-
砷是全球水生生态系统的重要污染物,是一种能通过地质过程或人类活动在水生环境中释放的有毒元素,一些人类活动如过矿石冶炼、煤炭燃烧加剧了自然环境中的砷浓度[1 − 3]. 环境中的砷可分为无机砷和有机砷,无机砷主要包括砷酸盐(As(Ⅴ))、亚砷酸盐(As(Ⅲ)),有机砷主要包括砷甜菜碱(AsB)、砷胆碱(AsC)、甲基砷酸(MMA)及其甲基化砷复合物(MMAⅢ、MMAⅤ)、二甲基砷酸(DMA)及其二甲基化砷复合物(DMAⅢ、DMAⅤ)、砷糖(AsS)和砷脂(AsL)[4]. 砷在水生生物中的赋存形态(图1)因不同的水生生物而有所不同,水生生物普遍对砷具有较高的累积能力,可通过摄食、皮肤渗透或者黏膜吸收砷,并能通过主动运输进入细胞[5],吸收的砷会对机体造成不良影响,如中毒、免疫紊乱、组织损伤以及细胞死亡[6],而其毒性大小又与存在形态有关,由半数致死剂量(LD50)确定的不同形态的砷毒性顺序为As(Ⅲ)>As(Ⅴ)>MMAV>DMAV>AsS>AsC>AsB[7 − 8],通常而言,无机砷毒性高于有机砷毒性,As(Ⅲ)毒性高于As(Ⅴ),但在比较各种砷化合物对人肝细胞毒性实验时发现,毒性顺序为DMAⅢ≫As(Ⅲ)>MMAⅢ>As(Ⅴ)>MMAⅤ=DMAⅤ[9 − 10],因此,砷对生物体的毒性作用引起了全球范围内的关注.
无机砷可在水生环境中经水生生物及微生物代谢转化形成多种形态的砷,这些形态的砷毒性小于原有的无机砷毒性[11],说明砷在形态上的转化可能是砷的一个重要解毒机制,因此,关于砷毒性及其代谢转化的关系一直是重要的研究领域. 孟加拉国、印度、美国、阿根廷、智利、中国等都遭到了由砷污染造成的健康问题[12],作为一种自然污染物,砷已被证明对人类健康造成不利影响,其中无机砷可导致皮肤癌、肺癌、膀胱癌、神经退行性等疾病[13],已被国际癌症研究中心(IARC)列为Ⅰ类致癌物[14]. 有研究表明,砷暴露与神经退行性等疾病发病率增加有关,然而其毒性致病机理尚不清楚,因此国内外大量研究者采用动物模型研究神经退行性等疾病(如阿尔兹海默症、帕金森等)或缓解此类疾病的药物,同时,近年来有许多砷与微生物的研究值得关注. 在医学研究中发现,肠道微生物与砷代谢有着极大的相关性;在环境学方面,砷的微生物参与了全球砷的生物化学循环过程,能吸收转化环境中的砷,一定程度上降低了环境中的砷污染,具有极大的生物治理潜力[15 − 17]. 因此,近年来,有大量关于砷在小鼠/大鼠、人体、微生物中的代谢毒理情况的研究,可为人类流行病学、毒理学和生态环境研究奠定坚实的基础.
全球水生生态系统中的砷在不同水生生物中的生物累积、生物转化、产生的毒性及毒理效应的过程是复杂的,不同的水生生物对砷的耐受程度不同,不同形态的砷对水生生物产生的毒性也不同,因此,砷在水生生物中的生物累积、生物转化及毒理效应受到国内外研究者持续而广泛的关注,大量实验研究集中砷在水生生物、小鼠/大鼠、人体、微生物中的代谢毒理学,本文将重点对这一系列热点问题展开综述,可为进一步阐明砷在不同生物中的累积转化过程及毒理学效应,为研究者深入探索该领域提供一定的参考.
砷在水生生物中的生物累积、转化及在其他生物体内的代谢毒理学研究进展
Research progress on arsenic's bioaccumulation and biotransformation in aquatic organisms, and its metabolism and toxicology in other organisms
-
摘要: 砷作为全球水生生态系统的重要污染物,普遍存在于淡水和海洋环境中,具有一定的生物累积性与生物毒性. 水生生物作为生态系统的重要组成部分,砷在全球生物化学循环的过程中通过迁移、累积、转化、富集在水生生物体内,产生毒性作用,而砷对水生生物的毒性与其在水生生物中的赋存形态有关. 目前关于砷在水生生物中的生物累积、生物转化及其代谢毒理的基础科学研究受到国内外研究者的广泛关注,而少有对该领域内的研究进展、研究热点、趋势方向的系统整合,本文针对这一领域文献进行梳理,系统阐述了砷在水生生物中的生物累积和生物转化情况;概述了砷在水生生物、小鼠/大鼠、人体、微生物等生物中的毒性作用及代谢机制;并提出了未来有关砷研究可关注的重点及方向. 本文可为进一步阐明砷在水生生物中的生物累积转化规律及砷的代谢毒性作用,为研究者进一步深入探索该领域内科学问题提供参考资料,同时对水产品安全、环境生态、医学等相关领域的研究具有一定的借鉴意义.Abstract: Arsenic is a bioaccumulative and biotoxic pollutant in global aquatic ecosystems and can be ubiquitously found in freshwater and marine environments. In the global biochemical cycle process, Arsenic can migrate, bioaccumulate, transform, and accumulate in aquatic organisms, resulting in toxic effects. The toxicity of Arsenic is related to its valences. Various studies have focused on preliminary research of Arsenic's behaviors and metabolic toxicology in aquatic environments. Still, a systematic review is not yet performed on the research progress, highlights, and trend. This paper summarized published reports and detailed the bioaccumulation and biotransformation processes of Arsenic in aquatic environments. It also addressed its toxic effects and metabolic mechanisms in aquatic biota, mice/rat, human, microorganisms, and other organisms. Also, we proposed the emphasis and direction of future work on Arsenic. This paper could serve as reference material for researchers exploring scientific issues in this and other close research fields, such as aquatic product safety, environmental ecology, and medicine.
