-
碳质气溶胶是大气细颗粒物(空气动力学当量直径小于等于2.5 μm的悬浮颗粒物,即PM2.5)的重要组成部分,其含量约占PM2.5的10%—70%[1 − 4]. 碳质气溶胶主要包含有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)和碳酸盐碳(carbonate carbon,CC),而碳酸盐碳对PM2.5的贡献通常小于5%,因此一般可以忽略[5 − 7]. 大气颗粒物中OC的来源有两个,一是由燃烧等过程直接排放的一次有机碳(primary organic carbon,POC),二是来源于天然源和人为源排放的挥发性有机物(volatile organic compounds,VOCs)等气态前体物在大气中经过复杂的光化学反应而形成的二次有机碳(secondary organic carbon,SOC). 由于大气颗粒物中的OC主要富集在亚微米及更细颗粒物中,并可以通过呼吸系统进入肺泡,对人们身体健康危害较大[8 − 10]. EC主要来自化石燃料和生物质的不完全燃烧,其对紫外波长到红外波长范围内的光线具有较强的吸附性,对气候系统有增温作用且会降低大气能见度[11 − 13],因此研究颗粒物中碳组分对改善大气污染具有重要的指导意义.
近年来,对碳组分的研究主要集中在环境空气细颗粒物中碳组分的污染特征和来源解析. 谢添[14]、张婷婷[15]、吴琳[16]和尹寒梅[17]等分别研究了南京、北京、天津和宜宾市等城市PM2.5中OC和EC的分布特征,结果表明碳组分浓度均呈现冬季>秋季>春季>夏季的季节性变化,且均存在二次有机污染. 徐雪梅[18]和陈璐瑶[19]等对成都不同污染等级下PM2.5中碳组分的浓度和占比进行了研究,结果表明随着污染等级的加重,OC总浓度呈现显著上升趋势,而EC总浓度上升幅度较小,但OC和EC在PM2.5中的占比均随污染等级的加重而呈现小幅下降趋势. 张婷婷[15]和王幸等[20]对城市碳组分的来源进行了研究,表明OCl主要来源于生物质燃烧,OC2是燃煤源中最丰富的碳组分,OC3和OC4是汽油车尾气、燃煤或道路扬尘中的特征组分,EC1是汽油车尾气中丰富的碳组分,EC2和EC3是柴油车尾气中丰富的碳组分. 徐雪梅[18]、王幸[20]和石慧斌[21]等利用因子分析法对保定、成都和张家界PM2.5中碳组分的来源进行了解析,研究表明机动车尾气、燃煤、生物质燃烧和道路扬尘是PM2.5中碳组分的主要来源. 张进生等[22]研究了工业烧结和炼铁等生产工序颗粒物中碳组分的特征,但针对工业园区或工业集聚区周围环境空气细颗粒物中碳组分的研究仍相对较少.
钢城区作为全国最大的H型钢、齿轮钢、智能车库生产基地,包含有炼铁、炼钢、焦化和烧结全流程的钢铁生产工序,严重影响环境空气中细颗粒物碳组分[23]. 因此,本文以济南市钢铁集聚区为研究区域,与济南市区PM2.5中的碳组分进行了对比,并采用主成分分析法对钢铁集聚区PM2.5中碳组分进行来源解析,以期为济南市钢铁集聚区周围环境空气质量改善措施的制定提供技术支撑.
