-
海洋中的溶解氧对于维持海洋生物的生命活动及海洋生态系统的稳定具有重要作用[1-4]. 海洋溶解氧的收支受物理、生物和化学等过程的共同影响,且这些过程所造成的氧同位素分馏效应是不同的(图1)[5-8]. 海洋溶解氧的主要来源为海洋表层的大气溶解氧和浮游植物光合作用产氧. 当混合层中的氧气达到溶解平衡后,其氧同位素组成(δ18O)大约为+0.7‰,而光合作用产生的氧气其δ18O与源海水相同,即δ18O约为-23.5‰[7]. 大洋混合层中溶解氧的δ18O为二者的混合值,δ18O越低指征该海域生产力越高[9]. 河口或受冰川融水影响的海域海水的δ18O值偏低,如受长江冲淡水影响的长江口及其毗邻海域[10]. 当夏季海洋表层的生产力较高时,长江口海洋溶解氧的δ18O值可能会低至-5‰[11]. 氧气的消耗过程主要为生物呼吸作用耗氧. 由于生物在呼吸过程中倾向于消耗较轻的氧同位素(16O),使得水体中剩余的溶解氧更富集较重的氧同位素(18O). 因此,随着呼吸作用的进行,海洋溶解氧浓度降低,且剩余溶解氧的δ18O升高. 海洋中的呼吸耗氧遵循封闭系统瑞利分馏的原则,与氧浓度呈现非线性的变化关系(图1)[12]. 不管是在开阔大洋还是在河口海岸的陆架区域,生物呼吸作用不仅能发生在水柱中(water column respiration, WCR),也发生在底层沉积物中(sediment oxygen respiration, SOR)[13],且这两种呼吸作用显示出不同的氧同位素分馏效应(图1). 观测到的海洋浮游生物WCR氧同位素分馏系数范围为-26‰至-14‰[14],而培养实验得到的SOR氧同位素分馏系数为-5‰至-1‰[15]. 因此,两种呼吸过程会造成迥异的溶解氧δ18O演化趋势,且普遍认为SOR对于水体中溶解氧的氧同位素分馏效应较小. 利用这个特征,前人区分及量化分析了海洋耗氧过程中水柱呼吸与沉积物呼吸的占比[11,16]. 另外,洋流导致的物理输运,如平流、扩散等,也会影响海洋溶解氧浓度和同位素组成. 但物理作用引起的水团混合对δ18O和氧浓度的影响是线性的,与呼吸作用不同(图1). 基于溶解氧同位素在氧循环各过程中的特性,尤其是在不同耗氧过程中分馏效应的差异,使得其成为研究海洋溶解氧收支平衡的重要指标之一[6].
由于人类活动的影响,河口海岸区域的营养盐输入激增,导致长江口及其周边海域富营养化,引发海洋缺氧事件,且近年来观测到的缺氧区面积也在逐渐扩大[17-20]. 长江口缺氧区的形成机制复杂,海水的层化、海底地形及富营养化引起的耗氧过程等都会加剧底层海水的缺氧程度[21-24]. 由于长江口海域的整体水深较浅,底层沉积物中富含海洋自生及陆源输入的有机质[25],底层水受沉积物再悬浮的影响也会造成额外的有机质分解耗氧[26]. 因此,生物通过呼吸作用降解有机物消耗氧气的过程不仅发生在水柱中,沉积物中的生物呼吸也是不容忽视的过程[27]. 探究WCR和SOR对长江口缺氧的贡献,对于探讨该海域缺氧区的形成机制具有重要意义.
测量海洋溶解氧的同位素组成需要较为严格的采样、提取和纯化条件,具有一定的难度. 利用溶解氧同位素探究海洋氧循环的研究多集中于美国东西岸及墨西哥湾等海域[28-30],并没有在各大海域得到广泛的应用.
本文详细描述了海洋溶解氧的采集、实验室提取和纯化及呼吸作用暗培养的方法,并阐述了氧同位素的质谱仪测量和数据校正的具体过程. 同时,利用2020年于长江口采集的混合层海水和底层沉积物,分别进行了暗培养实验,确定了长江口特定的WCR和SOR的氧同位素分馏系数,并估算了水柱呼吸和沉积物呼吸在总耗氧量中的占比,分析了长江口缺氧区占主导的耗氧机制.