-
Key words:
- arsenic /
- aquatic organisms /
- bioaccumulation /
- biotransformation /
- toxic effects /
- metabolic mechanisms.
-
表 1 国内外部分地区水产品含砷情况
Table 1. The concentration of Arsenic in aquatic products around the world
采样年份
Year地区
Region检测项目
Detection projects水产品种类
Aquatic products category含量/(mg·kg−1)
Concentration参考文献
Reference2010—2013 茂名市(中国) 无机砷
Inorganic Arsenic鱼类Fish ND—0.071 [43] 甲壳类Crustaceans ND—0.073 双壳类Bivalves ND—0.040 无壳类 Shellless ND—0.120 2012 巴伦支海
Barents sea总砷
Total Arsenic红帝王蟹
Paralithodes camtschaticus10.000±5.000 [44] 2015 韩国
Korea总砷
Total Arsenic头足类动物Cephalopods 2.620—13.100 [45] 2015 绍兴市(中国) 总砷
Total Arsenic淡水甲壳类
Freshwater crustaceansND—0.710 [46] 淡水鱼类
Freshwater fishND—0.740 海水甲壳类
Marine crustaceans0.042—7.300 海水双壳类
Marine bivalvesND—1.510 海水头足类
Marine cephalopodsND—4.260 海水鱼类Marine fish 0.028—3.900 2016—2017 浙江省(中国) 无机砷
Inorganic Arsenic贝类Bivalves <0.100 [47] 虾类Shrimp <0.100 鱼类Fish <0.100 头足类Cephalopods <0.100 2017 保定市(中国) 总砷
Total Arsenic淡水鱼Freshwater fish 0.024—0.250 [48] 河虾River shrimp 0.180—0.525 河蟹River crab 0.660—2.680 2017 德比湖(波兰)
Lake Dabie (Poland)总砷
Total Arsenic中华绒螯蟹
Eriocheir sinensis0.031—0.191 [49] 2018 上海市(中国) 总砷
Total Arsenic淡水鱼类Freshwater fish 0.005—0.474 [50] 海水鱼类Marine fish 0.035—13.000 淡水甲壳类
Freshwater crustaceans0.052—0.905 海水甲壳类
Marine crustaceans0.010—6.580 头足类Cephalopods 0.021—0.475 双壳类Bivalves 0.020—0.472 2018 孟加拉国
Bangladesh总砷
Total Arsenic滇西低线鱲Barilius barila 0.083±0.023 [51] 剑鲑口波鱼Salmostoma acinaces 0.021±0.001 印度小鳞鲥Gudusia chapra 0.278±0.074 露斯塔野鲮Labeo rohita <0.020 印度细齿鲱Corica soborna 0.161±0.037 剑鳠Sperata aor <0.020 2018 图苏库缇
(南印度)
Thoothukudi, (South India)总砷
Total Arsenic甲壳类 Crustaceans 3.190—16.500 [52] 头足类Cephalopods 1.100—9.190 2017—2020 广西省(中国) 无机砷
Inorganic Arsenic鱼类 Fish ND—0.276 [53] 虾 Shrimp ND—1.141 螺 Screw ND—0.150 蟹 Crab ND—1.513 贝类Bivalves ND—0.138 ND:Not Detected. 表 2 部分组织或国家砷限量比较
Table 2. The comparison of arsenic limited value in some organizations or countries
组织或国家
Organizations or countries水产品类别
Aquatic products category限量值/(mg·kg−1)
Limited value参考文献
Reference总砷*
Total Arsenic无机砷**
Inorganic Arsenic孟加拉国
Bangladesh— — — [51] CAC
Codex Alimentarius Commission— — — [54] 欧盟
European Union— — — 日本
Japan— — — 韩国
Korea— — — 澳大利亚
Australia鱼类Fish — 2.000 甲壳类Crustaceans — 2.000 软体动物Mollusk — 1.000 中国
China水产动物及其制品
Aquatic animals and their products— 0.500 [55] 鱼类及其制品
Fish and fish products— 0.100 印度尼西亚
Indonesia海藻Seaweed 1.000 — [56] 鱼类制品Fish products 2.000 — 美国
the United States of America甲壳类Crustaceans 76.000 — [57] 贝类Bivalves 86.000 — 注:“—”表示该国家或组织未对水产品中总砷及无机砷进行限量规定;*以总砷计,**先测定总砷,若总砷含量水平超过无机砷限量值则需测定无机砷. Note:"-" indicates that the countries or organizations do not set the limited value of total Arsenic and inorganic Arsenic in aquatic products; *measured as total Arsenic, ** measured total Arsenic first, if the total Arsenic content level exceeds the limited value of inorganic Arsenic, then measured inorganic Arsenic. -
[1] ANDRES J, BERTIN P N. The microbial genomics of arsenic[J]. FEMS Microbiology Reviews, 2016, 40(2): 299-322. doi: 10.1093/femsre/fuv050 [2] CROGNALE S, ZECCHIN S, AMALFITANO S, et al. Phylogenetic structure and metabolic properties of microbial communities in arsenic-rich waters of geothermal origin[J]. Frontiers in Microbiology, 2017, 8: 2468. doi: 10.3389/fmicb.2017.02468 [3] BISSEN M, FRIMMEL F H. Arsenic—a review. part Ⅰ: Occurrence, toxicity, speciation, mobility[J]. Acta Hydrochimica et Hydrobiologica, 2003, 31(1): 9-18. doi: 10.1002/aheh.200390025 [4] 陈朋, 晏磊, 王雄, 等. 砷的生物转化与代谢机制研究进展[J]. 生命科学研究, 2013, 17(6): 554-560. CHEN P, YAN L, WANG X, et al. Progresses on biotransformation and metabolic mechanism of arsenic[J]. Life Science Research, 2013, 17(6): 554-560(in Chinese).
