-
生物炭是一种由生物质热解转化而成的富炭材料,由于其原料来源广泛,成本低,具有优良的物理和化学性质,是一种可持续性环保型的吸附材料,已被广泛应用于重金属污染控制[1]. 近年来,研究人员在以农林废弃物[2],动物废弃物[3]和污水污泥[4 − 5]等为原料制备生物炭开展了大量的研究. 污水污泥由于其含有大量的有机物,且产量大,以污水污泥为原料制备污泥生物炭可以实现污泥的资源化,同时还可以实现重金属的污染控制,实现以废治废. 近年来研究人员对污水污泥制备生物炭开展了大量的研究[6 − 7],随着研究的深入,污泥基生物炭也显现了一些不足,如纯污泥生物炭比表面积较低,表面官能团不够丰富等限制了其实际使用,对于水溶液中污染物的去除能力有限. 因此,研究人员开始对污泥生物炭进行表面改性负载吸附材料等来提高污泥生物炭的吸附能力. Ngambia等[7]采用Mg改性生物炭制备的材料对Pb(Ⅱ)和Cd(Ⅱ)具有良好的吸附效果. Ramya等[8]将ZnO负载于污泥生物炭上催化降解初始浓度为10 mg·L−1 Cr(Ⅵ)时,Cr(Ⅵ)的去除率可达到95%. 现有的研究结果表明负载吸附材料对污泥生物炭的吸附能力具有强化的效果,因此通过负载吸附材料强化污泥生物炭吸附能力是一个具有潜力的污泥生物炭发展方向.
层状双金属氢氧化物(layer double hydroxides,简称LDHs)是由带正电荷的层板金属氢氧化物和层间的阴离子构成的一类柱状化合物[9]. 大量的研究表明,LDHs对水中污染物如磷[10]、Cr(Ⅵ)[11]、Pb(Ⅱ)[12 − 13]、染料[11,14]等均有较好的吸附去除能力,显示了其在水处理中具有较大的应用潜力. 然而,LDHs的机械强度低,在水处理过程中容易发生团聚等缺点,限制了其在水处理中的应用. 已有研究人员将LDHs负载到稳定的载体上如麦饭石[15]、陶粒[16]或沸石[17]等,结果显示能够很好地解决LDHs的不足. 然而,现有的载体价格较高,不利于其工业化应用,因此选用合适廉价载体成为了现有的研究关注点.
生物炭原料来源广泛,成本低,机械强度良好,是一种理想的廉价载体. 以生物炭作为载体负载LDHs,可以解决LDHs的不足的同时也可以提高污泥生物炭的吸附能力,有利于其在工业应用中推广. 采用生物炭负载LDHs去除水中重金属目前的研究主要是在对水中Cr(Ⅵ)的去除,在其他重金属离子如Pb(Ⅱ)和Cu(Ⅱ)的去除方面也有少量研究. Chen等[18]采用油茶壳制备的生物炭负载Ni-Al-LDHs去除水中Cr(Ⅵ),最大吸附量达271.5 mg·g−1. Wang等[19]采用油茶渣制备的生物炭负载Mn-Al-LDH用来去除水中Cu(Ⅱ),Cu(Ⅱ)主要是通过同晶型取代,即水中Cu(Ⅱ)被Mn-Al-LDH中Mn(Ⅱ)置换进去,并以Cu2.5(OH)3SO4的形式在吸附剂表面共沉淀来达到去除的目的,最大吸附量达74.07 mg·g−1,是原生物炭的7.3倍. 由已有的文献可以看出,现有的生物炭负载LDHs主要集中以农林废弃物生物炭为主,且主要使用Mn、Ni、Al等作为金属组合,对于污泥生物炭为载体的研究较少. 以污泥生物炭作为载体负载双金属氧化物,可为污泥资源化处理提供有效的处理路径,同时也可以降低其成本,有利于工业化推广.
本文以氢氧化钾改性污泥生物炭(ASB)为载体,负载LDHs并进一步焙烧制备双金属氧化物-污泥生物炭复合材料(LDO-ASB),考察了不同的制备条件对LDO-ASB的重金属吸附性能的影响,进而确定了LDO-ASB的制备条件. 同时对制备的LDO-ASB进行表征并与ASB相比,探讨了双金属氧化物的负载对污泥生物炭的重金属吸附性能的影响机制.
