-
无论食品安全还是生态健康,农化残留处理都是污染治理的重要课题,其中除草剂占全球农化市场的40%以上,其污染的处理需求也更为迫切. 由尿素、硫脲和磷脲等化肥产品衍生的氮化碳(g-C3N4)属于非金属和生物安全性半导体,能吸收转化可见光资源用于环境修复[1],但其光催化活性较为温和. 已有报道将g-C3N4改性以提升除草剂的降解,包括三嗪类(阿特拉津、嗪草酮)、有机磷类(草甘膦)、酰胺类(乙草胺)、联吡啶类(百草枯)、苯氧羧酸类(2,4-D)、磺酰脲类(甲磺隆、氯嘧磺隆)和烟酸类(灭草烟)等,涉及改性剂主要有钛、锌、铋、钴和铁的氧化物,硫化镉、硫化钼、钒酸和钨酸等化合物[2 − 3].
与这些大宗非选择性除草剂相比,二苯醚类除草剂作为一种选择性原卟啉原氧化酶抑制剂,目前的销售额已稳步增长至全球除草剂市场的2%[4],其中占比最多的是氟磺胺草醚(fomesafen, FSA)、乙氧氟草醚(oxyfluorfen, OFF)和三氟羧草醚(acifluorfen, AFF)等产品,在土壤中的半衰期分别为100—240 d、30—40 d和14—60 d. 此类农药残留可导致杂草抗性日趋加重、作物产量逐渐下降,后茬作物如蔬菜、玉米和小麦的育苗受到影响,土壤酶活和微生物多样性遭到破坏;通过雨水、灌溉随地表径流进入附近池塘、湖泊和河流中,被藻类和鱼类等水生生物吸收累积并破坏生态健康[5 − 8]. 采用生物污泥等传统市政处理措施并不能彻底修复残留除草剂的污染,需增加电解工艺处理才能达标排放[9 − 11],或者从农药厂活性污泥中筛选培育芽孢杆菌、金黄杆菌和假单胞菌等用以加速降解二苯醚类除草剂的残留污染[12 − 15],仅有少数报道将金属半导体(如TiO2和ZnO)用于二苯醚类除草剂的光降解[16 − 17].
微纳米的金属半导体并不为生物所吸收,可能造成次生的生态毒理和环境风险. 若沿用非金属掺杂或修饰的有机半导体,则能在确保生物安全性的同时、提高除草剂的光降解效率,例如硫氧磷等元素掺杂以及石墨烯和碳量子点等修饰的氮化碳[18 − 20]. 碳量子点(carbon quantum dots,CQDs)具有荧光特性和光电子传导能力,兼有化学惰性、生物安全性和一定的抗菌活性,能用于传感器、光催化、发光材料、药物载体以及促进植物生长. 多数农林牧渔业废弃物含有丰富的有机碳资源,均可作为廉价友好和可持续的碳量子点原料[21]. 碳量子点与氮化碳复合的环境修复材料,已用于氟喹诺酮、氟喹啉、四环素和环丙沙星等抗生素的光降解[22 − 25],但未有除草剂等农化残留处理的报道.
本文以玉米芯为碳量子点源,用氮化碳进行修饰,合成一种非金属型光催化剂,研究了在该催化剂作用下,氟磺胺草醚、乙氧氟草醚和三氟羧草醚的降解效率,结合分子模拟结果和降解产物分布解释二苯醚类农药的光解行为,并利用玉米种子生长模型评价了光解产物的毒性,以期对该类农化污染的修复与管控提供基础数据支持.
碳量子点修饰g-C3N4缓解二苯醚类除草剂污染
Remediation of diphenyl-ether herbicides pollution by g-C3N4 modified with carbon quantum dots
-
摘要: 为加速二苯醚类除草剂在可见光环境的降解,以玉米芯制碳量子点修饰石墨相氮化碳,合成一种非金属型光催化剂. 考察在该催化剂作用下,氟磺胺草醚、三氟羧草醚和乙氧氟草醚等的光解行为及光解前后毒性. 结果表明,氟磺胺草醚在可见光照射下的光解速率最大、其次为乙氧氟草醚,光照3 h的降解率即达99%和91%,而三氟羧草醚的光解速率最低、须光照至8 h才能达到90%的降解率. 由高斯软件计算NPA(Natural Population Analysis)电荷分布得福井函数和双描述符,预测反应位点并结合液质联用分析降解产物,推测除草剂的降解过程应包括裂解、水解、脱卤、还原和羟基化等,证明了空穴和羟基自由基在其中的作用. 观察玉米种子的生长实验,发现氟磺胺草醚的毒性略高于乙氧氟草醚,但二者经光照处理后毒性均显著下降,三氟羧草醚及其光解产物显示为低毒性.Abstract: To move faster the visible-light degradation of diphenyl-ether herbicides, the corn cob-derived carbon quantum dots were prepared to modify graphitic carbon nitride (g-C3N4) and then achieved a non-metallic photocatalyst. It was well studied with the photolytic behaviors and toxicity alterations on the fomesafen, acifluorfen and oxyfluorfen. The results showed that the degradation rate of fomesafen was the highest and followed by that of oxyfluorfen. They were separately at 99% and 91% after 3 h of visible-light irradiation. And yet the degradation rate of acifluorfen was the lowest and it reached 90% even after lighted by 8 h. Using Gaussian software to calculate the charge distribution of NPA and then the Fukui function and dual descriptors were obtained to predict the reactive sites. The degradation products were analyzed with LC-MS and the photolysis process of herbicides was reasonably speculated such as scission, hydrolysis, dehalogenation, reduction and hydroxylation. The presence of vacancies and hydroxyl radicals was proved great roles in them. It was found that fomesafen performed a slightly higher toxicity than oxyfluorfen during the development of corn seeds while both of them significantly reduced to nontoxic after treatments. Finally, acifluorfen and its photolysis products showed the lowest toxicity among three herbicides.