[5] NAUJOKAS M F, ANDERSON B, AHSAN H, et al. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem[J]. Environmental Health Perspectives, 2013, 121(3): 295-302. doi: 10.1289/ehp.1205875 [6] SHARMA V K, SOHN M. Aquatic arsenic: Toxicity, speciation, transformations, and remediation[J]. Environment International, 2009, 35(4): 743-759. doi: 10.1016/j.envint.2009.01.005 [7] NIEGEL C, MATYSIK F M. Analytical methods for the determination of arsenosugars—A review of recent trends and developments[J]. Analytica Chimica Acta, 2010, 657(2): 83-99. doi: 10.1016/j.aca.2009.10.041 [8] 刘香丽, 汪倩, 宋超, 等. 不同砷形态在水产品中的毒理及转化研究进展[J]. 农学学报, 2019, 9(12): 33-38. doi: 10.11923/j.issn.2095-4050.cjas20190500026 LIU X L, WANG Q, SONG C, et al. Arsenic forms in aquatic products: Progress research on toxicology and transformation[J]. Journal of Agriculture, 2019, 9(12): 33-38(in Chinese). doi: 10.11923/j.issn.2095-4050.cjas20190500026
[9] 於海燕. 铁对砷代谢及毒性效应影响的体外胃肠模拟研究[D]. 南京: 南京大学, 2016. YU H Y. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract[D]. Nanjing: Nanjing University, 2016. (in Chinese).
[10] DOPP E, HARTMANN L M, von RECKLINGHAUSEN U, et al. Forced uptake of trivalent and pentavalent methylated and inorganic arsenic and its cyto-/ genotoxicity in fibroblasts and hepatoma cells[J]. Toxicological Sciences, 2005, 87(1): 46-56. doi: 10.1093/toxsci/kfi218 [11] BYEON E, KANG H M, YOON C, et al. Toxicity mechanisms of arsenic compounds in aquatic organisms[J]. Aquatic Toxicology, 2021, 237: 105901. doi: 10.1016/j.aquatox.2021.105901 [12] ESETLILI M T, ESETLILI B C, OZEN F, et al. Determination of the arsenic pollution due to geothermal sources in the agricultural lands of alangulluaydin region[J]. Journal of Environmental Protection and Ecology, 2014, 15(4): 1555-1563. [13] BAE H S, KANG I G, LEE S G, et al. Arsenic exposure and seafood intake in Korean adults[J]. Human & Experimental Toxicology, 2017, 36(5): 451-460. [14] NG J C, WANG J P, SHRAIM A. A global health problem caused by arsenic from natural sources[J]. Chemosphere, 2003, 52(9): 1353-1359. doi: 10.1016/S0045-6535(03)00470-3 [15] NIÑO S A, MORALES-MARTÍNEZ A, CHI-AHUMADA E, et al. Arsenic exposure contributes to the bioenergetic damage in an Alzheimer's disease model[J]. ACS Chemical Neuroscience, 2019, 10(1): 323-336. doi: 10.1021/acschemneuro.8b00278 [16] 王琛绯, 石明, 王佳婷, 等. 食物慢性砷暴露对小鼠脑组织中砷形态的影响[J]. 现代食品科技, 2020, 36(7): 289-297. WANG C F, SHI M, WANG J T, et al. Arsenic species analyses of mice brain under chronic arsenic exposure through food[J]. Modern Food Science and Technology, 2020, 36(7): 289-297(in Chinese).