济南市钢铁集聚区大气细颗粒物中碳组分污染特征
Carbon component pollution characteristics of atmospheric fine particulate matter in iron and steel agglomeration area
-
摘要: 为分析钢铁集聚区大气细颗粒物(PM2.5)中碳组分的污染特征,对济南市钢铁集聚区和市区秋季(2020年10月15日至2020年10月24日)、冬季(2020年12月18日至2021年1月7日)和春季(2021年4月23日至5月2日)环境空气中PM2.5进行手工采样,利用热光碳分析仪测定了PM2.5中有机碳(OC)和元素碳(EC)的含量. 结果表明,钢铁集聚区秋季OC和EC质量浓度范围分别为5.79—12.56 μg·m−3和1.34—3.44 μg·m−3;冬季OC和EC质量浓度范围分别为3.92—55.54 μg·m−3和0.38—11.39 μg·m−3;春季OC和EC质量浓度范围分别为2.14—4.70 μg·m−3和0.19—1.33 μg·m−3,呈现显著的季节变化,表现为冬季>秋季>春季. 钢铁集聚区冬季PM2.5中OC和EC占比最高,分别为28.11%和5.36%,春季OC和EC占比最低,分别为9.82%和1.76%. 钢铁集聚区秋季和冬季OC(EC)质量浓度均高于市区,分别是市区的2.12(2.68)、2.27(4.27)倍,表明钢铁集聚区秋冬季PM2.5的污染状况比较严峻. 在以PM2.5为首要污染物的不同污染等级下,均为碳组分OC4和EC1的占比最高,分别占PM2.5的9.0%和7.5%,是碳组分的主要贡献组分. 钢铁集聚区春季、秋季和冬季SOC的浓度分别为1.09 、1.79 、10.80 μg·m−3,分别占OC质量浓度的35.39%、19.02%和37.00%,表明钢铁集聚区冬季比其他季节二次有机污染较严重. 由因子分析可知,钢铁集聚区碳组分主要来源于钢铁工业烧结等工序燃煤和柴油车尾气排放. 研究成果为济南市钢铁集聚区周围环境空气质量改善措施的制定提供技术支撑.Abstract: In order to measure and characterize the carbon components of atmospheric fine particulate matter (PM2.5) in an iron and steel agglomeration area, PM2.5 was sampled during autumn (Oct 15 — Oct 24, 2020), winter (Dec 18, 2020— Jan 7, 2021), and spring (April 23 - May 2, 2021) in Jinan, Eastern China. The content of organic carbon (OC) and elemental carbon (EC) in PM2.5 was analyzed by a thermal/optical reflectance organic carbon/elemental carbon (OCEC) analyzer. The carbon composition showed significant seasonal change, which decreased with the trend winter > autumn > spring. The mass concentrations of OC in the iron and steel agglomeration area were 5.79—12.56 μg·m−3, 3.92—55.54 μg·m−3, and 2.14—4.70 μg·m−3 in autumn, winter, and spring, respectively. The EC mass concentrations were 1.34—3.44 μg·m−3, 0.38—11.39 μg·m−3, and 0.19—1.33 μg·m−3, in autumn, winter, and spring, respectively. The highest proportion of OC and EC, which accounted for 28.11% and 5.36% of total PM2.5 mass concentration, respectively, was observed in winter, and the lowest was observed in spring (OC, 9.82%; EC, 1.76%). The mass concentrations of both OC and EC in the area in autumn and winter were higher than that in urban regions, which was 2.12 (2.68) and 2.27 (4.27) times that of the urban area, respectively, indicating that the pollution of PM2.5 in the autumn and winter of the area was of significant environmental concern. Under different pollution levels with PM2.5 as the primary pollutant, the content of OC4 (9.0%) was highest in PM2.5, followed by EC1 (7.5%). Both OC4 and EC1 were the main carbon components. The concentrations of SOC were 1.09 μg·m−3, 1.79 μg·m−3, and 10.80 μg·m−3 in spring, autumn, and winter, respectively, which accounted for 35.39%, 19.02%, and 37.00% of OC mass concentration, respectively, and showed that the SOC pollution of PM2.5 in the steel production area has greater impact in winter than in other seasons. Based on a factor analysis of origin, the carbon components in the iron and steel agglomeration area come mainly from coal combustion and diesel vehicle exhaust emissions. The results provide technical support for the formulation of measures to improve the ambient air quality around the Jinan Iron and Steel Cluster.