海洋溶解氧同位素的测量方法及其在长江口缺氧研究中的应用
Oxygen isotope analysis of marine dissolved oxygen and its application to the Changjiang Estuary hypoxia
-
摘要: 海洋溶解氧及其同位素组成可有效示踪海洋氧循环过程中复杂的生物、化学和物理过程. 海洋溶解氧的采集及提取过程需在严格的真空条件下进行,以避免大气中氧气带来的影响. 本文详细阐述了利用特制的真空样品瓶采集海水,并在实验室真空管线上提取及纯化溶解气体的过程. 纯化后的溶解气体在气体同位素质谱仪上测量,经过零点校正、质量干扰校正和空气标样校正后得到高精度的氧同位素和氧氩比数据. 基于以上方法,本实验对长江口混合层海水及底层沉积物进行了呼吸作用暗培养. 通过在不同的时间节点采集暗培养的海水,并测量其溶解氧同位素组成. 基于实验结果,计算出长江口特征的水柱呼吸氧同位素分馏系数为-20.9‰,沉积物呼吸的氧同位素分馏系数为-8.8‰,二者具有明显的差异,可被用作区分及量化分析长江口不同耗氧机制的端元值. 结合长江口原位采集的底层溶解氧的同位素组成,及本实验确定的水柱呼吸和沉积物呼吸的氧同位素分馏端元值,基于呼吸过程中氧同位素分馏的质量守恒,计算出长江口F6站位(126.00°E,30.60°N)水柱耗氧占比约为71%,沉积物耗氧的比例约为29%,说明发生在水柱中的生物呼吸作用为长江口F6站位的主要耗氧机制.Abstract: Marine dissolved oxygen (DO) and its isotopic composition are useful tracers for the biogeochemical and physical processes in marine oxygen cycling. DO sampling and extraction need to be performed under strict vacuum conditions, in order to avoid contaminations from the atmospheric O2. In this study, we describe the detail procedures for DO sampling using vacuum sample flasks, and its extraction and purification processes using a lab vacuum line. The purified DO sample is analyzed on a gas mass spectrometer, isotopically corrected, and finally reported versus air. Based on this method, we performed dark incubation experiments using mixed layer seawater and basal sediments collected from the Changjiang Estuary. During the course of incubation experiments, we collected and analyzed the DO isotopic compositions of incubated water. Then, we calculated the oxygen isotopic fractionation factors for water column reparation (WCR) and sediment oxygen respiration (SOR), with values of -20.9‰ and -8.8‰, respectively. These two distinct fractionation factor endmembers could be used for quantifying the oxygen consumption budget for the Changjiang Estuary hypoxia. Based on the mass balance of oxygen isotope fractionations during respiration, we estimate that WCR contributes to about 71% and SOR contributes to about 28% of the total oxygen consumption at station F6 (126.00°E, 30.60°N) off the Changjiang Estuary. Therefore, we conclude that WCR is the dominate oxygen consumption process at station F6 during the Changjiang Estuary hypoxia.
-
Key words:
- dissolved oxygen /
- oxygen isotope /
- isotope measurement /
- the Changjiang Estuary /
- hypoxia
-
表 1 氧同位素测量校正参数及标样精度
Table 1. Isotopic correction parameters and precisions
2020.06 — 2020.10 2020.10—2021.03 零点校正a
Zero enrichmentNd 66 13 δ18O/‰ -0.005 -0.005 δO2/Ar/‰ +0.018 -0.011 质量干扰斜率
Mass interference slopeδ18O – δΝ2/O2 −5.514×10−5 −2.112×10−3 δO2/Ar – δΝ2/O2 −7.958×10−3 −1.341×10−2 空气标样精度b
Precision of air standardsNd 60 54 δ18O /‰ ±0.035 ±0.035 δO2/Ar /‰ ±0.4 ±0.5 平衡溶解气标样c
Dissolved gasesNd 7 5 δ18O /‰ 0.753 0.846 δO2/Ar /‰ -92.7 -90.8 a测量周期中所有零点校正的平均值;b空气标样精度为实验室测量的外部精度(1σ);c 实验室所制的平衡溶解气的氧同位素及气体比值平均值;d N代表标样数量
a Mean values of zero enrichments during the same analytical session; b External precisions (1σ) are established on air standards; c Mean values of lab equilibrated dissolved gases; d N represents numbers of analyses表 2 培养实验取样时间及同位素数据
Table 2. Sampling information and isotopic data of dark incubation experiments
采样时间
Sampling timeδ18O / ‰ δO2/Ar / ‰ 溶解氧浓度/ (μmol∙kg−1)