-
Key words:
- carbon quantum dots /
- carbon nitride /
- herbicides /
- fomesafen /
- photocatalysis.
-
-
[1] MAMBA G, MISHRA A K. Graphitic carbon nitride (g-C3N4) nanocomposites: A new and exciting generation of visible light driven photocatalysts for environmental pollution remediation[J]. Applied Catalysis B: Environmental, 2016, 198: 347-377. doi: 10.1016/j.apcatb.2016.05.052 [2] SAHOO S, ACHARYA R. An overview on recent developments in synthesis and molecular level structure of visible-light responsive g-C3N4 photocatalyst towards environmental remediation[J]. Materials Today: Proceedings, 2021, 35: 150-155. doi: 10.1016/j.matpr.2020.04.008 [3] ZHAO G Q, ZOU J, HU J, et al. A critical review on graphitic carbon nitride (g-C3N4)-based composites for environmental remediation[J]. Separation and Purification Technology, 2021, 279: 119769. doi: 10.1016/j.seppur.2021.119769 [4] 顾林玲, 王欣欣. 全球除草剂市场、发展概况及趋势(Ⅰ)[J]. 现代农药, 2016, 15(2): 8-12, 38. GU L L, WANG X X. The global market, development, trend of herbicide(Ⅰ)[J]. Modern Agrochemicals, 2016, 15(2): 8-12, 38 (in Chinese).
[5] SHEEBA, PRATAP SINGH V, KUMAR SRIVASTAVA P, et al. Differential physiological and biochemical responses of two cyanobacteria Nostoc muscorum and Phormidium foveolarum against oxyfluorfen and UV-B radiation[J]. Ecotoxicology and Environmental Safety, 2011, 74(7): 1981-1993. doi: 10.1016/j.ecoenv.2011.07.006 [6] POWE D K, DASMAHAPATRA A K, RUSSELL J L, et al. Toxicity implications for early life stage Japanese medaka ( Oryzias latipes) exposed to oxyfluorfen[J]. Environmental Toxicology, 2018, 33(5): 555-568. doi: 10.1002/tox.22541 [7] ABD EL-RAHMAN G I, AHMED S A A, KHALIL A A, et al. Assessment of hematological, hepato-renal, antioxidant, and hormonal responses of Clarias gariepinus exposed to sub-lethal concentrations of oxyfluorfen[J]. Aquatic Toxicology, 2019, 217: 105329. doi: 10.1016/j.aquatox.2019.105329 [8] LI Z K, GUO J, JIA K, et al. Oxyfluorfen induces hepatotoxicity through lipo-sugar accumulation and inflammation in zebrafish ( Danio rerio)[J]. Ecotoxicology and Environmental Safety, 2022, 230: 113140. doi: 10.1016/j.ecoenv.2021.113140 [9] CHAIR K, BEDOUI A, BENSALAH N, et al. Treatment of soil-washing effluents polluted with herbicide oxyfluorfen by combined biosorption-electrolysis[J]. Industrial & Engineering Chemistry Research, 2017, 56(8): 1903-1910. [10] CARBONERAS M B, RODRIGO M A, CANIZARES P, et al. Removal of oxyfluorfen from polluted effluents by combined bio-electro processes[J]. Chemosphere, 2020, 240: 124912. doi: 10.1016/j.chemosphere.2019.124912 [11] ACOSTA-SANTOYO G, RASCHITOR A, BUSTOS E, et al. Electrochemically assisted dewatering for the removal of oxyfluorfen from a coagulation/flocculation sludge[J]. Journal of Environmental Management, 2020, 258: 110015. doi: 10.1016/j.jenvman.2019.110015 [12] CUI N, WANG S G, KHORRAM M S, et al. Microbial degradation of fomesafen and detoxification of fomesafen-contaminated soil by the newly isolated strain Bacillus sp. FE-1 via a proposed biochemical degradation pathway[J]. Science of the Total Environment, 2018, 616/617: 1612-1619. doi: 10.1016/j.scitotenv.2017.10.151 [13] ZHAO H H, XU J, DONG F S, et al. Characterization of a novel oxyfluorfen-degrading bacterial strain Chryseobacterium aquifrigidense and its biochemical degradation pathway[J]. Applied Microbiology and Biotechnology, 2016, 100(15): 6837-6845. doi: 10.1007/s00253-016-7504-x [14] 陈道康, 蔡天明, 陈立伟, 等. 海藻酸钠与纳米Fe3O4联合固定化菌对三氟羧草醚的降解[J]. 环境工程学报, 2017, 11(6): 3907-3913. CHEN D K, CAI T M, CHEN L W, et al. Biodegradation of acifluorfen using joint immobilized cells of sodium alginate and Fe3O4 nanoparticles[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3907-3913 (in Chinese).
