-
空气负离子(NAI)是指由于空气中氧分子优先获得多余电子后带负电荷的空气离子[1]. NAI广泛分布在自然环境中,尤以森林和湿地较为突出[2]. 目前NAI被用作评价给定区域的生态服务的重要指标,被称为“空气维生素”[3-5]. NAI的产生和影响因素非常复杂多变,主要来源于植物效应、Lenard效应、放射性物质诱导等[6-14]. 另外,NAI浓度受水源的距离影响表现出一定的差异性[15].
湿地作为三大生态系统之一,被誉为“地球之肾”[16],为人类提供多种不可替代的生态产品. 自20世纪50年代以来,广泛开展了对湿地的研究工作,如湿地的分类、性质和功能等[17-18]. 但针对湿地生态系统NAI浓度的研究相对较少[19]. 仅有研究集中于湿地NAI浓度变化特征及空间分布等方面的研究[20-21],其中影响因子仅涉及林型、林地面积、湿地大小、距水体远近及空气相对湿度、温度、水汽压等[22-25],而针对植物群落的生物特征(如株高、冠幅、绿量、灌木体积等)、地理特征(如距公园边缘距离、距山体距离等)和光照强度与NAI浓度的相关性研究尚未报道;且相关研究未涉及综合特征因子(植物特征、地理因子、环境因子)对湿地公园四季NAI浓度影响的研究[26-27],本文以花溪湿地公园为研究对象,综合考虑城市湿地公园不同植物群落自身结构特征和地理特性、环境因子等多个影响因素,量化城市湿地公园NAI浓度的日变化和季节变化特征,明确植物群落与NAI浓度空间分布的相关关系,研究结论可以为量化评价城市湿地公园的微气候环境效应提供理论基础.
城市湿地公园植物群落空气负离子浓度及影响因素——以花溪十里河滩国家城市湿地公园为例
Air anion concentration and influencing factors of plant community in urban wetland park——A case study of Huaxi Shilihetan National Urban Wetland Park
-
摘要: 国家湿地公园是我国自然保护地体系的重要组成部分,在调节气候、改善人居环境等方面具有重要作用. 空气负离子(NAI)浓度是衡量一个地区空气清洁度的重要指标. 为探究花溪十里河滩国家城市湿地公园不同群落NAI浓度的时间动态变化特征,以湿地公园内10种不同植物群落结构中NAI浓度为研究对象,测定NAI浓度的日变化及季节动态变化,比较不同群落结构内不同季节NAI浓度差异. 研究结果表明:1)四季NAI浓度日变化形式为春、冬季为“双峰型”,夏、秋季为“三峰型”,均呈现早晚高、中午低的特征. 不同植物群落NAI浓度四季均值大小依次为为夏(966.5±23.06) ion·cm−3>秋(487.4±23.04) ion·cm−3>春(471.28±7.88) ion·cm−3>冬(356.72±25.19) ion·cm−3;2)在湿地公园绿地中不同植物群落结构区域的NAI浓度均值大小为乔灌草(567.61±23.84) ion·cm−3>乔灌(483.51±56.08) ion·cm−3>乔(479.52±47.37) ion·cm−3>草(311.51±41.52) ion·cm−3,其中桂花—海桐—鸢尾常绿乔灌草NAI浓度年均值(696.54±21.31) ion·cm−3最高,是对照点的2.8倍. 不同植物群落类型区域的NAI浓度大小为常绿植物群落区域(600.27±38.34) ion·cm−3>落叶植物群落区域(504.12±45.39) ion·cm−3>水边植物群落区域(426.26±36.68) ion·cm−3,常绿植物群落区域和水边植物群落区域差异性显著(P<0.05). 3)相关因子中乔木数量、乔木半径/乔木冠下高度、乔木冠下高度、乔木半径、总绿量、乔木冠层体积、灌木体积、湿度、温度和光照季节均值与NAI浓度呈显著正相关,湖边距离、光照、温度和湿度季节均值呈显著负相关. 由此可见,湿地公园中NAI释放最多的季节和植物群落结构为夏季和常绿乔灌草结构,游人最佳的出行时间为早晨(8:00—10:00)及傍晚(16:00—18:00). 本研究为NAI含量时间动态模式及其驱动因素提供了新的见解,有助于当地市民选择合适的出行时间来开展湿地游憩活动,同时为湿地园林绿地规划设计优化提供基础科学依据.Abstract: National wetland parks are an essential part of China's nature reserve system and play an important role in regulating the climate and improving human habitat. Negative air ion (NAI) concentration is an essential indicator of the cleanliness of an area's air.To investigate the temporal dynamics of NAI concentrations in different communities in the Huaxi Shilihetan National Urban Wetland Park, the daily and seasonal dynamics of NAI concentrations in 10 plant community structures in the park were measured to compare the differences in NAI