Dissolved oxygen concentration混合层海水呼吸作用暗培养 2020.08.06a −3.858 29.9 259.4 2020.08.18 7.474 −401.4 150.8 2020.08.24 10.638 −484.7 129.8 2020.09.07 11.768 −514.0 122.4 沉积物呼吸作用暗培养 2020.09.15a 0.835 −125.9 210.1 2020.09.16 2.848 −293.0 169.9 2020.09.17 4.547 −406.3 142.7 2020.09.17 4.810 −427.3 137.7 2020.09.18 5.529 −490.9 122.4 2020.09.18 6.488 −530.8 112.8 a 该组培养实验的t0样品. a Initial incubation samples (t0) -
[1] DIAZ R J, ROSENBERG R. Spreading dead zones and consequences for marine ecosystems [J]. Science, 2008, 321(5891): 926-929. doi: 10.1126/science.1156401 [2] STRAMMA L, SCHMIDTKO S, LEVIN L A, et al. Ocean oxygen minima expansions and their biological impacts [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2010, 57(4): 587-595. doi: 10.1016/j.dsr.2010.01.005 [3] CHEN C C, GONG G C, SHIAH F K. Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world [J]. Marine Environmental Research, 2007, 64(4): 399-408. doi: 10.1016/j.marenvres.2007.01.007 [4] GONG H J, LI C, ZHOU Y T. Emerging global ocean deoxygenation across the 21st century [J]. Geophysical Research Letters, 2021, 48(23): 095370. [5] BENDER M L. The δ18O of dissolved O2 in seawater: A unique tracer of circulation and respiration in the deep sea [J]. Journal of Geophysical Research, 1990, 95(C12): 22243. doi: 10.1029/JC095iC12p22243 [6] LEVINE N M, BENDER M L, DONEY S C. Theδ18O of dissolved O2 as a tracer of mixing and respiration in the mesopelagic ocean [J]. Global Biogeochemical Cycles, 2009, 23(1): GB1006. [7] QUAY P D, EMERSON S, WILBUR D O, et al. The δ18O of dissolved O2 in the surface waters of the subarctic Pacific: A tracer of biological productivity [J]. Journal of Geophysical Research:Oceans, 1993, 98(C5): 8447-8458. doi: 10.1029/92JC03017 [8] MADER M, SCHMIDT C, van GELDERN R, et al. Dissolved oxygen in water and its stable isotope effects: A review [J]. Chemical Geology, 2017, 473: 10-21. doi: 10.1016/j.chemgeo.2017.10.003 [9] FRY B, BOYD B. Oxygen concentration and isotope studies of productivity and respiration on the Louisiana continental shelf, July 2007 [J]. Earth, Life and Isotopes, 2010: 223-241. [10] XI S S, LIU G J, ZHOU C C, et al. Assessment of the sources of nitrate in the Chaohu Lake, China, using a nitrogen and oxygen isotopic approach [J]. Environmental Earth Sciences, 2015, 74(2): 1647-1655. doi: 10.1007/s12665-015-4170-8 [11] ZHOU J, ZHU Z Y, HU H T, et al. Clarifying water column respiration and sedimentary oxygen respiration under oxygen depletion off the Changjiang Estuary and adjacent East China Sea [J]. Frontiers in Marine Science, 2021, 7: 623581. doi: 10.3389/fmars.2020.623581 [12] KIDDON J, BENDER M L, ORCHARDO J, et al. Isotopic fractionation of oxygen by respiring marine organisms [J]. Global Biogeochemical Cycles, 1993, 7(3): 679-694. doi: 10.1029/93GB01444 [13] SONG G D, LIU S M, ZHANG J, et al. Response of benthic nitrogen cycling to estuarine hypoxia [J]. Limnology and Oceanography, 2021, 66(3): 652-666. doi: 10.1002/lno.11630 [14] STOLPER D A, FISCHER W W, BENDER M L. Effects of temperature and carbon source on the isotopic fractionations associated with O2 respiration for 17O/16O and 18O/16O ratios in E. coli [J]. Geochimica et Cosmochimica Acta, 2018, 240: 152-172. doi: 10.1016/j.gca.2018.07.039 [15] BRANDES J A, DEVOL A H. Isotopic fractionation of oxygen and nitrogen in coastal marine sediments [J]. Geochimica et Cosmochimica Acta, 1997, 61(9): 