[15] FENG Z Z, LI Q F, ZHANG J, et al. Microbial degradation of fomesafen by a newly isolated strain Pseudomonas zeshuii BY-1 and the biochemical degradation pathway[J]. Journal of Agricultural and Food Chemistry, 2012, 60(29): 7104-7110. doi: 10.1021/jf3011307 [16] 张守花, 张新海. 铜掺杂改性TiO2光催化降解三氟羧草醚废水研究[J]. 广州化工, 2017, 45(23): 90-92. ZHANG S H, ZHANG X H. Photocatalytic degradation of wastewater containing acifluorfen by copper modified titanium dioxide[J]. Guangzhou Chemical Industry, 2017, 45(23): 90-92 (in Chinese).
[17] NAVEETHA G, ATMAKURU R. Photocatalytic degradation of persistence herbicide fomesafen by using ZnO/Na2S2O8 as a catalyst/oxidant under UV radiation[J]. Applied Ecology and Environmental Sciences, 2019, 7(5): 182-189. [18] LIU X, LI C S, ZHANG Y, et al. Simultaneous photodegradation of multi-herbicides by oxidized carbon nitride: Performance and practical application[J]. Applied Catalysis B: Environmental, 2017, 219: 194-199. doi: 10.1016/j.apcatb.2017.07.007 [19] LIU X, LI C S, ZHANG B J, et al. A facile strategy for photocatalytic degradation of seven neonicotinoids over sulfur and oxygen co-doped carbon nitride[J]. Chemosphere, 2020, 253: 126672. doi: 10.1016/j.chemosphere.2020.126672 [20] JO W K, SELVAM N C S. Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation[J]. Chemical Engineering Journal, 2017, 317: 913-924. doi: 10.1016/j.cej.2017.02.129 [21] DAS R, BANDYOPADHYAY R, PRAMANIK P. Carbon quantum dots from natural resource: A review[J]. Materials Today Chemistry, 2018, 8: 96-109. doi: 10.1016/j.mtchem.2018.03.003 [22] WANG Y F, WANG F L, FENG Y P, et al. Facile synthesis of carbon quantum dots loaded with mesoporous g-C3N4 for synergistic absorption and visible light photodegradation of fluoroquinolone antibiotics[J]. Dalton Transactions, 2018, 47(4): 1284-1293. doi: 10.1039/C7DT04360K [23] WANG W J, ZENG Z T, ZENG G M, et al. Sulfur doped carbon quantum dots loaded hollow tubular g-C3N4 as novel photocatalyst for destruction of Escherichia coli and tetracycline degradation under visible light[J]. Chemical Engineering Journal, 2019, 378: 122132. doi: 10.1016/j.cej.2019.122132 [24] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A, SEIFZADEH D, et al. Visible-light-activated g-C3N4 nanosheet/carbon dot/FeOCl nanocomposites: Photodegradation of dye pollutants and tetracycline hydrochloride[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 617: 126424. doi: 10.1016/j.colsurfa.2021.126424 [25] WANG Y, LI X F, LEI W W, et al. Novel carbon quantum dot modified g-C3N4 nanotubes on carbon cloth for efficient degradation of ciprofloxacin[J]. Applied Surface Science, 2021, 559: 149967. doi: 10.1016/j.apsusc.2021.149967 [26] LIU W, LI Y Y, LIU F Y, et al. Visible-light-driven photocatalytic degradation of diclofenac by carbon quantum dots modified porous g-C3N4: Mechanisms, degradation pathway and DFT calculation[J]. Water Research, 2019, 151: 8-19. doi: 10.1016/j.watres.2018.11.084 [27] CHEN Q Y, LI S J, XU H Y, et al. Co-MOF as an electron donor for promoting visible-light photoactivities of g-C3N4 nanosheets for CO2 reduction[J]. Chinese Journal of Catalysis, 2020, 41(3): 514-523. doi: 10.1016/S1872-2067(19)63497-2 [28] 朱娜, 张洁, 吴潇潇, 等. g-C3N4/TiO2可见光催化降解硝基苯废水[J]. 火炸药学报, 2018, 41(1): 66-71. ZHU N, ZHANG J, WU X X, et al. Visible-light photocatalytic degradation of nitrobenzene wastewater by g-C3N4/TiO2[J]. Chinese Journal of Explosives & Propellants, 2018, 41(1): 66-71 (in Chinese).