concentrations between different community structures in different seasons.The results of the study showed that 1) the daily variation of NAI concentration in all seasons was in the form of “bimodal” in spring and winter and “trimodal” in summer and autumn, with a characteristic of high in the morning and low in the afternoon. The mean NAI concentrations in different plant communities were in the order of summer (966.5±23.06) ion·cm−3 > autumn (487.4±23.04) ion·cm−3 > spring(471.28±7.88) ion·cm−3 > winter (356.72±25.19) ion·cm−3. 2) The mean NAI concentrations in the different plant community structure areas in the wetland park greenery were (567.61±23.84) ion·cm−3 for trees and grasses > (483.51±56.08) ion·cm−3 for trees and grasses > (479.52±47.37) ion·cm−3 for trees > (311.51±41.52)ion·cm−3 for grasses, with Osmanthus-Haystack-Iris The highest annual mean NAI concentrations were found at the control site(696.54±21.31) ion·cm−3 for the evergreen trees and grasses, which was 2.8 times higher than the control site. The magnitude of NAI concentrations in the different plant community types was(600.27±38.34) ion·cm−3 in the evergreen community > (504.12±45.39) ion·cm−3 in the deciduous community >(426.26±36.68)ion·cm−3 in the waterside community, with significant differences between the evergreen and waterside community areas (P < 0.05), and the evergreen and waterside plant communities were significantly different (P < 0.05). 3) The number of trees, tree radius/under canopy height of trees, under canopy height of trees, tree radius, total green volume, tree canopy volume, shrub volume, humidity, temperature, and light seasonal means were significantly and positively correlated with NAI concentration, while the distance from the lake, light, temperature, and humidity seasonal means were significantly and negatively correlated. This shows that the season and plant community structure with the highest NAI release in the wetland park is summer and evergreen tree and shrub structure, and the best time for visitors to travel is in the morning(8:00—10:00)and evening (16:00—18:00). This study provides new insights into the temporal dynamics of NAI content patterns and their drivers, which will help local citizens to select suitable travel time for wetland recreation activities, and provide a primary scientific basis for wetland garden planning and design optimization.