1793-1801. doi: 10.1016/S0016-7037(97)00041-0 [16] OSTROM N E, GANDHI H, KAMPHUIS B, et al. Oxygen metabolism and water mass mixing in the northern Gulf of Mexico hypoxic zone in 2010 [J]. Geochimica et Cosmochimica Acta, 2014, 140: 39-49. doi: 10.1016/j.gca.2014.05.020 [17] ZHU Z Y, WU H, LIU S M, et al. Hypoxia off the Changjiang (Yangtze River) estuary and in the adjacent East China Sea: Quantitative approaches to estimating the tidal impact and nutrient regeneration [J]. Marine Pollution Bulletin, 2017, 125(1/2): 103-114. [18] ZHANG J, ZHANG Z F, LIU S M, et al. Human impacts on the large world rivers: Would the Changjiang (Yangtze River) be an illustration? [J]. Global Biogeochemical Cycles, 1999, 13(4): 1099-1105. doi: 10.1029/1999GB900044 [19] LI D J, ZHANG J, HUANG D J, et al. Oxygen depletion off the Changjiang (Yangtze River) Estuary [J]. Science in China Series D:Earth Sciences, 2002, 45(12): 1137-1146. doi: 10.1360/02yd9110 [20] PITCHER G C, AGUIRRE-VELARDE A, BREITBURG D, et al. System controls of coastal and open ocean oxygen depletion [J]. Progress in Oceanography, 2021, 197: 102613. doi: 10.1016/j.pocean.2021.102613 [21] ZHU Z Y, ZHANG J, WU Y, et al. Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition [J]. Marine Chemistry, 2011, 125(1/2/3/4): 108-116. [22] ZHOU F, CHAI F, HUANG D J, et al. Investigation of hypoxia off the Changjiang Estuary using a coupled model of ROMS-CoSiNE [J]. Progress in Oceanography, 2017, 159: 237-254. doi: 10.1016/j.pocean.2017.10.008 [23] 李宏亮, 陈建芳, 卢勇, 等. 长江口水体溶解氧的季节变化及底层低氧成因分析 [J]. 海洋学研究, 2011, 29(3): 78-87. doi: 10.3969/j.issn.1001-909X.2011.03.010 LI H L, CHEN J F, LU Y, et al. Seasonal variation of DO and formation mechanism of bottom water hypoxia of Changjiang River Estuary [J]. Journal of Marine Sciences, 2011, 29(3): 78-87(in Chinese). doi: 10.3969/j.issn.1001-909X.2011.03.010
[24] 韦钦胜, 王保栋, 陈建芳, 等. 长江口外缺氧区生消过程和机制的再认知 [J]. 中国科学:地球科学, 2015, 45(2): 187-206. doi: 10.1360/zd-2015-45-2-187 WEI Q S, WANG B D, CHEN J F, et al. Recognition on the forming-vanishing process and underlying mechanisms of the hypoxia off the Yangtze River Estuary [J]. Scientia Sinica Terrae, 2015, 45(2): 187-206(in Chinese). doi: 10.1360/zd-2015-45-2-187
[25] 吕晓霞, 翟世奎, 牛丽凤. 长江口柱状沉积物中有机质C/N比的研究 [J]. 环境化学, 2005, 24(3): 255-259. doi: 10.3321/j.issn:0254-6108.2005.03.007 LÜ X X, ZHAI S K, NIU L F. Study on the C/N ratios of organic matters in the core sediments of the Yangtze River Estuary [J]. Environmental Chemistry, 2005, 24(3): 255-259(in Chinese). doi: 10.3321/j.issn:0254-6108.2005.03.007
[26] YAO P, ZHAO B, BIANCHI T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation [J]. Continental Shelf Research, 2014, 91: 1-11. doi: 10.1016/j.csr.2014.08.010 [27] SONG G D, LIU S M, ZHU Z Y, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea [J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2016, 124: 53-63. doi: 10.1016/j.dsr2.2015.04.012 [28] QUIÑONES-RIVERA Z J, WISSEL B, JUSTIĆ D. Development of productivity models for the northern gulf of Mexico based on oxygen concentrations and stable isotopes [J]. Estuaries and Coasts, 2009, 32(3): 436-446. doi: 10.1007/s12237-009-9144-1 [29] LEHMANN M F, BARNETT B, GÉLINAS Y, et al. Aerobic respiration and hypoxia in the Lower St. Lawrence Estuary: Stable isotope ratios of dissolved oxygen