[29] XIE Z J, FENG Y P, WANG F L, et al. Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline[J]. Applied Catalysis B: Environmental, 2018, 229: 96-104. doi: 10.1016/j.apcatb.2018.02.011 [30] ZHANG J R, MA Y, WANG S Y, et al. Accurate K-edge X-ray photoelectron and absorption spectra of g-C3N4 nanosheets by first-principles simulations and reinterpretations[J]. Physical Chemistry Chemical Physics: PCCP, 2019, 21(41): 22819-22830. doi: 10.1039/C9CP04573B [31] ZANG J Y, CHEN C Z, YANG Y, et al. Efficient Z-scheme g-C3N4/MoO3 heterojunction photocatalysts decorated with carbon quantum dots: Improved visible-light absorption and charge separation[J]. Research on Chemical Intermediates, 2022, 48(10): 4145-4162. doi: 10.1007/s11164-022-04804-8 [32] ASADZADEH-KHANEGHAH S, HABIBI-YANGJEH A. g-C3N4/carbon dot-based nanocomposites serve as efficacious photocatalysts for environmental purification and energy generation: A review[J]. Journal of Cleaner Production, 2020, 276: 124319. doi: 10.1016/j.jclepro.2020.124319 [33] WU M, HE X, JING B H, et al. Novel carbon and defects co-modified g-C3N4 for highly efficient photocatalytic degradation of bisphenol A under visible light[J]. Journal of Hazardous Materials, 2020, 384: 121323. doi: 10.1016/j.jhazmat.2019.121323 [34] 曹静思, 陈飞武. 芳香化合物亲核、亲电反应活性的理论预测和实验反应速率的相关性研究[J]. 有机化学, 2016, 36(10): 2463-2471. doi: 10.6023/cjoc201602026 CAO J S, CHEN F W. Theoretical study on the correlation of the experimental nucleophilic and electrophilic reaction rates of aromatic compounds with the prediction results of theoretical methods[J]. Chinese Journal of Organic Chemistry, 2016, 36(10): 2463-2471 (in Chinese). doi: 10.6023/cjoc201602026
[35] MORELL C, GRAND A, TORO-LABBÉ A. New dual descriptor for chemical reactivity[J]. Journal of Physical Chemistry A, 2005, 109(1): 205-212. doi: 10.1021/jp046577a [36] MARTÍNEZ-ARAYA J I. Why is the dual descriptor a more accurate local reactivity descriptor than Fukui functions?[J]. Journal of Mathematical Chemistry, 2015, 53(2): 451-465. doi: 10.1007/s10910-014-0437-7 [37] CHAKRABORTY S K, CHAKRABORTY S, BHATTACHARYYA A, et al. Photolysis of oxyfluorfen in aqueous methanol[J]. Journal of Environmental Science and Health, Part B, 2013, 48(11): 919-926. doi: 10.1080/03601234.2013.816586 [38] 辛柏福. 铜和锡改性纳米TiO2的制备及其光催化降解三氟羧草醚效能[D]. 哈尔滨: 哈尔滨工业大学, 2009. XIN B F. Preparation of TiO2 nanoparticles modified by copper or stannum and its applications in acifluorfen photocatalitic degradation[D]. Harbin: Harbin Institute of Technology, 2009 (in Chinese).
[39] ZENG C, WANG Y, XIAO T, et al. Targeted degradation of TBBPA using novel molecularly imprinted polymer encapsulated C-Fe-Nx nanocomposite driven from MOFs[J]. Journal of Hazardous Materials, 2022, 424: 127499. doi: 10.1016/j.jhazmat.2021.127499 [40] 白杰, 韩玉军, 祖永平, 等. 氟磺胺草醚毒害玉米的生理指标分析[J]. 玉米科学, 2014, 22(3): 81-85. BAI J, HAN Y J, ZU Y P, et al. Physiological index of corn caused by fomesafen poisoned[J]. Journal of Maize Sciences, 2014, 22(3): 81-85 (in Chinese).