双金属氧化物负载对污泥生物炭吸附重金属Cd(Ⅱ)和Pb(Ⅱ)的影响
Influence of bimetallic oxide loading on Cd(Ⅱ) and Pb(Ⅱ) adsorption capacity of sludge biochar
-
摘要: 纯污泥生物炭由于其比表面积较低等导致其去除水中污染物的能力有限,需要对污泥生物炭进行改性强化其对污染物的去除. 本文采用污泥生物炭负载层状双金属氧化物强化污泥生物炭吸附水中重金属. 考察了金属组合,金属离子比例,负载金属浓度和焙烧温度对双金属氧化物(LDO)强化污泥生物炭(ASB)吸附水中重金属的影响,进而确定双金属氧化物-污泥生物炭复合材料(LDO-ASB)的制备方法. 同时对制备的LDO-ASB进行表征并与ASB相比,探讨了双金属氧化物的负载对污泥生物炭的重金属吸附性能的影响机制. 结果表明,Mg2+和Fe3+组合制备的LDO-ASB较其他金属组合具有更好的Cd(Ⅱ)和Pb(Ⅱ)的吸附能力. 在Mg2+∶Fe3+物质的量比为3∶1,Mg2+的负载浓度为0.4 mol·L−1,焙烧温度为500 ℃的条件下制备的(Mg/Fe)LDO-ASB对Cd(Ⅱ)和Pb(Ⅱ)的吸附量分别为149.72 mg·g−1和183.69 mg·g−1,较ASB的吸附能力有显著的提高. 材料的表征结果显示,Mg和Fe以氧化镁和三氧化二铁的形态负载在污泥生物炭表面,负载后污泥生物炭表面粗糙,加大了细纹隧道,同时也增加了—OH官能团的含量,进而强化了污泥生物炭的重金属吸附能力.Abstract: Due to the low specific surface area of pure sludge biochar, its ability to remove pollutants in water is limited, so it is necessary to modify sludge biochar to enhance its ability to remove pollutants. In this paper, sludge biochar was loaded with layered bimetallic oxides to enhance its adsorption of heavy metals in water. The effects of metal combination, metal ion ratio, metal concentration and roasting temperature on the adsorption of heavy metals by LDO enhanced ASB were investigated, and the preparation method of bimetallic oxide sludge biochar composite (LDO-ASB) was determined. Also, the influence of bimetallic oxide loading on the heavy metal adsorption performance of sludge biochar was discussed by comparing the characteristics of LDO-ASB and ASB. The results show that the LDO-ASB prepared by combination of Mg2+ and Fe3+ has better adsorption capacity of Cd(Ⅱ) and Pb(Ⅱ) than other metal combinations. The adsorption capacity of (Mg/Fe) LDO-ASB prepared under the conditions of 3∶1 ratio of Mg2+∶Fe3+, 0.4 mol·L−1 loading concentration of Mg2+ and 500 ℃ calcination temperature for Cd (Ⅱ) and Pb (Ⅱ) is 149.72 mg·g−1 and 183.69 mg·g−1 respectively, which is significantly higher than that of ASB. The characterization results showed that Mg and Fe were loaded on the surface of sludge biochar in the form of magnesium oxide and ferric trioxide. After loading, the surface of sludge biochar was rough, which increased the fine grain tunnel and the content of —OH functional group, thereby enhanced the heavy metal adsorption capacity of sludge biochar.
-
Key words:
- sludge biochar /
- double oxides /
- heavy metals /
- adsorption.
-
-
[1] 马文艳, 裴鹏刚, 高歌, 等. 微纳米粒径生物炭的结构特征及其对Cd2+吸附机制[J]. 环境科学, 2022, 43(7): 3682-3691. MA W Y, PEI P G, GAO G, et al. Structural characteristics of micro-nano particle size biochar and its adsorption mechanism for Cd2+[J]. Environmental Science, 2022, 43(7): 3682-3691(in Chinese).