-
表 1 花溪十里河滩国家城市湿地公园样地概况
Table 1. Plot overview of Huaxi Shilihetan National Urban Wetland Park
样地
Plot No样地主要物种
Main species of plot乔木树种
Tree species灌木树种
Shrub species草本种类
Herbaceous species绿地类型
Greenbelt
Types监测点(图1)
Monitoring points
(Figure 1)CK1 对照 1、2、26 CK2 静水 对照 4、18、35 L 早熟禾(Poa annua) 黑麦草(Lolium perenne)、早熟禾(Poa annua) 草地 22、23、30 A1 香樟(Cinnamomum camphora) 香樟(Cinnamomum camphora) 常绿乔木 3、27、32 A2 香樟(Cinnamomum camphora)、木槿(Hibiscus syriacus) 香樟(Cinnamomum camphora) 木槿(Hibiscus syriacus.)、海桐( Pittosporum tobira )、南天竹(Nandina domestica) 常绿乔灌 6、21、34 A3 桂花(Osmanthus fragrans)、海桐( Pittosporum tobira )、鸢尾(Iris tectorum) 银桂(Osmanthus fragrans 'Latifolius')香樟(Cinnamomum camphora)、广玉兰(Magnolia Grandiflora) 南天竹(Nandina domestica)、海桐( Pittosporum tobira ) 鸢尾(Iris tectorum)、蒲苇(Cortaderia selloana) 常绿乔灌草 5、11、33 B1 水杉(Metasequoia glyptostroboides) 水杉(Metasequoia glyptostroboides) 落叶乔木 10、17、19 B2 水杉(Metasequoia glyptostroboides)、玉簪(Hosta plantaginea) 水杉(Metasequoia glyptostroboides) 玉簪(Hosta plantaginea) 落叶乔草 12、13、20 B3 枫杨(Pterocarya stenoptera)、南天竹(Nandina domestica)、玉簪(Hosta plantaginea) 枫杨(Pterocarya stenoptera) 南天竹(Nandina domestica)、海桐( Pittosporum tobira ) 玉簪(Hosta plantaginea)、蒲苇(Cortaderia selloana)、石竹(Dianthus chinensis) 落叶乔灌草 8、9、31 C1 垂柳(Salix babylonica)、桃树(Prunus persica) 垂柳(Salix babylonica)、桃树(Prunus persica) 水边乔木 7、28、29 C2 水杉(Metasequoia glyptostroboides)、黄菖蒲(Iris pseudacorus) 水杉(Metasequoia glyptostroboides) 黄菖蒲(Iris pseudacorus)、吉祥草(Reineckia carnea) 水边乔灌 15、25、27 C3 水杉(Metasequoia glyptostroboides)、木芙蓉(Hibiscus mutabilis)、芦苇(Phragmites australis) 水杉(Metasequoia glyptostroboide)、日本晚樱(Prunus serrulata var. lannesiana) 木芙蓉(Hibiscus mutabilis)、水麻(Boehmeria penduliflora) 芦苇(Phragmites australis) 水边乔灌草 14、16、24 表 2 NAI浓度季节变化(ion·cm−3)
Table 2. Seasonal variation of air anion concentration
样地
Plot春季
Spring夏季
Summer秋季
Autumn冬季
Winter年平均值
Annual verageCK1 191.24±12.45fgC 375±44.38hA 252.60±8.50hiB 212.15±40.48efD 270.55±14.95gh CK2 127.64±0.24hA 446.69±22.30ghA 165.39±36.08jA 125.02±16.11fA 216.2±7.63gh L 203.33±22.41ghC 536.36±89.94fghA 212.92±14.35ijB 198.52±7.05defC 293.34±24.69g A1 383.80±37.09deC 833.±50.01bcdA 536.93±29.10dB 349.56±11.37bcD 533.32±30.90c A2 407.2±27.52bcdC 755.32±71.43cdeA 579.25±60.03cB 358.6±35.21bcD 525.09±24.86c A3 425.97±9.34bcdC 1159.46±90.4bA 748.42±37.95bB 452.3±19.38bD 696.54±21.31b B1 354.68±23.70deC 774.76±29.66cdeA 373.44±49.37fB 308.92±25.46cdD 452.93±11.85d B2 388.27±19.59cdeC 708.1±62.76cdeA 420.47±33.53efB 314.22±13.28cD 457.77±9.70d B3 467.49±24.33bcC 899.13±30.29bcA 556.45±27.02cdB 346.73±13.77cD 567.93±10.11c C1 308.21±8.49efB 617.65±51.33defA 283.46±25.22ghC 259.48±17.51bcD 367.2±13.13f C2 475.45±19.72bB 638.06±33.60efgA 321.62±17.82gC 303.04±14.81bcD 434.54±10.73de C3 480.86±15.5bB 630.10±40.42efgA 338±11.07gC 333.86±20.97cdeD 445.71±12.54de 平均值 471.28±7.88 966.5±23.06 487.4±23.04 356.72±25.19 572.8±8.06 不同的小写字母表示同一季节差异,不同大写字母表示同一群落结构季节差异性(P<0.05).