-
表 1 钢铁集聚区PM2.5中碳组分的季节变化
Table 1. Seasonal variation and meteorological factors of carbon components in PM2.5 in iron and steel agglomeration area
点位
Points组分
Components春季
Spring秋季
Autumn冬季
Winter浓度/(μg·m−3)Concentration 占比/%
Proportion浓度/(μg·m−3)Concentration 占比/%
Proportion浓度/(μg·m−3)Concentration 占比/%
Proportion钢铁集聚区
Iron and steel
agglomeration areaPM2.5 32.95±9.5 — 60.08±19.0 — 103.98±48.9 — TC 3.64±1.3 11.58±3.9 11.62±2.9 20.31±4.7 34.73±18.0 33.47±10.0 OC 3.08±1.0 9.82±3.1 9.41±2.3 16.42±3.6 29.19±14.9 28.11±7.6 EC 0.57±0.3 1.76±0.9 2.21±0.8 3.90±1.3 5.54±3.4 5.36±2.6 市区
UrbanPM2.5 39.35±10.4 — 48.04±18.8 — 76.40±52.5 — TC 4.23±1.3 10.66±2.7 5.27±1.6 11.67±3.1 14.18±8.5 19.84±4.7 OC 3.81±1.1 9.61±2.4 4.45±1.3 9.93±2.8 12.88±7.7 18.04±4.1 EC 0.42±0.2 1.05±0.5 0.82±0.4 1.73±0.5 1.30±0.9 1.80±0.8 表 2 国内其它城市OC和EC在PM2.5中的占比
Table 2. Proportion of OC and EC in PM2.5 in other cities in China
点位
Points采样时间
Sampling time占比/%
ProportionTC OC EC 北京市区[15] 2015年冬季 27.28 19.58 7.70 保定工业区[4] 2017年冬季 43.04 34.42 8.62 张家界市区[20] 2017年冬季 16.08 13.04 3.04 济南市区[25] 2017年冬季 21.51 16.27 5.26 青岛市区[26] 2018年冬季 24.63 21.95 2.68 太原市区[27] 2019年冬季 20.2 17.14 3.06 济南工业区 2021年春季 11.58 9.82 1.76 济南工业区 2020年秋季 20.31 16.42 3.90 济南工业区 2020年冬季 33.47 28.11 5.36 表 3 钢铁集聚区不同季节各碳组分在PM2.5中的占比(%)
Table 3. The proportion of carbon components in PM2.5 in different seasons in iron and steel agglomeration areas
春季
Spring秋季
Autumn冬季
Winter钢铁集聚区
Iron and steel agglomeration area市区
Urban钢铁集聚区
Iron and steel agglomeration area市区
Urban钢铁集聚区
Iron and steel agglomeration area市区
UrbanOC1 0.77 0.55 1.64 1.39 4.46 2.03 OC2 3.43 3.01 3.75 2.58 5.69 3.85 OC3 2.77 3.16 3.78 2.69 5.11 4.14 OC4 1.30 1.70 5.39 1.64 8.46 4.20 EC1 2.60 1.89 8.70 2.72 9.39 5.31 EC2 0.58 0.36 0.78 0.56 0.30 0.22 EC3 0.15 1.70 0.06 0.08 0.06 0.10 表 4 钢铁集聚区碳组分最大方差旋转成分矩阵
Table 4. Maximum variance rotation component matrix of carbon components in iron and steel agglomeration area
组分
Component因子1
Factor1因子2
Factor2因子3
Factor3OC1 0.981 −0.075 −0.082 OC2 0.990 −0.081 −0.082 OC3 0.982 −0.079 −0.098 OC4 0.972 0.057 −0.065 EC1 0.965 0.093 −0.076 EC2 −0.025 0.997 −0.065 EC3 −0.113 −0.066 0.991 特征值 4.795 1.029 1.020 方差贡献率% 68.507 14.696 14.573 累计方差贡献率% 68.507 83.203 97.776 -
[1] 沈惠, 陈前火. PM2.5的来源、现状、危害及防控措施[C]. 2014中国环境科学学会学术年会, 中国四川成都, 2014: 623-628. SHEN H, CHEN Q H. Sources, status, hazards and prevention and control measures of PM2.5[C]. 2014 Annual Conference of Chinese Society for Environmental Sciences, Chengdu, Sichuan, 2014: 623-628 (in Chinese).
[2] CAO J J. Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China[J]. Atmospheric Environment, 2004, 38(27): 4447-4456. doi: 10.1016/j.atmosenv.2004.05.016 [3] HE K B, YANG F M, MA Y L, et al. The characteristics of PM2.5 in Beijing, China[J]. Atmospheric Environment, 2001, 35(29): 4959-4970. doi: 10.1016/S1352-2310(01)00301-6 [4] 王慧杰, 孟晓郁, 王静, 等. 保定市空气PM2.5中碳组分污染特征及来源分析[J]. 环境科学与技术, 2020, 43(9): 163-169. WANG H J, MENG X Y, WANG J, et al. Pollution characteristics and source analysis of carbon components in PM2.5 of ambient air in baoding City[J]. Environmental Science & Technology, 2020, 43(9): 163-169 (in Chinese).