[2] DENG Y Y, HUANG S, DONG C Q, et al. Competitive adsorption behaviour and mechanisms of cadmium, nickel and ammonium from aqueous solution by fresh and ageing rice straw biochars[J]. Bioresource Technology, 2020, 303: 122853. doi: 10.1016/j.biortech.2020.122853 [3] ZHANG D W, ZHANG K J, HU X L, et al. Cadmium removal by MgCl2 modified biochar derived from crayfish shell waste: Batch adsorption, response surface analysis and fixed bed filtration[J]. Journal of Hazardous Materials, 2021, 408: 124860. doi: 10.1016/j.jhazmat.2020.124860 [4] NAQVI S R, TARIQ R, SHAHBAZ M, et al. Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects[J]. Computers & Chemical Engineering, 2021, 150: 107325. [5] 杨雪, 张士秋, 侯其东, 等. 生物炭的制备及其镁改性对污染物的吸附行为研究[J]. 环境科学学报, 2018, 38(10): 4032-4043. doi: 10.13671/j.hjkxxb.2018.0252 YANG X, ZHANG S Q, HOU Q D, et al. The preparation of biochar and adsorption behavior of Mg-modified biochar to pollutants[J]. Acta Scientiae Circumstantiae, 2018, 38(10): 4032-4043(in Chinese). doi: 10.13671/j.hjkxxb.2018.0252
[6] LUO X W, HUANG Z J, LIN J Y, et al. Hydrothermal carbonization of sewage sludge and in situ preparation of hydrochar/MgAl-layered double hydroxides composites for adsorption of Pb(Ⅱ)[J]. Journal of Cleaner Production, 2020, 258: 120991. doi: 10.1016/j.jclepro.2020.120991 [7] N GAMBIAA, IFTHIKRJ, SHAHIBII, et al. Adsorptive purification of heavy metal contaminated wastewater with sewage sludge derived carbon-supported Mg(Ⅱ) composite[J]. Science of the Total Environment, 2019, 691: 306-321. doi: 10.1016/j.scitotenv.2019.07.003 [8] RAMYAV, MURUAND, LAJAPTHIRAIC, et al. Activated carbon (prepared from secondary sludge biomass) supported semiconductor zinc oxide nanocomposite photocatalyst for reduction of Cr(Ⅵ) under visible light irradiation[J]. Journal of Environmental Chemical Engineering, 2018, 6((6): ): 7327-7337. doi: 10.1016/j.jece.2018.08.055 [9] YANG X. Preparation of ferric-activated sludge-based adsorbent from biological sludge for tetracycline removal[J]. Bioresource Technology, 2016, 211: 566-573. doi: 10.1016/j.biortech.2016.03.140 [10] 李嘉雯, 郝瑞霞, 李宏康, 等. 磁性Mg/Al-LDHs制备条件对其吸附除磷性能的影响[J]. 环境科学学报, 2020, 40(2): 520-526. doi: 10.13671/j.hjkxxb.2019.0425 LI J W, HAO R X, LI H K, et al. Adsorption performance of phosphorus by magnetic Mg/Al-LDHs prepared under different conditions[J]. Acta Scientiae Circumstantiae, 2020, 40(2): 520-526(in Chinese). doi: 10.13671/j.hjkxxb.2019.0425
[11] LU Y, JIANG B, FANG L, et al. High performance NiFe layered double hydroxide for methyl orange dye and Cr(Ⅵ) adsorption[J]. Chemosphere, 2016, 152: 415-422. doi: 10.1016/j.chemosphere.2016.03.015 [12] MOSTAFA M S, BAKR A S A, EL NAGGAR A M A, et al. Water decontamination via the removal of Pb (Ⅱ) using a new generation of highly energetic surface nano-material: Co+2Mo+6 LDH[J]. Journal of Colloid and Interface Science, 2016, 461: 261-272. doi: 10.1016/j.jcis.2015.08.060 [13] BO L F, LI Q R, WANG Y H, et al. One-pot hydrothermal synthesis of thrust spherical Mg-Al layered double hydroxides/MnO2 and adsorption for Pb(II) from aqueous solutions[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 1468-1475. doi: 10.1016/j.jece.2015.05.023 [14] JIA Y H, LIU Z H. Preparation of borate anions intercalated MgAl-LDHs microsphere and its calcinated product with superior adsorption performance for Congo red[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 575: 373-381. [15] TAN X F, LIU Y G, GU Y L, et al. Biochar-based nano-composites for the decontamination of wastewater: A review[J]. Bioresource Technology, 2016, 212: 318-333. doi: 10.1016/j.biortech.2016.04.093 [16] 向洋, 张翔凌, 雷雨, 等. 不同合成条件对ZnAl-LDHs覆膜改性生物陶粒除磷效果的影响[J]. 环境科学, 2018, 39(5): 2184-2194. doi: 10.13227/j.hjkx.201710128 XIANG Y, ZHANG X L, LEI Y, et al. Influencing factors for phosphorus removal by modified bio-ceramic substrates coated with ZnAl-LDHs synthesized by different modification conditions[J]. Environmental Science, 2018, 39(5): 2184-2194(in Chinese). doi: 10.13227/j.hjkx.201710128