Different lowercase letters indicate the same seasonal difference, and different uppercase lettersindicate the seasonal difference of the same community structure. (P<0.05) -
[1] 潘剑彬, 李佳妮, 李树华, 等. 城市绿地植物群落与空气负离子空间分异特征相关关系研究: 以北京奥林匹克森林公园为例 [J]. 中国园林, 2022, 38(6): 57-62. PAN J B, LI J N, LI S H, et al. Study on the relationship between plant community and spatial differentiation of negative air ions in urban green space—A case study of Beijing Olympic forest park [J]. Chinese Landscape Architecture, 2022, 38(6): 57-62(in Chinese).
[2] MIAO S, ZHANG X Y, HAN Y J, et al. Random forest algorithm for the relationship between negative air ions and environmental factors in an urban park [J]. Atmosphere, 2018, 9(12): 463. doi: 10.3390/atmos9120463 [3] BOWERS B, FLORY R, AMETEPE J, et al. Controlled trial evaluation of exposure duration to negative air ions for the treatment of seasonal affective disorder [J]. Psychiatry Research, 2018, 259: 7-14. doi: 10.1016/j.psychres.2017.08.040 [4] ZHANG Z Z, TAO S C, ZHOU B Z, et al. Plant stomatal conductance determined transpiration and photosynthesis both contribute to the enhanced negative air ion (NAI) [J]. Ecological Indicators, 2021, 130: 108114. doi: 10.1016/j.ecolind.2021.108114 [5] 吴志萍, 王成. 城市绿地与人体健康 [J]. 世界林业研究, 2007, 20(2): 32-37. WU Z P, WANG C. Urban green space and human health [J]. World Forestry Research, 2007, 20(2): 32-37(in Chinese).
[6] 闫秀婧. 青岛市森林与湿地负离子水平时空分布研究[D]. 北京: 北京林业大学, 2009. YAN X J. Study on temporal and spatial distribution of the forest and wetland anion concentration in Qingdao[D]. Beijing: Beijing Forestry University, 2009(in Chinese).
[7] 朱怡诺, 崔丽娟, 李伟. 湿地环境中负(氧)离子研究概述 [J]. 山东林业科技, 2018, 48(3): 96-99,108. ZHU Y N, CUI L J, LI W. Summary of negative air ions in wetland environment [J]. Journal of Shandong Forestry Science and Technology, 2018, 48(3): 96-99,108(in Chinese).
[8] JIANG S Y, MA A L, RAMACHANDRAN S. Negative air ions and their effects on human health and air quality improvement [J]. International Journal of Molecular Sciences, 2018, 19(10): 2966. doi: 10.3390/ijms19102966 [9] 邵海荣, 杜建军, 单宏臣, 等. 用空气负离子浓度对北京地区空气清洁度进行初步评价 [J]. 北京林业大学学报, 2005(4): 56-59. SHAO H R, DU J J, SHAN H C, et al. Assessment of air cleanness degree in Beijing using negative air ion concentration as an index [J]. Journal of Beijing Forestry University, 2005(4): 56-59(in Chinese).
[10] ZHANG J, YU Z L. Experimental and simulative analysis of relationship between ultraviolet irradiations and concentration of negative air ions in small Chambers [J]. Journal of Aerosol Science, 2006, 37(10): 1347-1355. doi: 10.1016/j.jaerosci.2006.03.003 [11] 厉曙光, 刘琦, 李进, 等. 喷泉产生的空气负离子及其影响因素的研究 [J]. 环境与健康杂志, 2000(4): 205-207. LI S G, LIU Q, LI J, et al. Study on air negative ions produced by fountain and its effecting factors [J]. Journal of Environment and Health, 2000(4): 205-207(in Chinese).
[12] 汪炎林, 李坡, 黎有为, 等. 岩溶洞穴负离子空间分布特征与环境关系分析: 以天缘洞与水帘洞为例 [J]. 环境科学与技术, 2018, 41(9): 163-169. WANG Y L, LI P, LI Y W, et al. Analysis of relationship between spatial distribution of negative ions in Karst caves and environment: In case of Tianyuan cave and Shuilian cave [J]. Environmental Science & Technology, 2018, 41(9): 163-169(in Chinese).