[5] JI D S, GAO W K, MAENHAUT W, et al. Impact of air pollution control measures and regional transport on carbonaceous aerosols in fine particulate matter in urban Beijing, China: insights gained from long-term measurement[J]. Atmospheric Chemistry and Physics, 2019,19(13): 8569–8590. [6] ZHOU S Z, WANG Z, GAO R, et al. Formation of secondary organic carbon and long-range transport of carbonaceous aerosols at Mount Heng in South China[J]. Atmospheric Environment, 2012, 63: 203-212. doi: 10.1016/j.atmosenv.2012.09.021 [7] CHEN D, CUI H F, ZHAO Y, et al. A two-year study of carbonaceous aerosols in ambient PM2. 5 at a regional background site for western Yangtze River Delta, China[J]. Atmospheric Research, 2017, 183: 351-361. [8] 邵桐, 苗晓燕, 周志祥, 等. 我国大气环境健康基准目标污染物筛选方法及候选清单研究[J]. 环境化学, 2017, 36(11): 2386-2397. doi: 10.7524/j.issn.0254-6108.2017031604shu SHAO T, MIAO X Y, ZHOU Z X, et al. A screening method for the target pollutants of atmospheric health benchmark in China[J]. Environmental Chemistry, 2017, 36(11): 2386-2397(in Chinese). doi: 10.7524/j.issn.0254-6108.2017031604shu
[9] KELLY F J, FUSSELL J C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter[J]. Atmospheric Environment, 2012, 60: 504-526. doi: 10.1016/j.atmosenv.2012.06.039 [10] SAMARA C, VOUTSA D, KOURAS A, et al. Organic and elemental carbon associated to PM10 and PM2.5 at urban sites of northern Greece[J]. Environmental Science and Pollution Research, 2014, 21(3): 1769-1785. doi: 10.1007/s11356-013-2052-8 [11] 武高峰, 王丽丽, 武志宏, 等. 石家庄市采暖季PM2.5碳组分昼夜污染特征及来源分析[J]. 环境科学学报, 2020, 40(7): 2356-2364. WU G F, WANG L L, WU Z H, et al. Pollution diurnal variation and source analysis of PM2.5 carbon components in heating season in Shijiazhuang City[J]. Acta Scientiae Circumstantiae, 2020, 40(7): 2356-2364(in Chinese).
[12] 刘珊, 彭林, 温彦平, 等. 太原市PM2.5中有机碳和元素碳的污染特征[J]. 环境科学, 2015, 36(2): 396-401. LIU S, PENG L, WEN Y P, et al. Pollution characteristics of organic and elemental carbon in PM2.5 in Taiyuan[J]. Environmental Science, 2015, 36(2): 396-401(in Chinese).
[13] WANG Y L, WANG Y S, SONG S Y, et al. Effects of coal types and combustion conditions on carbonaceous aerosols in flue gas and their light absorption properties[J]. Fuel, 2020, 277: 118148. doi: 10.1016/j.fuel.2020.118148 [14] 谢添, 曹芳, 章炎麟, 等. 2015—2019年南京北郊碳质气溶胶组成变化[J]. 环境科学, 2022, 43(6): 2858-2866 XIE T, CAO F, ZHANG Y L, et al. Changes of carbonaceous aerosol in the northern suburb of Nanjing from 2015 to 2019 [J]. Environmental Science,2022, 43(6): 2858-2866(in Chinese).
