-
大气污染源排放清单是指在一定的时间尺度下针对某个特定区域各个污染源排放到大气中污染物的集合[1],为探索大气污染形成机制提供基础信息,对大气污染治理战略决策起指导作用[2]. 在目前“双碳”战略的大背景下,城市发展和工业化进程中排放清单对污染物的排放、影响因素以及控制措施能够进行较完善的描述,对所研究城市或区域了解大气污染来源、分析污染形成原因并提出针对性的管控措施具有十分重要的意义[3]. 对于扬尘源排放清单的研究美国开始的较早,最早于1968年发布大气污染排放因子AP-42手册,并逐年完善[4];中国起步较晚,目前主要研究方法是《扬尘源颗粒物排放清单编制技术指南(试行)》[5].
道路积尘易在风或者车辆运动的作用下再悬浮[6],道路扬尘是排放清单中不可忽视的一部分[7],是城市颗粒物的主要来源之一. 随着机动车保有量日益增长,机动车排放标准逐步加严,道路扬尘(非尾气排放)在交通污染排放中的占比逐渐增大[8 − 9];而在当今机动车电动化的趋势下,欧洲部分地区现有研究表明电动汽车非尾气排放分别占交通排放PM10和PM2.5的90%以上和85%以上[10].
Bogacki等[11]的研究表明,克拉科夫(波兰南部)冬季和夏季的道路扬尘对PM10的贡献率分别达到25%和50%. 我国的研究也证实道路扬尘在扬尘排放中占比较大[12 − 14],北方部分城市扬尘对PM2.5的分担率为30%左右,而道路扬尘对城市扬尘的贡献率为50%[15]. 综上,由于道路扬尘对在扬尘排放中的重要地位,对道路扬尘排放清单开展研究十分必要. 目前国内外已有部分关于道路扬尘排放清单较详细的研究;国内外已构建了美国拉斯维加斯(Kuhns等[16])、英国伦敦(Patra等[17])、西班牙巴塞罗那(Amato等[18])、德里市(Singh等[19])、西安(张帅等[20],杨乃旺等[21])、北京(崔浩然等[22])、天津(许妍等[23])、珠江三角洲(彭康等[24])、武汉(祝嘉欣等[25])、成都(杨德容等[26])等多地的道路扬尘排放清单.
西宁市是国务院批复确定的中国西北地区重要的中心城市和内陆开放城市[27],在发展过程中城市建设以及路网建设步伐加快,道路扬尘排放特征备受关注. 西宁市2018年PM10和PM2.5日均浓度均超过国家二级质量标准,其大气污染不容忽视[28],虽已开展多项西宁市大气污染相关研究[29 − 31],但尚未关注到道路扬尘排放清单. 西宁人均道路面积从2012年底的7.15 m2增加至2022年的12.61 m2,西宁市道路扬尘排放清单的缺失对当地污染成因分析、预警预报等带来了较大的不确定性[32]. 本研究采用《扬尘源颗粒物排放清单编制技术指南(试行)》[5]和《城市大气污染源排放清单编制技术手册》(2018年8月)[33],通过实地采样与统计西宁市提供数据获取其活动水平和相关数据,建立2018年西宁市道路扬尘排放清单,并分析其分布特征,同时利用ArcGIS和蒙特卡罗模拟进行空间分配和不确定性分析.
西宁市道路扬尘排放清单及时空分布特征
Road dust emission inventory and its spatial-temporal distribution characteristics in Xining
-
摘要: 本研究通过实地采样与调查获取活动水平及相关数据,采用排放因子法建立2018年西宁市道路扬尘排放清单. 利用ArcGIS进行3 km×3 km的空间分配,分析了其时空分布特征,利用蒙特卡洛模拟分析了道路扬尘排放清单的不确定性. 结果表明,2018年西宁市道路扬尘PM2.5和PM10排放量分别为1904.10 t和8563.09 t,其中国道贡献率最高,分别为41.79%和39.74%. 主要排放地区为大通县,贡献率分别为36.32%和35.47%. 道路扬尘排放在全年各月出现差异,其中在6月出现最高值. 蒙特卡罗模拟结果表明,在95%的概率分布范围内,西宁市2018年道路扬尘PM2.5和PM10不确定性范围为-26.49%—51.11%和-30.14%—30.06%.Abstract: Based on the activity level and other related data obtained from field sampling and investigating, the road dust emission inventory in Xining City in 2018 was established by the emission factor method. The spatial distribution of 3 km×3 km was carried out using ArcGIS, its spatiotemporal distribution characteristics were analyzed, and the uncertainty analysis of road dust inventory was estimated using Monte Carlo simulation. The results showed that in 2018, the total emissions of PM2.5 and PM10 from road dust in Xining City were 1904.10 t and 8563.09 t, and the contribution ratios of the national highway were the highest, 41.79% and 39.74%, respectively. The main emission area was Datong County, with contribution ratios of 36.32% and 35.47%. Road dust emissions varied from month to month throughout the year, with the highest emissions occurring in June. The Monte Carlo simulation results showed that within the probability distribution range of 95%, the uncertainty ranges of PM2.5 and PM10 of road dust in Xining City in 2018 were -26.49%—51.11% and -30.14%—30.06%.