constrain oxygen sink partitioning [J]. Limnology and Oceanography, 2009, 54(6): 2157-2169. doi: 10.4319/lo.2009.54.6.2157 [30] QUIÑONES-RIVERA Z J, WISSEL B, JUSTIĆ D, et al. Partitioning oxygen sources and sinks in a stratified, eutrophic coastal ecosystem using stable oxygen isotopes [J]. Marine Ecology Progress Series, 2007, 342: 69-83. doi: 10.3354/meps342069 [31] DePOORTER G L, ROFER-DEPOORTER C K. Oxygen-18 isotope effects in the electronic spectrum of UO2F2. II. Temperature effects [J]. Inorganic and Nuclear Chemistry Letters, 1978, 14(10): 333-335. doi: 10.1016/0020-1650(78)80050-6 [32] KROOPNICK P, CRAIG H. Oxygen isotope fractionation in dissolved oxygen in the deep sea [J]. Earth and Planetary Science Letters, 1976, 32(2): 375-388. doi: 10.1016/0012-821X(76)90078-9 [33] RAYLEIGH L. L. Theoretical considerations respecting the separation of gases by diffusion and similar processes [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1896, 42(259): 493-498. doi: 10.1080/14786449608620944 [34] EMERSON S, QUAY P D, STUMP C, et al. Chemical tracers of productivity and respiration in the subtropical Pacific Ocean [J]. Journal of Geophysical Research, 1995, 100(C8): 15873. doi: 10.1029/95JC01333 [35] BENDER M L, TANS P P, ELLIS J T, et al. A high precision isotope ratio mass spectrometry method for measuring the O2N2 [J]. Geochimica et Cosmochimica Acta, 1994, 58(21): 4751-4758. doi: 10.1016/0016-7037(94)90205-4 [36] CASSAR N, BARNETT B A, BENDER M L, et al. Continuous high-frequency dissolved O2/Ar measurements by equilibrator inlet mass spectrometry [J]. Analytical Chemistry, 2009, 81(5): 1855-1864. doi: 10.1021/ac802300u [37] JURANEK L W, QUAY P D. Basin-wide photosynthetic production rates in the subtropical and tropical Pacific Ocean determined from dissolved oxygen isotope ratio measurements [J]. Global Biogeochemical Cycles, 2010, 24(2): GB2006. [38] OYABU I, KAWAMURA K, UCHIDA T, et al. Fractionation of O2∕N2 and Ar∕N2 in the Antarctic ice sheet during bubble formation and bubble-clathrate hydrate transition from precise gas measurements of the Dome Fuji ice core [J]. The Cryosphere, 2021, 15(12): 5529-5555. doi: 10.5194/tc-15-5529-2021 [39] HAMME R C, EMERSON S R. The solubility of neon, nitrogen and argon in distilled water and seawater [J]. Deep Sea Research Part I:Oceanographic Research Papers, 2004, 51(11): 1517-1528. doi: 10.1016/j.dsr.2004.06.009 [40] BENSON B B, KRAUSE D. The concentration and isotopic fractionation of oxygen dissolved in freshwater and seawater in equilibrium with the atmosphere [J]. Deep Sea Research Part B. Oceanographic Literature Review, 1984, 31(12): 859. [41] LI B D, YEUNG L Y, HU H T, et al. Kinetic and equilibrium fractionation of O2 isotopologues during air-water gas transfer and implications for tracing oxygen cycling in the ocean [J]. Marine Chemistry, 2019, 210: 61-71. doi: 10.1016/j.marchem.2019.02.006 [42] CRAIG H, HAYWARD T. Oxygen supersaturation in the ocean: Biological versus physical contributions [J]. Science, 1987, 235(4785): 199-202. doi: 10.1126/science.235.4785.199 [43] SPITZER W S, JENKINS W J. Rates of vertical mixing, gas exchange and new production: Estimates from seasonal gas cycles in the upper ocean near Bermuda [J]. Journal of Marine Research, 1989, 47(1): 169-196. doi: 10.1357/002224089785076370