[15] 张婷婷, 马文林, 亓学奎, 等. 北京城区PM2.5有机碳和元素碳的污染特征及来源分析[J]. 环境化学, 2018, 37(12): 2758-2766. doi: 10.7524/j.issn.0254-6108.2018051701 ZHANG T T, MA W L, QI X K, et al. Characteristics and sources of organic carbon and element carbon in PM2.5 in the urban areas of Beijing[J]. Environmental Chemistry, 2018, 37(12): 2758-2766(in Chinese). doi: 10.7524/j.issn.0254-6108.2018051701
[16] 吴琳, 冯银厂, 戴莉, 等. 天津市大气中PM10、PM2.5及其碳组分污染特征分析[J]. 中国环境科学, 2009, 29(11): 1134-1139. doi: 10.3321/j.issn:1000-6923.2009.11.003 WU L, FENG Y C, DAI L, et al. Characteristics of PM10, PM2.5 and their carbonaceous species in Tianjin City[J]. China Environmental Science, 2009, 29(11): 1134-1139(in Chinese). doi: 10.3321/j.issn:1000-6923.2009.11.003
[17] 尹寒梅, 陈军辉, 冯小琼, 等. 宜宾市PM2.5中碳组分的污染特性及来源分析[J]. 环境化学, 2019, 38(4): 738-745. doi: 10.7524/j.issn.0254-6108.2018061504shu YIN H M, CHEN J H, FENG X Q, et al. Pollution characteristics and source analysis of carbonaceous aerosol in PM2.5 in Yibin, China[J]. Environmental Chemistry, 2019, 38(4): 738-745(in Chinese). doi: 10.7524/j.issn.0254-6108.2018061504shu
[18] 徐雪梅, 冯小琼, 陈军辉, 等. 成都市主城区PM2.5碳组分污染特征分析[J]. 环境化学, 2021, 40(8): 2481-2492. doi: 10.7524/j.issn.0254-6108.2020041401 XU X M, FENG X Q, CHEN J H, et al. Pollution characteristics of carbonaceous components in PM2.5 in the Chengdu City[J]. Environmental Chemistry, 2021, 40(8): 2481-2492(in Chinese). doi: 10.7524/j.issn.0254-6108.2020041401
[19] 陈璐瑶, 于阳春, 黄小娟, 等. 减排背景下成都大气PM2.5碳质组分特征[J]. 环境科学, 2022, 43(9): 4438-4447. CHEN L Y, YU Y C, HUANG X J, et al. Characteristics of carbonaceous species in PM2.5 in Chengdu under the background of emission reduction[J]. Environmental Science, 2022, 43(9): 4438-4447(in Chinese).
[20] 王幸, 张青梅, 刘湛, 等. 张家界市大气PM2.5碳组分污染特征及来源分析[J]. 湘潭大学学报(自然科学版), 2021, 43(6): 117-126. WANG X, ZHANG Q M, LIU Z, et al. Characteristics and sources of carbonaceous species in atmospheric PM2.5 in Zhangjiajie[J]. Journal of Xiangtan University (Natural Science Edition), 2021, 43(6): 117-126(in Chinese).
[21] 石慧斌, 黄艺, 程馨, 等. 成都市冬季PM2.5中碳组分污染特征及来源解析[J]. 生态环境学报, 2021, 30(7): 1420-1427. SHI H B, HUANG Y, CHENG X, et al. Pollution characteristics and sources of carbonaceous components in PM2.5 during winter in Chengdu[J]. Ecology and Environmental Sciences, 2021, 30(7): 1420-1427(in Chinese).
[22] 张进生, 吴建会, 马咸, 等. 钢铁工业排放颗粒物中碳组分的特征[J]. 环境科学, 2017, 38(8): 3102-3109. ZHANG J S, WU J H, MA X, et al. Characteristics research on carbonaceous component of particulate matter emitted from iron and steel industry[J]. Environmental Science, 2017, 38(8): 3102-3109(in Chinese).
[23] 孙友敏, 范晶, 徐标, 等. 省会城市不同功能区大气PM2.5化学组分季节变化及来源分析[J]. 环境科学, 2022, 43(5): 2304-2316. SUN Y M, FAN J, XU B, et al. Source apportionment and seasonal changes in PM2.5 chemical components from different functional areas of a provincial capital city[J]. Environmental Science, 2022, 43(5): 2304-2316(in Chinese).
[24] KANELLOPOULOS P G, VEROUTI E, CHRYSOCHOU E, et al. Primary and secondary organic aerosol in an urban/industrial site: Sources, health implications and the role of plastic enriched waste burning[J]. Journal of Environmental Sciences, 2021, 99(1): 222-238. [25] 张文娟, 李敏, 付华轩, 等. 济南市PM2.5化学组分及污染特征分析[J]. 环境污染与防治, 2019, 41(12): 1490-1494. ZHANG W J, LI M, FU H X, et al. Pollution characteristic and chemical composition of PM2.5 in Jinan[J]. Environmental Pollution & Control, 2019, 41(12): 1490-1494(in Chinese).