[17] 张翔凌, 黄华玲, 郭露, 等. Zn系LDHs覆膜改性人工湿地沸石基质除磷机制[J]. 环境科学, 2016, 37(8): 3058-3066. doi: 10.13227/j.hjkx.2016.08.029 ZHANG X L, HUANG H L, GUO L, et al. Mechanisms of phosphorus removal by modified zeolites substrates coated with Zn-LDHs in laboratory-scale vertical-flow constructed wetlands[J]. Environmental Science, 2016, 37(8): 3058-3066(in Chinese). doi: 10.13227/j.hjkx.2016.08.029
[18] CHEN S, HUANG Y, HAN X, et al. Simultaneous and efficient removal of Cr(Ⅵ) and methyl orange on LDHs decorated porous carbons[J]. Chemical Engineering Journal, 2018, 352: 306-315. doi: 10.1016/j.cej.2018.07.012 [19] WANG T, LI C, WANG C Q, et al. Biochar/MnAl-LDH composites for Cu(Ⅱ) removal from aqueous solution[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 538: 443-450. doi: 10.1016/j.colsurfa.2017.11.034 [20] 周佳丽, 林伟雄, 关智杰, 等. 响应曲面法优化KOH改性污泥生物炭的制备及其强化去除Pb(Ⅱ)的研究[J]. 环境科学学报, 2022, 42(8): 194-207. doi: 10.13671/j.hjkxxb.2021.0565 ZHOU J L, LIN W X, GUAN Z J, et al. Optimization of preparation of KOH-modified sludge biochar by response surface method and its enhanced Pb(Ⅱ)removal[J]. Acta Scientiae Circumstantiae, 2022, 42(8): 194-207(in Chinese). doi: 10.13671/j.hjkxxb.2021.0565
[21] BEHBAHANI E S, DASHTIAN K, GHAEDI M. Fe3O4-FeMoS4: Promise magnetite LDH-based adsorbent for simultaneous removal of Pb (Ⅱ), Cd (Ⅱ), and Cu (Ⅱ) heavy metal ions[J]. Journal of Hazardous Materials, 2021, 410: 124560. doi: 10.1016/j.jhazmat.2020.124560 [22] HERATH A, LAYNE C A, PEREZ F, et al. KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr(Ⅵ), Pb(Ⅱ) and Cd(Ⅱ)[J]. Chemosphere, 2021, 269: 128409. doi: 10.1016/j.chemosphere.2020.128409 [23] YANG T T, XU Y M, HUANG Q Q, et al. Adsorption characteristics and the removal mechanism of two novel Fe-Zn composite modified biochar for Cd(Ⅱ) in water[J]. Bioresource Technology, 2021, 333: 125078. doi: 10.1016/j.biortech.2021.125078 [24] PENG Y T, SUN Y Q, SUN R Z, et al. Optimizing the synthesis of Fe/Al (Hydr)oxides-Biochars to maximize phosphate removal via response surface model[J]. Journal of Cleaner Production, 2019, 237: 117770. doi: 10.1016/j.jclepro.2019.117770 [25] ZHENG X G, ZHU Q, PENG H, et al. Efficient solar-light induced photocatalytic capacity of Mg-Al LDO coupled with N-defected g-C3N4[J]. Chemical Physics Letters, 2021, 779: 138846. doi: 10.1016/j.cplett.2021.138846 [26] ZHANG W, SONG J Y, HE Q L, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(Ⅱ) removal[J]. Journal of Hazardous Materials, 2020, 384: 121445. doi: 10.1016/j.jhazmat.2019.121445 [27] WU J W, WANG T, WANG J W, et al. A novel modified method for the efficient removal of Pb and Cd from wastewater by biochar: Enhanced the ion exchange and precipitation capacity[J]. Science of the Total Environment, 2021, 754: 142150. doi: 10.1016/j.scitotenv.2020.142150 [28] WONGROD S, SIMON S, van HULLEBUSCH E D, et al. Changes of sewage sludge digestate-derived biochar properties after chemical treatments and influence on As(III and V) and Cd(II) sorption[J]. International Biodeterioration & Biodegradation, 2018, 135: 96-102.