MSMS in Dutch urban waters with cyanobacterial blooms [J]. Amyotrophic Lateral Sclerosis, 2009, 10(sup2): 79-84. doi: 10.3109/17482960903272967 [42] METCALF J S, BANACK S A, LINDSAY J, et al. Co-occurrence of β-N-methylamino-L-alanine, a neurotoxic amino acid with other cyanobacterial toxins in British waterbodies, 1990-2004 [J]. Environmental Microbiology, 2008, 10(3): 702-708. doi: 10.1111/j.1462-2920.2007.01492.x [43] ROY-LACHAPELLE A, SOLLIEC M, SAUVÉ S. Determination of BMAA and three alkaloid cyanotoxins in lake water using dansyl chloride derivatization and high-resolution mass spectrometry [J]. Analytical and Bioanalytical Chemistry, 2015, 407(18): 5487-5501. doi: 10.1007/s00216-015-8722-2 [44] 顾笑笑, 吴湘, 张爱, 等. 神经毒素BMAA在淡水池塘水体中的健康风险及调控技术 [J]. 水生生物学报, 2022, 46(2): 176-183. doi: 10.7541/2021.2021.012 GU X X, WU X, ZHANG A, et al. Health risk of neurotoxin β-N-methylamino-L-alanine(BMAA) in freshwater aquaculture ponds and its control technology [J]. Acta Hydrobiologica Sinica, 2022, 46(2): 176-183(in Chinese). doi: 10.7541/2021.2021.012
[45] WANG C, YAN C, QIU J B, et al. Food web biomagnification of the neurotoxin β-N-methylamino-L-alanine in a diatom-dominated marine ecosystem in China [J]. Journal of Hazardous Materials, 2021, 404: 124217. doi: 10.1016/j.jhazmat.2020.124217 [46] 李博. 藻毒素BMAA在土壤与作物间的迁移累积及其对秀丽隐杆线虫的影响[D]. 南京: 南京农业大学, 2019. LI B. Transfer and bioaccumulation of A cyanobacterial neurotoxin BMAA between soil and crop and its effects on Caenorhabditis elegans[D]. Nanjing: Nanjing Agricultural University, 2019(in Chinese).
[47] JIANG L Y, KISELOVA N, ROSÉN J, et al. Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets [J]. Scientific Reports, 2014, 4: 6931. doi: 10.1038/srep06931 [48] RÉVEILLON D, ABADIE E, SÉCHET V, et al. β-N-methylamino-L-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea [J]. Marine Environmental Research, 2015, 110: 8-18. doi: 10.1016/j.marenvres.2015.07.015 [49] LAMPINEN SALOMONSSON M, HANSSON A, BONDESSON U. Development and in-house validation of a method for quantification of BMAA in mussels using dansyl chloride derivatization and ultra performance liquid chromatography tandem mass spectrometry [J]. Analytical Methods, 2013, 5(18): 4865. doi: 10.1039/c3ay40657a [50] SCOTT L L, DOWNING S, DOWNING T. Potential for dietary exposure to β-N-methylamino-L-alanine and microcystin from a freshwater system [J]. Toxicon, 2018, 150: 261-266. doi: 10.1016/j.toxicon.2018.06.076 [51] CHRISTENSEN S J, HEMSCHEIDT T K, TRAPIDO-ROSENTHAL H, et al. Detection and quantification of β-methylamino-L-alanine in aquatic invertebrates [J]. Limnology and Oceanography:Methods, 2012, 10(11): 891-898. doi: 10.4319/lom.2012.10.891 [52] FIELD N C, METCALF J S, CALLER T A, et al. Linking β-methylamino-L-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD [J]. Toxicon, 2013, 70: 179-183. doi: 10.1016/j.toxicon.2013.04.010 [53] 陈咏梅, 赵以军, 陈默, 等. 武汉官桥湖蓝藻毒素BMAA的生物累积与健康风险评估 [J]. 水生态学杂志, 2019, 40(4): 22-29. doi: 10.15928/j.1674-3075.2019.04.004 CHEN Y M, ZHAO Y J, CHEN M, et al. Bioaccumulation and health risk assessment of the cyanobacterial neurotoxin BMAA in Guanqiao Lake, Wuhan [J]. Journal of Hydroecology, 2019, 40(4): 22-29(in Chinese). doi: 10.15928/j.1674-3075.2019.04.004
[54] WU X, WU H, GU X X, et al. Biomagnification characteristics and health risk assessment of the neurotoxin BMAA in freshwater aquaculture products of Taihu Lake Basin, China [J]. Chemosphere, 2019, 229: 332-340. doi: 10.1016/j.chemosphere.2019.04.210 [55] LI A F, SONG J L, HU Y, et al. New typical vector of neurotoxin β-N-methylamino-L-alanine (BMAA) in the marine benthic ecosystem [J]. Marine Drugs, 2016, 14(11): 202. doi: 10.3390/md14110202 [56] 王超, 邱江兵, 柳超, 等. 神经毒素BMAA沿海洋食物链的迁移转化行为研究[C]. 第十四届生物毒素毒理学术大会暨第一届生物毒素——从生存适应到转化医学专题学术会议会刊, 2019. WANG C, QIU J B, LIU C, et al. Migration and transformation behavior of neurotoxin BMAA along the Marine food chain[C]. Proceedings of the 14th Biotoxin Toxicology Conference and the 1st Biotoxin: From Survival Adaptation to Translational Medicine Symposium, 2019(in Chinese).