[17] WANG C F, DENG H Y, WANG D B, et al. Changes in metabolomics and lipidomics in brain tissue and their correlations with the gut microbiome after chronic food-derived arsenic exposure in mice[J]. Ecotoxicology and Environmental Safety, 2021, 228: 112935. doi: 10.1016/j.ecoenv.2021.112935 [18] LIN C, PING M L, ZHANG X, et al. In vitro bio-accessibility and distribution characteristic of each arsenic species in different fishes and shellfishes/shrimps collected from Fujian of China[J]. Journal of Hazardous Materials, 2021, 420: 126660. doi: 10.1016/j.jhazmat.2021.126660 [19] CHEN L Z, ZHANG W, GUO Z Q, et al. Effects of acclimation on arsenic bioaccumulation and biotransformation in freshwater medaka Oryzias mekongensis after chronic arsenic exposure[J]. Environmental Pollution, 2018, 238: 17-25. doi: 10.1016/j.envpol.2018.03.011 [20] CUI D, ZHANG P, LI H P, et al. The dynamic effects of different inorganic arsenic species in crucian carp ( Carassius auratus) liver during chronic dietborne exposure: Bioaccumulation, biotransformation and oxidative stress[J]. Science of the Total Environment, 2020, 727: 138737. doi: 10.1016/j.scitotenv.2020.138737 [21] CUI D, ZHANG P, LI H P, et al. The dynamic changes of arsenic biotransformation and bioaccumulation in muscle of freshwater food fish crucian carp during chronic dietborne exposure[J]. Journal of Environmental Sciences, 2021, 100: 74-81. doi: 10.1016/j.jes.2020.07.005 [22] KIM J H, KANG J C. The arsenic accumulation and its effect on oxidative stress responses in juvenile rockfish, Sebastes schlegelii, exposed to waterborne arsenic (As3+)[J]. Environmental Toxicology and Pharmacology, 2015, 39(2): 668-676. doi: 10.1016/j.etap.2015.01.012 [23] KUMAR R, BANERJEE T K. Analysis of arsenic bioaccumulation in different organs of the nutritionally important catfish, Clarias batrachus (L. ) exposed to the trivalent arsenic salt, sodium arsenite[J]. Bulletin of Environmental Contamination and Toxicology, 2012, 89(3): 445-449. doi: 10.1007/s00128-012-0714-8 [24] JUNCOS R, ARCAGNI M, SQUADRONE S, et al. Interspecific differences in the bioaccumulation of arsenic of three Patagonian top predator fish: Organ distribution and arsenic speciation[J]. Ecotoxicology and Environmental Safety, 2019, 168: 431-442. doi: 10.1016/j.ecoenv.2018.10.077 [25] JUMA H, BATTAH A, SALIM M, et al. Arsenic and cadmium levels in imported fresh and frozen fish in Jordan[J]. Bulletin of Environmental Contamination and Toxicology, 2002, 68(1): 132-137. doi: 10.1007/s00128-001-0229-1 [26] NAIR M, JAYALAKSHMY K V, BALACHANDRAN K K, et al. Bioaccumulation of toxic metals by fish in a semi-enclosed tropical ecosystem[J]. Environmental Forensics, 2006, 7(3): 197-206. doi: 10.1080/15275920600840438 [27] 杜森, 张黎. 砷在海洋食物链中的生物放大潜力及发生机制探讨[J]. 生态毒理学报, 2019, 14(1): 54-66. doi: 10.7524/AJE.1673-5897.20181112002 DU S, ZHANG L. Biomagnification potential and the mechanisms of arsenic in marine food chains[J]. Asian Journal of Ecotoxicology, 2019, 14(1): 54-66(in Chinese). doi: 10.7524/AJE.1673-5897.20181112002
[28] 宋梦萍, 杨常亮, 张璟, 等. 食物相暴露条件下尼罗罗非鱼对砷的累积与转化[J]. 环境化学, 2022, 41(6): 1897-1904. SONG M P, YANG C L, ZHANG J, et al. Accumulation and transformation of arsenic in Oreochromis niloticus under food phase exposure[J]. Environmental Chemistry, 2022, 41(6): 1897-1904(in Chinese).
[29] HONG S, KHIM J S, PARK J, et al. Species- and tissue-specific bioaccumulation of arsenicals in various aquatic organisms from a highly industrialized area in the Pohang City, Korea[J]. Environmental Pollution, 2014, 192: 27-35. doi: 10.1016/j.envpol.2014.05.004 [30] ZHANG W, WANG W X, ZHANG L. Arsenic speciation and spatial and inter species differences of metal concentrations in mollusks and crustaceans from a South China Estuary[J]. Ecotoxicology, 2013, 22((4): ): 671-682. doi: 10.1007/s10646-013-1059-8 [31] DEVESA V, SÚÑER M A, LAI V W M, et al. Distribution of arsenic species in the freshwater crustacean Procambarus clarkii[J]. Applied Organometallic Chemistry, 2002, 16(12): 692-700. doi: 10.1002/aoc.374 [32] LIAO Z H, CHUANG H C, HUANG H T, et al. Bioaccumulation of arsenic and immunotoxic effect in white shrimp ( Penaeus vannamei) exposed to trivalent arsenic[J]. Fish & Shellfish Immunology, 2022, 122: 376-385. [33] YAMAGUCHI S, CELINO F T, ITO A, et al. Effects of arsenic on gonadal development in freshwater crab, Somanniathelphusa pax, in Vietnam and Geothelphusa dehaani in Japan[J]. Ecotoxicology (London, England), 2008, 17(8): 772-780. doi: 10.1007/s10646-008-0228-7 [34] RADKE B, DEMBSKA G, PAZIKOWSKA-SAPOTA G, et al. Many faces of arsenic[J]. Oceanological and Hydrobiological Studies, 2019, 48(1): 90-104. doi: 10.1515/ohs-2019-0010 [35] JEON