[13] 王薇, 余庄. 中国城市环境中空气负离子研究进展 [J]. 生态环境学报, 2013, 22(4): 705-711. WANG W, YU Z. Research progress on negative air ions in urban environment in China [J]. Ecology and Environmental Sciences, 2013, 22(4): 705-711(in Chinese).
[14] 单晟烨. 水体空气负离子分布及其生态价值估算[D]. 哈尔滨: 哈尔滨师范大学, 2016. SHAN S Y. Negative air ions distribution of water environment and ecological value estimation[D]. Harbin: Harbin Normal University, 2016(in Chinese).
[15] 肖湘东, 丁敏, 董丽, 等. 公园特征及与水域距离对其夏季温湿效应影响研究: 以苏州工业园区为例 [J]. 中国园林, 2021, 37(9): 48-53. XIAO X D, DING M, DONG L, et al. Study on the influence of park characteristics and distance from the water area on summer temperature and humidity effect: A case study of Suzhou industrial park [J]. Chinese Landscape Architecture, 2021, 37(9): 48-53(in Chinese).
[16] 高琦, 于乐. 湿地景观生态修复国内外研究进展综述 [J]. 辽宁行政学院学报, 2017(3): 89-94. GAO Q, YU L. A review of domestic and international research progress on ecological restoration of wetland landscapes [J]. Journal of Liaoning Academy of Governance, 2017(3): 89-94(in Chinese).
[17] 崔丽娟, 雷茵茹, 张曼胤, 等. 小微湿地研究综述: 定义、类型及生态系统服务 [J]. 生态学报, 2021, 41(5): 2077-2085. CUI L J, LEI Y R, ZHANG M Y, et al. Review on small wetlands: definition, typology and ecological services [J]. Acta Ecologica Sinica, 2021, 41(5): 2077-2085(in Chinese).
[18] 张峥, 张建文, 李寅年, 等. 湿地生态评价指标体系 [J]. 农业环境保护, 1999, 18(6): 283-286. ZHANG Z, ZHANG J W, LI Y N, et al. Study on ecological evaluation index system for wetland [J]. Agro-Environmental Protection, 1999, 18(6): 283-286(in Chinese).
[19] 单晟烨, 李佳珊, 张冬有. 哈尔滨城市公园湿地环境空气负离子浓度及其生态价值估算 [J]. 湿地科学, 2015, 13(4): 478-482. SHAN S Y, LI J S, ZHANG D Y. Concentrations of negative air ion and their ecological values of wetland environment in city parks in Harbin city [J]. Wetland Science, 2015, 13(4): 478-482(in Chinese).
[20] 吕国红, 贾庆宇, 王笑影, 等. 芦苇湿地大气负氧离子变化特征及影响分析[J]. 环境科学与技术, 2018, 41(S1): 72—76. LV G H, JIA Q Y, WANG X Y, et al. Variation features of air negative oxygen ions and its influences in reed wetland[J]. Environmental Science & Technology, 2018, 41(Sup 1): 72-76(in Chinese).
[21] 熊丽君. 上海崇明岛风景旅游区空气负离子监测评价方案研究 [J]. 中国人口·资源与环境, 2011(S2): 433-436. XIONG L J. Scheme study on monitoring and evaluation of air negative ion in Chongming, Shanghai [J]. China Population, Resources and Environment, 2011(S2): 433-436(in Chinese).
[22] 任洪昌, 张礼宏, 王纯, 等. 闽江河口湿地与垦殖地的空气负离子含量研究 [J]. 湿地科学, 2014, 12(4): 424-428. REN H C, ZHANG L H, WANG C, et al. Anion concentration in the air of reclaimed lands and natural wetlands i Minjiang River Estuary [J]. Wetland Science, 2014, 12(4): 424-428(in Chinese).
[23] 闫秀婧. 青岛市森林与湿地负离子的空间分布特征 [J]. 林业科学, 2010, 46(6): 65-70. YAN X J. Spatial distribution of anion level in forests and wetland in Qingdao [J]. Scientia Silvae Sinicae, 2010, 46(6): 65-70(in Chinese).