[57] HAMMERSCHLAG N, DAVIS D A, MONDO K, et al. Cyanobacterial neurotoxin BMAA and mercury in sharks [J]. Toxins, 2016, 8(8): 238. doi: 10.3390/toxins8080238 [58] MONDO K, HAMMERSCHLAG N, BASILE M, et al. Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in shark fins [J]. Marine Drugs, 2012, 10(2): 509-520. [59] MONDO K, BROC GLOVER W, MURCH S J, et al. Environmental neurotoxins β-N-methylamino-L-alanine (BMAA) and mercury in shark cartilage dietary supplements [J]. Food Chem Toxicol, 2014, 70: 26-32. doi: 10.1016/j.fct.2014.04.015 [60] 焦一滢. 蓝藻神经毒素β-N-甲氨基-L-丙氨酸在太湖食物链中赋存与环境行为研究[D]. 南京: 南京大学, 2014. JIAO Y Y. Occurrence of the cyanobacterial neurotoxin β-N-methylamino-L-alanine in foodchains of lake Tai and the study of environmental fates[D]. Nanjing: Nanjing University, 2014(in Chinese).
[61] GANTAR M, SVIRČEV Z. Microalgae and cyanobacteria: Food for thought(1) [J]. Journal of Phycology, 2008, 44(2): 260-268. doi: 10.1111/j.1529-8817.2008.00469.x [62] ROY-LACHAPELLE A, SOLLIEC M, BOUCHARD M F, et al. Detection of cyanotoxins in algae dietary supplements [J]. Toxins, 2017, 9(3): 76. doi: 10.3390/toxins9030076 [63] KRÜGER T, MÖNCH B, OPPENHÄUSER S, et al. LC-MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2, 4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius [J]. Toxicon, 2010, 55(2/3): 547-557. [64] 樊华. 淡水蓝藻产生神经毒素BMAA和DAB的潜力及其环境影响因子研究[D]. 青岛: 中国海洋大学, 2013. FAN H. Potential production of neurotoxins BMAA and DAB in freshwater cyanobacteria and effects environmental factors[D]. Qingdao: Ocean University of China, 2013(in Chinese).
[65] DROBAC D, TOKODI N, SIMEUNOVIĆ J, et al. Human exposure to cyanotoxins and their effects on health [J]. Arhiv Za Higijenu Rada i Toksikologiju, 2013, 64(2): 119-130. [66] FALCONER I R, HUMPAGE A R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water [J]. International Journal of Environmental Research and Public Health, 2005, 2(1): 43-50. doi: 10.3390/ijerph2005010043 [67] KARLSSON O, KULTIMA K, WADENSTEN H, et al. Neurotoxin-induced neuropeptide perturbations in striatum of neonatal rats [J]. Journal of Proteome Research, 2013, 12(4): 1678-1690. doi: 10.1021/pr3010265 [68] 全国居民主要食品消费量[EB/OL]. 国家统计局, 2013-2020. National consumption of major food products[EB/OL]. National Bureau of Statistics, 2013-2020.
[69] 闫云君, 梁彦龄. 水生大型无脊椎动物的干湿重比的研究 [J]. 华中理工大学学报, 1999, 27(9): 61-63. YAN Y J, LIANG Y L. A study of dry to wet weight ratio of aquatic macroinvertebrates [J]. Journal of Huazhong University of Science and Technology, 1999, 27(9): 61-63(in Chinese).