C, PARK J Y, YOO Y J. Characteristics of metal removal using carboxylated alginic acid[J]. Water Research, 2002, 36(7): 1814-1824. doi: 10.1016/S0043-1354(01)00389-X [36] WOLFE-SIMON F, SWITZER BLUM J, KULP T R, et al. A bacterium that can grow by using arsenic instead of phosphorus[J]. Science, 2011, 332(6034): 1163-1166. doi: 10.1126/science.1197258 [37] LIN Y B, HUANG Z X, WU L, et al. Influence of phosphorus on the uptake and biotransformation of arsenic in Porphyra haitanensis at environmental relevant concentrations[J]. Science of the Total Environment, 2021, 800: 149534. doi: 10.1016/j.scitotenv.2021.149534 [38] ELIAS M, WELLNER A, GOLDIN-AZULAY K, et al. The molecular basis of phosphate discrimination in arsenate-rich environments[J]. Nature, 2012, 491(7422): 134-137. doi: 10.1038/nature11517 [39] BAHAR M M, MEGHARAJ M, NAIDU R. Influence of phosphate on toxicity and bioaccumulation of arsenic in a soil isolate of microalga Chlorella sp[J]. Environmental Science and Pollution Research International, 2016, 23(3): 2663-2668. doi: 10.1007/s11356-015-5510-7 [40] RODRIGUEZ CASTRO M C, URREA G, GUASCH H. Influence of the interaction between phosphate and arsenate on periphyton's growth and its nutrient uptake capacity[J]. Science of the Total Environment, 2015, 503/504: 122-132. doi: 10.1016/j.scitotenv.2014.06.094 [41] ZHANG S, DENG R, LIN D H, et al. Distinct toxic interactions of TiO2 nanoparticles with four coexisting organochlorine contaminants on algae[J]. Nanotoxicology, 2017, 11(9/10): 1115-1126. [42] LUO Z X, WANG Z H, YAN Y M, et al. Titanium dioxide nanoparticles enhance inorganic arsenic bioavailability and methylation in two freshwater algae species[J]. Environmental Pollution, 2018, 238: 631-637. doi: 10.1016/j.envpol.2018.03.070 [43] 李海丽, 王丽, 古雪香, 等. 茂名市主要水产品中无机砷含量分析及其健康风险评价[J]. 食品工业, 2020, 41(10): 337-340. LI H L, WANG L, GU X X, et al. Analysis of inorganic arsenic content and health risk assessment in main aquatic products in Maoming[J]. The Food Industry, 2020, 41(10): 337-340(in Chinese).
[44] JULSHAMN K, VALDERSNES S, DUINKER A, et al. Heavy metals and POPs in red king crab from the Barents Sea[J]. Food Chemistry, 2015, 167: 409-417. doi: 10.1016/j.foodchem.2014.07.003 [45] NHO E Y, KHAN N, CHOI J Y, et al. Determination of toxic metals in cephalopods from south Korea[J]. Analytical Letters, 2016, 49(10): 1578-1588. doi: 10.1080/00032719.2015.1107082 [46] 樊伟, 王晶, 王若燕, 等. 绍兴市水产品中6种重金属调查[J]. 环境与健康杂志, 2017, 34(6): 536-538. doi: 10.16241/j.cnki.1001-5914.2017.06.017 FAN W, WANG J, WANG R Y, et al. Investigation of 6 heavy metals in aquatic products of Shaoxing City[J]. Journal of Environment and Health, 2017, 34(6): 536-538(in Chinese). doi: 10.16241/j.cnki.1001-5914.2017.06.017
[47] 梅光明, 严国, 常家琪, 等. 浙江沿海海产品无机砷污染调查及食用风险分析[J]. 食品工业科技, 2019, 40(12): 218-223, 229. MEI G M, YAN G, CHANG J Q, et al. Investigation on inorganic arsenic pollution of seafood in Zhejiang coast and potential dietary health risk assessment[J]. Science and Technology of Food Industry, 2019, 40(12): 218-223, 229(in Chinese).
[48] 杨磊, 崔建超. 保定地区食品中有害元素污染状况调查[J]. 中国卫生检验杂志, 2017, 27(22): 3307-3309. YANG L, CUI J C. Investigation on harmful elements contamination in food in Baoding[J]. Chinese Journal of Health Laboratory Technology, 2017, 27(22): 3307-3309(in Chinese).
[49] NĘDZAREK A, CZERNIEJEWSKI P, DROST A, et al. The distribution of elements in the body of invasive Chinese mitten crabs ( Eriocheir sinensis H. Milne-Edwards, 1853) from Lake Dąbie, Poland[J]. Journal of Food Composition and Analysis, 2017, 60: 1-9. doi: 10.1016/j.jfca.2017.03.003 [50] 蔡华, 罗宝章, 熊丽蓓, 等. 上海市水产品中重金属污染情况[J]. 卫生研究, 2018, 47(5): 740-743. CAI H, LUO B Z, XIONG L B, et al. Heavy metal pollution in aquatic products in Shanghai[J]. Journal of Hygiene Research, 2018, 47(5): 740-743(in Chinese).
[51] SHORNA S, SHAWKAT S, HOSSAIN A, et al. Accumulation of trace metals in indigenous fish species from the old Brahmaputra River in Bangladesh and human health risk implications[J]. Biological Trace Element Research, 2021, 199(9): 3478-3488. doi: 10.1007/s12011-020-02450-y [52] SHALINI R, JEYASEKARAN G, SHAKILA R J, et al. Concentrations of trace elements in the organs of commercially exploited crustaceans and cephalopods caught in the waters of Thoothukudi, South India[J]. Marine Pollution Bulletin, 2020, 154: 111045. doi: 10.1016/j.marpolbul.2020.111045 [53] 陈清德, 黄艳桃, 唐琼, 等. 2017—2020年广西市售水产品重金属污染评价及健康风险评估[J]. 职业与健康, 2021, 37(17): 2332-2335. CHEN Q D, HUANG Y T, TANG Q, et al. Evaluation on heavy metals pollution and assessment on health risk of commercial aquatic products in Guangxi Province from 2017-2020[J]. Occupation and Health, 2021, 37(17): 2332-2335(in Chinese).