[24] 崔丽娟, 康晓明, 赵欣胜, 等. 北京典型城市湿地小气候效应时空变化特征 [J]. 生态学杂志, 2015, 34(1): 212-218. CUI L J, KANG X M, ZHAO X S, et al. Spatiotemporal variation in the microclimate effects of typical urban wetland in Beijing [J]. Chinese Journal of Ecology, 2015, 34(1): 212-218(in Chinese).
[25] 骆世娟, 章维东, 苗洁, 等. 艾溪湖湿地公园空气负离子浓度及其与气象因子的关系[C]//. 第28届中国气象学会年会——S1第四届气象综合探测技术研讨会. 2011: 916-921. LUO S J, ZHANG W D, MIAO J, et al. Negative air ion concentration in Lake Aixi Wetland Park and its relationship with meteorological factors[C]//. The 28th Annual Meeting of the Chinese Meteorological Society -- S1 4th Symposium on Integrated Meteorological Detection Technology. 2011: 916-921(in Chinese).
[26] 高郯, 卢杰, 李江荣, 等. 林芝市不同生态功能区空气负离子特征研究 [J]. 西北林学院学报, 2019, 34(4): 70-75,165. GAO T, LU J, LI J R, et al. Characteristics of negative air ions in different ecologica functional areas of Linzhi of Tibet [J]. Journal of Northwest Forestry University, 2019, 34(4): 70-75,165(in Chinese).
[27] 朱春阳, 陈奕汝, 郭慧娟, 等. 城市森林公园植物群落与空气负离子空间分布的关系: 以武汉马鞍山森林公园为例 [J]. 中国园林, 2021, 37(5): 109-114. ZHU C Y, CHEN Y R, GUO H J, et al. Relationship between spatial and temporal distribution of plant communitiesand negative air ions in urban forest park—A case study of Ma'anshan forest park [J]. Chinese Landscape Architecture, 2021, 37(5): 109-114(in Chinese).
[28] 周坚华, 孙天纵. 三维绿色生物量的遥感模式研究与绿化环境效益估算 [J]. 环境遥感, 1995(3): 162-174. ZHOU J H, SUN T Z. Study on remote sensing model of three-dimensional green biomass and the estimation of environmental benefits of greenery [J]. National Remote Sensing Bulletin, 1995(3): 162-174(in Chinese).
[29] 杨英书, 胡希军, 金晓玲, 等. 三维绿量空间分布对植物群落夏季降温增湿效果的影响: 以怀化市公园绿地为例 [J]. 湖南农业大学学报(自然科学版), 2022, 48(2): 181-189. YANG Y S, HU X J, JIN X L, et al. The influence of three-dimensional green biomass spatial distribution on cooling and humidifying effect of plant community in summer: Taking the park green space of Huaihua City as an example [J]. Journal of Hunan Agricultural University (Natural Sciences), 2022, 48(2): 181-189(in Chinese).
[30] 崔虎亮, 李仲昊, 曹如姬. 太岳山区不同森林康养村落空气负离子浓度及气象因素的关系 [J]. 西部林业科学, 2022, 51(2): 27-34. CUI H L, LI Z H, CAO R J. Relationships between the negative air ions and meteorological factors in different forest villages of Taiyue moutain [J]. Journal of West China Forestry Science, 2022, 51(2): 27-34(in Chinese).
[31] 侯秀娟, 闫晓云, 王波, 等. 夏季干旱半干旱城市公园绿地空气负离子与空气颗粒物变化特征 [J]. 南京林业大学学报(自然科学版), 2022, 46(4): 212-220. HOU X J, YAN X Y, WANG B, et al. Variation characteristics of the air anion and air particulate matter in arid and semi-arid urban park green spaces during summer [J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2022, 46(4): 212-220(in Chinese).
[32] 赵文君, 刘永涛, 崔迎春, 等. 贵州省不同区域森林负离子分布规律及影响因素研究 [J]. 贵州林业科技, 2021, 49(3): 16-22,47. ZHAO W J, LIU Y T, CUI Y C, et al. Study on the distribution and influencing factors of air anion in different forests of Guizhou Province [J]. Guizhou Forestry Science and Technology, 2021, 49(3): 16-22,47(in Chinese).