-
Key words:
- road dust /
- emission inventory /
- space-time allocation /
- uncertainty analysis /
- Xining City.
-
表 1 西宁市不同类型道路积尘负荷(g∙m−2)
Table 1. The silt loading of different types of roads in Xining(g∙m−2)
道路类型
Roads type主干道
Major arterial次干道
Minor arterial支路
Collector road快速路Freeway 高速公路Expressway 国道
National road省道
Provincial road县道
County road乡村道路
Village road最小值 0.23 0.28 0.45 0.23 0.09 0.21 0.41 0.28 0.45 最大值 1.70 2.09 2.47 1.70 0.26 0.90 1.73 2.09 2.47 平均值 0.58 0.87 1.53 0.58 0.16 0.55 0.97 0.87 1.53 表 2 西宁市各类型道路PM10和PM2.5的排放因子(g∙km−1)
Table 2. Emission factors of PM10 and PM2.5 for various types of roads in Xining(g∙km−1)
主干道
Major
arterial次干道
Minor
arterial支路
Collector road快速路
Freeway高速公路
Expressway国道
National road省道
Provincial road县道
County
road乡村道路
Village roadPM10 0.69 0.94 2.37 0.69 0.43 0.90 1.22 2.96 2.47 PM2.5 0.16 0.21 0.53 0.16 0.08 0.22 0.25 0.60 0.56 表 3 西宁市道路扬尘PM2.5和PM10排放因子与其他城市比较
Table 3. Comparisons of PM2.5 and PM10 emission factors of road fugitive dust in Xining with other cities
研究区域
Region道路类型
Road type排放因子/(g∙km−1)
Emission factors文献来源
Reference研究区域
Region道路类型
Road type排放因子/(g∙km−1)
Emission factors文献来源
ReferencePM2.5 PM10 PM2.5 PM10 西宁
(2018)主干道 0.16 0.69 本研究 北京 主干道 0.29 1.20 刘俊芳等[34] 次干道 0.21 0.94 次干道 0.31 1.29 支路 0.53 2.37 支路 0.38 1.56 快速路 0.16 0.69 快速路 0.18 0.76 西安
(2018)主干道 0.04 0.15 张帅等[20] 西安(2016) 主干道 0.38 1.31 杨乃旺等[21] 次干道 0.25 1.03 次干道 0.55 1.89 支路 0.26 1.09 支路 0.48 1.66 环路 0.03 0.13 环路 0.38 1.31 渭南 主干道 0.25 1.02 巴利萌等[35] 衡阳 主干道 0.27 1.14 谢磊等[36] 次干道 0.37 1.52 次干道 0.29 1.18 支路 0.44 1.83 支路 0.33 1.37 环路 - - 快速路 - - 成都 主干道 0.15 0.68 杨德容等[26] 武汉 主干道 0.16 0.54 祝嘉欣等[25] 次干道 0.17 0.70 次干道 0.17 0.57 支路 0.28 1.15 支路 0.27 0.92 快速路 0.16 0.68 环路 0.10 0.36 表 4 西宁市不同道路类型PM10和PM2.5排放情况
Table 4. PM10 and PM2.5 emissions from different road types in Xining
道路类型
Roads typePM2.5 PM10 年排放量/t
Annual Emissions贡献率/%
Contribution rate年排放量/t
Annual Emissions贡献率/%