[54] 陈丽辉. 中国与主要国际组织、发达国家水产品中重金属限量比对分析研究[J]. 渔业研究, 2020, 42(4): 394-403. CHEN L H. Comparative analysis of the limited quantity of heavy metals in aquatic products of China with major international organizations and developed countries[J]. Journal of Fisheries Research, 2020, 42(4): 394-403(in Chinese).
[55] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中污染物限量: GB 2762—2017[S]. 北京: 中国标准出版社, 2017. National Health and Family Planning Commission of the People's Republic of China, State Food and Drug Administration. National Food Safety Standard Limited of Contaminana in Food: GB 2762—2017[S]. Beijing: Standards Press of China, 2017(in Chinese).
[56] Indonesian Food and Drug Administration. G/SPS/N/IDN/142, Draft Regulation of Indonesian Food and Drug Authority of The Republic of Indonesia on Heavy Metals Contaminants Requirements in Processed Food[EB/OL]. Indonesia, 2022: 8-11 (2022-2-3), [2022-6-11]. [57] 乔艺飘, 张龙飞, 顾润润, 等. 高效液相色谱-电感耦合等离子体质谱法测定水产品中砷形态的研究进展[J]. 环境化学, 2020, 39(4): 1084-1097. doi: 10.7524/j.issn.0254-6108.2019122003 QIAO Y P, ZHANG L F, GU R R, et al. Determination of arsenic species in aquatic products by high performance liquid chromatography inductively coupled plasma mass spectrometry: A review[J]. Environmental Chemistry, 2020, 39(4): 1084-1097(in Chinese). doi: 10.7524/j.issn.0254-6108.2019122003
[58] RAHMAN M A, HASSLER C. Is arsenic biotransformation a detoxification mechanism for microorganisms?[J]. Aquatic Toxicology, 2014, 146: 212-219. doi: 10.1016/j.aquatox.2013.11.009 [59] JAISHANKAR M, TSETEN T, ANBALAGAN N, et al. Toxicity, mechanism and health effects of some heavy metals[J]. Interdisciplinary Toxicology, 2014, 7(2): 60-72. doi: 10.2478/intox-2014-0009 [60] SINGH N, KUMAR D, SAHU A P. Arsenic in the environment: Effects on human health and possible prevention[J]. Journal of Environmental Biology, 2007, 28(2 Suppl): 359-365. [61] ZHANG W, GUO Z Q, ZHOU Y Y, et al. Biotransformation and detoxification of inorganic arsenic in Bombay oyster Saccostrea cucullata[J]. Aquatic Toxicology, 2015, 158: 33-40. doi: 10.1016/j.aquatox.2014.10.021 [62] ZHANG W, MIAO A J, WANG N X, et al. Arsenic bioaccumulation and biotransformation in aquatic organisms[J]. Environment International, 2022, 163: 107221. doi: 10.1016/j.envint.2022.107221 [63] MEHMOOD M A, QADRI H, BHAT R A, et al. Heavy metal contamination in two commercial fish species of a trans-Himalayan freshwater ecosystem[J]. Environmental Monitoring and Assessment, 2019, 191(2): 104. doi: 10.1007/s10661-019-7245-2 [64] RAHMAN M A, HOGAN B, DUNCAN E, et al. Toxicity of arsenic species to three freshwater organisms and biotransformation of inorganic arsenic by freshwater phytoplankton ( Chlorella sp. CE-35)[J]. Ecotoxicology and Environmental Safety, 2014, 106: 126-135. doi: 10.1016/j.ecoenv.2014.03.004 [65] HE Q, QU R J, WANG X H, et al. Toxicity of arsenic to Photobacterium phosphoreum, Daphnia magna, and Danio rerio at different pH levels[J]. CLEAN - Soil, Air, Water, 2016, 44(1): 72-77. doi: 10.1002/clen.201400124 [66] ROSEN B P. Biochemistry of arsenic detoxification[J]. FEBS Letters, 2002, 529(1): 86-92. doi: 10.1016/S0014-5793(02)03186-1 [67] 王旭, 董燕, 耿安静, 等. 4种形态砷在大鼠体内的药物动力学及亚急性毒性比较研究[J]. 中国食品卫生杂志, 2017, 29(4): 400-406. WANG X, DONG Y, GENG A J, et al. Comparison of pharmacokinetics and subacute toxicity for four arsenic species in rats[J]. Chinese Journal of Food Hygiene, 2017, 29(4): 400-406(in Chinese).
[68] 赵梦醒, 刘淇, 曹荣, 等. 海带中砷在大鼠体内代谢过程中的形态变化[J]. 中国海洋大学学报(自然科学版), 2014, 44(8): 54-60. ZHAO M X, LIU Q, CAO R, et al. Changes of species of arsenic in kelp during metabolism in rats[J]. Periodical of Ocean University of China, 2014, 44(8): 54-60(in Chinese).
[69] 于霄云, 钟媛, 牛玉红, 等. 谷胱甘肽与亚硒酸钠对饮水砷暴露小鼠体内砷代谢的影响[J]. 中华预防医学杂志, 2008, 42(9): 636-639. YU X Y, ZHONG Y, NIU Y H, et al. Effect of glutathione and sodium selenite on the metabolism of arsenic in mice exposed to arsenic through drinking water[J]. Chinese Journal of Preventive Medicine, 2008, 42(9): 636-639 (in Chinese).
[70] 代华, 夏茵茵, Ting-Li Han, 等. 慢性砷暴露对小鼠脑和血清代谢组学的影响[J]. 南方医科大学学报, 2016, 36(9): 1192-1197. DAI H, XIA Y Y, TING-LI H, et al. Effect of chronic arsenic exposure on mouse brain tissue and serum metabolomics[J]. Journal of Southern Medical University, 2016, 36(9): 1192-1197(in Chinese).