[33] 王薇. 空气负离子浓度分布特征及其与环境因子的关系 [J]. 生态环境学报, 2014, 23(6): 979-984. WANG W. Characteristics of negative air ion concentration and its relationships with environmental factors [J]. Ecology and Environmental Sciences, 2014, 23(6): 979-984(in Chinese).
[34] 冯燕珠, 陈旭, 高欢欢, 等. 公园不同植物配置群落空气负离子变化特征 [J]. 福建农业学报, 2019, 34(1): 95-103. FENG Y Z, CHEN X, GAO H H, et al. Atmospheric negative ion concentration at parks configured with different plants [J]. Fujian Journal of Agricultural Sciences, 2019, 34(1): 95-103(in Chinese).
[35] 李慧. 贵州省部分森林公园空气负氧离子资源初步研究[D]. 贵阳: 贵州大学, 2008. LI H. Preliminary study on negative air oxygen ion resources in some forest parks in Guizhou Province. Guiyang: Guizhou University, 2008(in Chinese).
[36] 包红光, 闫晓云, 侯秀娟, 等. 半干旱城市公园绿地PM2.5与空气负离子浓度动态特征[J]. 生态学杂志, 2023 ( 1 ): 170 -179, BAO H G, YAN X Y, HOU X J, et al. Temperal variation of PM2.5and air anion concentration in semi-arid urban park greenspace[J]. Chinese Journal of Ecology, 2023 ( 1 ): 170 -179 (in Chinese).
[37] 杨畅, 王月容, 汤志颖, 等. 不同群落结构风景游憩林生态保健效应: 以北京西山国家森林公园为例 [J]. 生态学报, 2022, 42(16): 6499-6513. YANG C, WANG Y R, TANG Z Y, et al. Ecological health care effects of scenic recreational forests with different community structures: A case study of Beijing Xishan National Forest Park [J]. Acta Ecologica Sinica, 2022, 42(16): 6499-6513(in Chinese).
[38] 单晟烨, 齐超, 张冬有. 漠河针叶林空气负离子浓度日变化特征研究 [J]. 中国农学通报, 2015, 31(25): 13-18. SHAN S Y, QI C, ZHANG D Y. Daily variation of negative air ions concentration in the coniferous forest in Mohe County [J]. Chinese Agricultural Science Bulletin, 2015, 31(25): 13-18(in Chinese).
[39] WANG J, GUO W, WANG C L, et al. Tree crown geometry and its performances on human thermal comfort adjustment [J]. Journal of Urban Management, 2021, 10(1): 16-26. doi: 10.1016/j.jum.2021.02.001 [40] 蒙晋佳, 张燕. 地面上的空气负离子主要来源于植物的尖端放电 [J]. 环境科学与技术, 2005(1): 112-113,120. MENG J J, ZHANG Y. Electrical discharge of plant pointed ends-main source of air anions on ground [J]. Environmental Science and Technology, 2005(1): 112-113,120(in Chinese).
[41] 杨旭升. 郑州市植物园空气负离子浓度与环境因子的相关性研究[D]. 郑州: 河南农业大学, 2017. YANG X S. Relatedness between negative air ion concentration and environmental factors in Zhengzhou botanical garden[D]. Zhengzhou: Henan Agricultural University, 2017(in Chinese).
[42] 李少宁, 李嫒, 鲁绍伟, 等. 北京西山国家森林公园中空气负离子浓度与气象因子的相关性研究 [J]. 生态环境学报, 2021, 30(3): 541-547. LI S N, LI A, LU S W, et al. Correlation between air anion concentration and meteorological factors in Beijing Xishan national forest park [J]. Ecology and Environmental Sciences, 2021, 30(3): 541-547(in Chinese).
[43] KONARSKA J, LINDBERG F, LARSSON A, et al. Transmissivity of solar radiation through crowns of single urban trees—application for outdoor thermal comfort modelling [J]. Theoretical and Applied Climatology, 2014, 117(3/4): 363-376.