Contribution rate主干道 69.42 3.65 260.18 3.04 次干道 88.64 4.66 356.89 4.17 支路 130.81 6.87 526.02 6.14 快速路 37.51 1.97 131.09 1.53 高速公路 283.82 14.91 1526.42 17.83 国道 795.69 41.79 3403.18 39.74 省道 76.02 3.99 384.41 4.49 县道 8.16 0.43 33.76 0.39 乡村道路 362.12 19.02 1693.89 19.78 企业道路 51.91 2.73 247.24 2.89 合计 1904.10 100.00 8563.09 100.00 表 5 西宁市各行政区PM10和PM2.5排放情况
Table 5. PM10 and PM2. 5 emissions in different Administrative District of Xining
行政区名称
Administrative DistrictPM2.5 PM10 年排放量/t
Annual Emissions贡献率/%
Contribution rate年排放量/t
Annual Emissions贡献率/%
Contribution rate城东区 143.56 7.54 548.41 6.40 城中区 132.20 6.94 615.23 7.18 城西区 65.90 3.46 235.62 2.75 城北区 84.29 4.43 435.61 5.09 大通县 691.54 36.32 3037.74 35.47 湟中县 335.30 17.61 1663.27 19.42 湟源县 189.93 9.97 884.90 10.33 生物园区 28.09 1.47 123.74 1.45 南川园区 57.89 3.04 301.02 3.52 东川园区 43.13 2.27 158.64 1.85 甘河园区 66.52 3.49 330.97 3.87 海湖新区 65.75 3.45 227.92 2.66 合计 1904.10 100.00 8563.09 100.00 -
[1] 潘月云, 李楠, 郑君瑜, 等. 广东省人为源大气污染物排放清单及特征研究[J]. 环境科学学报, 2015, 35(9): 2655-2669. PAN Y Y, LI N, ZHENG J Y, et al. Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province[J]. Acta Scientiae Circumstantiae, 2015, 35(9): 2655-2669 (in Chinese).
[2] ZHOU Y, CHENG S, CHEN D, et al. A new statistical approach for establishing high-resolution emission inventory of primary gaseous air pollutants[J]. Atmospheric Environment, 2014, 94: 392-401. doi: 10.1016/j.atmosenv.2014.05.047 [3] 李冬, 陈建华, 张月帆, 等. 道路扬尘中PM2.5粒度乘数的测定方法及特征[J]. 环境科学, 2021, 42(4): 1642-1648. LI D, CHEN J H, ZHANG Y F, et al. Determination method and characteristics of particle size multiplier of PM2.5 in road dust[J]. Environmental Science, 2021, 42(4): 1642-1648 (in Chinese).
[4] 李贝睿. 长株潭区域大气污染物排放源清单研究[D]. 湘潭: 湘潭大学, 2016. LI B R. Pollution sources emission inventory research of Changsha-Zhuzhou-Xiangtan urban agglomeration[D]. Xiangtan: Xiangtan University, 2016 (in Chinese).
[5] 环境保护部. 扬尘源颗粒物排放清单编制技术指南(试行)[R]. 北京: 环境保护部科技标准司, 2014. Department of Environmental Protection. Technical guide for preparation of particulate emission inventory from dust sources (Trial)[R]. Beijing: Department of Science and Technology Standards, Ministry of Environmental Protection, 2014 (in Chinese).