[71] HE Z X, XU Y D, MA Q L, et al. SOX2 modulated astrocytic process plasticity is involved in arsenic-induced metabolic disorders[J]. Journal of Hazardous Materials, 2022, 435: 128942. doi: 10.1016/j.jhazmat.2022.128942 [72] ZHONG G L, WAN F, WU S F, et al. Arsenic or/and antimony induced mitophagy and apoptosis associated with metabolic abnormalities and oxidative stress in the liver of mice[J]. Science of the Total Environment, 2021, 777: 146082. doi: 10.1016/j.scitotenv.2021.146082 [73] 王艳艳, 姜红梅, 安玉, 等. 三氧化二砷对小鼠大脑组织神经递质代谢酶基因及其受体基因表达谱的影响[J]. 环境与职业医学, 2012, 29(11): 671-673. WANG Y Y, JIANG H M, AN Y, et al. Influence of arsenic trioxide on gene expression profiles of metabolic enzymes and receptors for neurotransmitters in Cerebrum of mice[J]. Journal of Environmental & Occupational Medicine, 2012, 29(11): 671-673(in Chinese).
[74] 王健龄, 苏伟, 凌志, 等. 慢性饮水砷暴露小鼠无机砷代谢产物的蓄积与分布[J]. 环境与健康杂志, 2019, 36(10): 912-917. WANG J L, SU W, LING Z, et al. Accumulation and distributions of inorganic arsenic metabolites in tissue of mice chronically exposed to arsenic in drinking water[J]. Journal of Environment and Health, 2019, 36(10): 912-917(in Chinese).
[75] 杨慧, 戴守辉, 王富华, 等. 海产品中的砷形态及其毒理代谢研究[J]. 农产品质量与安全, 2017(1): 21-26, 32. YANG H, DAI S H, WANG F H, et al. Overview on arsenic speciation, its metabolism and toxicity in seafood[J]. Quality and Safety of Agro-Products, 2017(1): 21-26, 32(in Chinese).
[76] KENYON E M, HUGHES M F. A concise review of the toxicity and carcinogenicity of dimethylarsinic acid[J]. Toxicology, 2001, 160(1/2/3): 227-236. [77] 汤施展, 陈中祥, 黄晓丽, 等. 水产品中砷形态分析研究进展[J]. 水产学杂志, 2019, 32(2): 55-60. doi: 10.3969/j.issn.1005-3832.2019.02.009 TANG S Z, CHEN Z X, HUANG X L, et al. Progress in analysis of arsenic speciation in fishery products[J]. Chinese Journal of Fisheries, 2019, 32(2): 55-60(in Chinese). doi: 10.3969/j.issn.1005-3832.2019.02.009
[78] 李晗君, 林婧, 李玉锋, 等. 亚慢性砷暴露小鼠体内不同形态砷的分布及对DNA的损伤作用[J]. 卫生研究, 2013, 42(5): 764-769, 776. doi: 10.19813/j.cnki.weishengyanjiu.2013.05.010 LI H J, LIN J, LI Y F, et al. Distribution of arsenic species and its DNA damage in subchronic arsenite-exposed mice[J]. Journal of Hygiene Research, 2013, 42(5): 764-769, 776(in Chinese). doi: 10.19813/j.cnki.weishengyanjiu.2013.05.010
[79] FABINYI M, LIU N, SONG Q Y, et al. Aquatic product consumption patterns and perceptions among the Chinese middle class[J]. Regional Studies in Marine Science, 2016, 7: 1-9. doi: 10.1016/j.rsma.2016.01.013 [80] TSENG C H. A review on environmental factors regulating arsenic methylation in humans[J]. Toxicology and Applied Pharmacology, 2009, 235(3): 338-350. doi: 10.1016/j.taap.2008.12.016 [81] THOMAS D J, STYBLO M, LIN S. The cellular metabolism and systemic toxicity of arsenic[J]. Toxicology and Applied Pharmacology, 2001, 176(2): 127-144. doi: 10.1006/taap.2001.9258 [82] SCHLÄWICKE ENGSTRÖM K, BROBERG K, CONCHA G, et al. Genetic polymorphisms influencing arsenic metabolism: Evidence from Argentina[J]. Environmental Health Perspectives, 2007, 115(4): 599-605. doi: 10.1289/ehp.9734 [83] MOLIN M, ULVEN S M, MELTZER H M, et al. Arsenic in the human food chain, biotransformation and toxicology - Review focusing on seafood arsenic[J]. Journal of Trace Elements in Medicine and Biology, 2015, 31: 249-259. doi: 10.1016/j.jtemb.2015.01.010 [84] 袁雪花, 苏玉红. 奎屯高砷地下水灌溉区居民头发和指甲中砷含量研究[J]. 安全与环境学报, 2017, 17(4): 1519-1523. YUAN X H, SU Y H. On the arsenic content rate in the hair and nail of the residents due to the high arsenic groundwater pollution in Kuitun irrigated area, Xinjiang[J]. Journal of Safety and Environment, 2017, 17(4): 1519-1523(in Chinese).