[6] ABU-ALLABAN M, GILLIES J A, GERTLER A W, et al. Tailpipe, resuspended road dust, and brake-wear emission factors from on-road vehicles[J]. Atmospheric Environment, 2003, 37(37): 5283-5293. doi: 10.1016/j.atmosenv.2003.05.005 [7] JOSE J, SRIMURUGANANDAM B. Source apportionment of urban road dust using four multivariate receptor models[J]. Environmental Earth Sciences, 2021, 80(19): 1-16. [8] AMATO F, CASSEE F R, van der GON H A C D, et al. Urban air quality: The challenge of traffic non-exhaust emissions[J]. Journal of Hazardous Materials, 2014, 275: 31-36. doi: 10.1016/j.jhazmat.2014.04.053 [9] GUSTAFSSON M, BLOMQVIST G, JRLSKOG I, et al. Road dust load dynamics and influencing factors for six winter seasons in Stockholm, Sweden[J]. Atmospheric Environment: X, 2019, 2: 100014. doi: 10.1016/j.aeaoa.2019.100014 [10] TIMMERS V, ACHTEN P. Non-exhaust PM emissions from electric vehicles[J]. Atmospheric Environment, 2016, 134: 10-17. doi: 10.1016/j.atmosenv.2016.03.017 [11] BOGACKI M, MAZUR M, OLENIACZ R, et al. Re-entrained road dust PM10 emission from selected streets of Krakow and its impact on air quality[J]. E3S Web of Conferences, 2018, 28: 01003. doi: 10.1051/e3sconf/20182801003 [12] Office of Air Quality Planning and Standards, US EPA. National Air Pollutant Emission Trends: 1900-1998[R]. Ntis, 1995. [13] CHOW J, WATSON J. Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model[J]. Energy & Fuels, 2002, 16(2): 222-260. [14] THORPE A, HARRISON R M. Sources and properties of non-exhaust particulate matter from road traffic: A review[J]. Science of the Total Environment, 2008, 400(1/2/3): 270-282. [15] GENG N B, WANG J, XU Y F, et al. PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment[J]. Particuology, 2013, 11(1): 99-109. doi: 10.1016/j.partic.2012.08.004 [16] KUHNS H. Vehicle-based road dust emission measurement—Part Ⅱ: Effect of precipitation, wintertime road sanding, and street sweepers on inferred PM10 emission potentials from paved and unpaved roads[J]. Atmospheric Environment, 2003, 37(32): 4573-4582. doi: 10.1016/S1352-2310(03)00529-6 [17] PATRA A, COLVILE R, ARNOLD S, et al. On street observations of particulate matter movement and dispersion due to traffic on an urban road[J]. Atmospheric Environment, 2008, 42(17): 3911-3926. doi: 10.1016/j.atmosenv.2006.10.070 [18] AMATO F, KARANASIOU A, MORENO T, et al. Emission factors from road dust resuspension in a Mediterranean freeway[J]. Atmospheric Environment, 2012, 61: 580-587. doi: 10.1016/j.atmosenv.2012.07.065 [19] SINGH V, BISWAL A, KESARKAR A P, et al. High resolution vehicular PM10 emissions over megacity Delhi: Relative contributions of exhaust and non-exhaust sources[J]. Science of the Total Environment, 2020, 699: 134273. doi: 10.1016/j.scitotenv.2019.134273 [20] 张帅, 李光华, 邓顺熙, 等. 西安市典型道路扬尘排放清单及化学组分[J]. 环境科学学报, 2022, 42(6): 318-328. ZHANG S, LI G H, DENG S X, et al. Emission inventory and chemical compositions of fugitive dust sources at typical roads in Xi’an, China[J]. Acta Scientiae Circumstantiae, 2022, 42(6): 318-328 (in Chinese).
[21] 杨乃旺, 宋文斌, 闫东杰, 等. 基于积尘负荷的西安市铺装道路扬尘排放研究[J]. 环境科学学报, 2021, 41(4): 1259-1266. YANG N W, SONG W B, YAN D J, et al. Emission characteristics of pavement road dust in Xi’an based on dust load method[J]. Acta Scientiae Circumstantiae, 2021, 41(4): 1259-1266 (in Chinese).
[22] 崔浩然, 樊守彬, 韩力慧, 等. 北京市大兴区道路积尘年际变化特征及管控研究[J]. 中国环境科学, 2021, 41(10): 4556-4564. CUI H R, FAN S B, HAN L H, et al. Interannual variation characteristics and control of road dust in Daxing District of Beijing[J]. China Environmental Science, 2021, 41(10): 4556-4564 (in Chinese).
[23] 许妍, 周启星. 天津城市交通道路扬尘排放特征及空间分布研究[J]. 中国环境科学, 2012, 32(12): 2168-2173. XU Y, ZHOU Q X. Emission characteristics and spatial distribution of road fugitive dust in Tianjin, China[J]. China Environmental Science, 2012, 32(12): 2168-2173 (in Chinese).
[24] 彭康. 珠江三角洲地区铺装道路扬尘PM10化学元素组分特征研究[J]. 化工管理, 2015(20): 209-210. PENG K. Chemical element composition characteristics of dust PM10 from paved roads in Pearl River Delta[J]. Chemical Enterprise Management, 2015(20): 209-210 (in Chinese).