[85] ORLOFF K, MISTRY K, METCALF S. Biomonitoring for environmental exposures to arsenic[J]. Journal of Toxicology and Environmental Health. Part B, Critical Reviews, 2009, 12(7): 509-524. doi: 10.1080/10937400903358934 [86] 李昕, 徐苑苑, 李冰, 等. 砷暴露母子砷代谢特点及DNA损伤差异[J]. 中国公共卫生, 2006, 22(9): 1099-1100. doi: 10.3321/j.issn:1001-0580.2006.09.042 LI X, XU Y Y, LI B, et al. Study on characteristics of arsenic metabolism and DNA damage between mother and child under arsenic exposure[J]. Chinese Journal of Public Health, 2006, 22(9): 1099-1100(in Chinese). doi: 10.3321/j.issn:1001-0580.2006.09.042
[87] TSENG C H, HUANG Y K, HUANG Y L, et al. Arsenic exposure, urinary arsenic speciation, and peripheral vascular disease in Blackfoot disease-hyperendemic villages in Taiwan[J]. Toxicology and Applied Pharmacology, 2005, 206(3): 299-308. doi: 10.1016/j.taap.2004.11.022 [88] WANG X X, MU X L, ZHANG J, et al. Serum metabolomics reveals that arsenic exposure disrupted lipid and amino acid metabolism in rats: A step forward in understanding chronic arsenic toxicity[J]. Metallomics, 2015, 7(3): 544-552. doi: 10.1039/C5MT00002E [89] WU G Y, FANG Y Z, YANG S, et al. Glutathione metabolism and its implications for health[J]. The Journal of Nutrition, 2004, 134(3): 489-492. doi: 10.1093/jn/134.3.489 [90] FLORA S J S. Arsenic-induced oxidative stress and its reversibility[J]. Free Radical Biology and Medicine, 2011, 51(2): 257-281. doi: 10.1016/j.freeradbiomed.2011.04.008 [91] SHI H L, SHI X L, LIU K J. Oxidative mechanism of arsenic toxicity and carcinogenesis[J]. Molecular and Cellular Biochemistry, 2004, 255(1/2): 67-78. doi: 10.1023/B:MCBI.0000007262.26044.e8 [92] 杜航, 龚进, 代华, 等. 慢性砷中毒患者头发代谢物特征的代谢组学研究[J]. 环境与职业医学, 2018, 35(2): 163-167. DU H, GONG J, DAI H, et al. Metabonomics study on metabolic profile of hair samples from chronic arsenic poisoning patients[J]. Journal of Environmental & Occupational Medicine, 2018, 35(2): 163-167(in Chinese).
[93] MEZA M, GANDOLFI A J, KLIMECKI W T. Developmental and genetic modulation of arsenic biotransformation: A gene by environment interaction?[J]. Toxicology and Applied Pharmacology, 2007, 222(3): 381-387. doi: 10.1016/j.taap.2006.12.018 [94] VAHTER M, AKESSON A, LIDÉN C, et al. Gender differences in the disposition and toxicity of metals[J]. Environmental Research, 2007, 104(1): 85-95. doi: 10.1016/j.envres.2006.08.003 [95] HUANG Y K, TSENG C H, HUANG Y L, et al. Arsenic methylation capability and hypertension risk in subjects living in arseniasis-hyperendemic areas in southwestern Taiwan[J]. Toxicology and Applied Pharmacology, 2007, 218(2): 135-142. doi: 10.1016/j.taap.2006.10.022 [96] WANG Y, WANG S, XU P P, et al. Review of arsenic speciation, toxicity and metabolism in microalgae[J]. Reviews in Environmental Science and Bio/Technology, 2015, 14(3): 427-451. doi: 10.1007/s11157-015-9371-9 [97] WANG H T, LIANG Z Z, DING J, et al. Arsenic bioaccumulation in the soil fauna alters its gut microbiome and microbial arsenic biotransformation capacity[J]. Journal of Hazardous Materials, 2021, 417: 126018. doi: 10.1016/j.jhazmat.2021.126018 [98] ZHANG S Y, RENSING C, ZHU Y G. Cyanobacteria-mediated arsenic redox dynamics is regulated by phosphate in aquatic environments[J]. Environmental Science & Technology, 2014, 48(2): 994-1000. [99] WANG Z H, LUO Z X, YAN C Z. Accumulation, transformation, and release of inorganic arsenic by the freshwater cyanobacterium Microcystis aeruginosa[J]. Environmental Science and Pollution Research International, 2013, 20(10): 7286-7295. doi: 10.1007/s11356-013-1741-7 [100] INSKEEP W P, MACUR R E, HAMAMURA N, et al. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes[J]. Environmental Microbiology, 2007, 9(4): 934-943. doi: 10.1111/j.1462-2920.2006.01215.x [101] ROSEN B P, LIU Z J. Transport pathways for arsenic and selenium: A minireview[J]. Environment International, 2009, 35(3): 512-515. doi: 10.1016/j.envint.2008.07.023 [102] CLEISS-ARNOLD J, KOECHLER S, PROUX C, et al. Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans[J]. BMC Genomics, 2010, 11: 709. doi: 10.1186/1471-2164-11-709 [103] OREMLAND R S, STOLZ J F. The ecology of arsenic[J]. Science, 2003, 300(5621): 939-944. doi: 10.1126/science.1081903 [104] HUANG J H. Impact of microorganisms on arsenic biogeochemistry: A review[J]. Water, Air, & Soil Pollution, 2014, 225(2): 1-25. [105] SILVER S, PHUNG L T. Genes and enzymes involved in bacterial oxidation and reduction of inorganic arsenic[J]. Applied and Environmental Microbiology, 2005, 71(2): 599-608. doi: 10.1128/AEM.71.2.599-608.2005