[25] 祝嘉欣, 成海容, 虎彩娇, 等. 武汉市道路扬尘源排放清单及空间分布特征研究[J]. 南京信息工程大学学报(自然科学版), 2018, 10(5): 557-562. ZHU J X, CHENG H R, HU C J, et al. Study on the load distribution characteristics and source emission inventory of road dust in the city of Wuhan[J]. Journal of Nanjing University of Information Science & Technology (Natural Science Edition), 2018, 10(5): 557-562 (in Chinese).
[26] 杨德容, 叶芝祥, 杨怀金, 等. 成都市铺装道路扬尘排放清单及空间分布特征研究[J]. 环境工程, 2015, 33(11): 83-87. YANG D R, YE Z X, YANG H J, et al. Emission inventory and spatial distribution of paved road fugitive dust in Chengdu in Sichuan Province[J]. Environmental Engineering, 2015, 33(11): 83-87 (in Chinese).
[27] 国务院关于西宁市城市总体规划的批复[J]. 中华人民共和国国务院公报, 2016(1): 50-51. [28] 林宇, 姬亚芹, 林孜, 等. 西宁市土壤扬尘排放清单构建及时空分布特征[J]. 环境化学, 2022, 41(12): 4006-4015. LIN Y, JI Y Q, LIN Z, et al. Construction of emission inventory and temporal-spatial distribution of soil fugitive dust in Xining, China[J]. Environmental Chemistry, 2022, 2022, 41(12): 4006-4015 (in Chinese).
[29] 窦筱艳, 赵雪艳, 徐珣, 等. 应用化学质量平衡模型解析西宁大气PM2.5的来源[J]. 中国环境监测, 2016, 32(4): 7-14. DOU X Y, ZHAO X Y, XU X, et al. Source apportionment of PM2.5 in Xining by the chemical mass balance[J]. Environmental Monitoring in China, 2016, 32(4): 7-14 (in Chinese).
[30] 胡晓峰, 赵露, 李佳, 等. 西宁取暖季PM2.5水溶性离子的污染特征研究[J]. 环境污染与防治, 2019, 41(1): 95-100. HU X F, ZHAO L, LI J, et al. Research on pollution characteristics of water-soluble ions in PM2.5 during heating season in Xining[J]. Environmental Pollution & Control, 2019, 41(1): 95-100 (in Chinese).
[31] 杨益, 姬亚芹, 高玉宗, 等. 西宁市农牧源氨排放清单及其分布特征[J]. 环境科学, 2022, 43(4): 1844-1852. YANG Y, JI Y Q, GAO Y Z, et al. Agricultural ammonia emission inventory and its distribution in Xining city[J]. Environmental Science, 2022, 43(4): 1844-1852 (in Chinese).
[32] 啸宇. 187条路17座桥, 见证“西宁速度”[N]. 西宁晚报, 2022-09-20(A03). [33] 贺克斌. 城市大气污染源排放清单编制技术手册[R]. 北京: 清华大学, 2018. HE K B. Technical manual for preparation of discharge inventory of urban air pollution sources[R]. Beijing: Tsinghua University, 2018 (in Chinese).
[34] 刘俊芳, 樊守彬, 郭秀锐, 等. 基于车载移动监测的北京市丰台区道路扬尘源排放特征[J]. 环境科学学报, 2021, 41(11): 4423-4429. LIU J F, FAN S B, GUO X R, et al. Emission characteristics of fugitive dust sources on roads in Fengtai District, Beijing based on vehicle-mounted mobile monitoring[J]. Acta Scientiae Circumstantiae, 2021, 41(11): 4423-4429 (in Chinese).
[35] 巴利萌, 邓顺熙, 汪晶发, 等. 渭南主城区道路积尘负荷及交通扬尘颗粒物排放[J]. 环境污染与防治, 2020, 42(3): 353-357. BA L M, DENG S X, WANG J F, et al. Road dust loading in main urban area of Weinan and particulate matters emission released by vehicle fugitive dust[J]. Environmental Pollution & Control, 2020, 42(3): 353-357 (in Chinese).
[36] 谢磊, 丁艳纯, 史玲. 衡阳市主城区道路扬尘排放特征及影响因素[J]. 环境保护与循环经济, 2019, 39(4): 69-74. XIE L, DING Y C, SHI L. Characteristics and influencing factors of road dust emission in Hengyang city[J]. Environmental Protection and Circular Economy, 2019, 39(4): 69-74 (in Chinese).