[26] 于涛, 刘亚妮, 任丽红, 等. 中国典型沿海城市冬季PM2.5中碳组分的污染特征及来源解析[J]. 环境化学, 2022, 41(1): 113-124. doi: 10.7524/j.issn.0254-6108.2020091503 YU T, LIU Y N, REN L H, et al. Pollution characteristics and sources analysis of carbon components in PM2.5 in winter at typical coastal cities of China[J]. Environmental Chemistry, 2022, 41(1): 113-124(in Chinese). doi: 10.7524/j.issn.0254-6108.2020091503
[27] 张国斌. 太原市PM2.5中有机碳和元素碳变化特征[J]. 山西化工, 2021, 41(5): 247-251. ZHANG G B. Variation characteristics of organic carbon and elemental carbon in PM2.5 in Taiyuan[J]. Shanxi Chemical Industry, 2021, 41(5): 247-251(in Chinese).
[28] 魏小锋, 刘光辉, 闫学军, 等. 济南市冬季大气重污染过程PM2.5数浓度谱和组分分布特征[J]. 生态环境学报, 2020, 29(9): 1847-1854. WEI X F, LIU G H, YAN X J, et al. Characteristics of PM2.5 number concentrations and compositions during heavy air pollution events in Ji'nan [J]. Ecology and Environmental Sciences, 2020, 29(9): 1847-1854(in Chinese).
[29] 田莎莎. 济南市秋冬季不同污染程度下PM2.5组分特征及来源解析[D]. 天津:天津师范大学, 2019. TIAN S S. Characteristics and source apportionment of PM2.5 components in different pollution levels of autumn and winter in Jinan[D]. Tianjin:Tianjin Normal University, 2019(in Chinese).
[30] GRAY H A, CASS G R, HUNTZICKER J J, et al. Characteristics of atmospheric organic and elemental carbon particle concentrations in Los Angeles[J]. Environmental Science & Technology, 1986, 20(6): 580-589. [31] CHOW J C, WATSON J G, Lu Z Q, et al. Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX[J]. Atmospheric Environment, 1996, 30(12): 2079-2112. doi: 10.1016/1352-2310(95)00402-5 [32] 杜博涵, 黄晓锋, 何凌燕, 等. 宁波市PM2.5中碳组分的时空分布特征和二次有机碳估算[J]. 环境科学, 2015, 36(9): 3128-3134. DU B H, HUANG X F, HE L Y, et al. Seasonal and spatial variations of carbon fractions in PM2.5 in Ningbo and the estimation of secondary organic carbon[J]. Environmental Science, 2015, 36(9): 3128-3134(in Chinese).
[33] 杨起超, 曾立民, 唐静玥, 等. 无锡冬季和春季大气中细粒子化学组分及其特性分析[J]. 环境化学, 2014, 33(9): 1501-1513. doi: 10.7524/j.issn.0254-6108.2014.09.002 YANG Q C, ZENG L M, TANG J Y, et al. Characteristic analysis of chemical species in atmospheric fine particles in Wuxi during winter & spring sampling campaigns[J]. Environmental Chemistry, 2014, 33(9): 1501-1513(in Chinese). doi: 10.7524/j.issn.0254-6108.2014.09.002
[34] TURPIN B J, CARY R A, HUNTZICKER J J. An In situ, time-resolved analyzer for aerosol organic and elemental carbon[J]. Aerosol Science and Technology, 1990, 12(1): 161-171. doi: 10.1080/02786829008959336 [35] 古金霞, 侯鲁健, 武鑫, 等. 济南市大气细颗粒物中的碳组分特征[J]. 南开大学学报(自然科学版), 2015, 48(6): 61-67. GU J X, HOU L J, WU X, et al. The characteristics of carbon components in atmospheric fine particulate matter of Jinan City[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015, 48(6): 61-67(in Chinese).
[36] CHEN Y J, ZHI G R, FENG Y L, et al. Measurements of emission factors for primary carbonaceous particles from residential raw-coal combustion in China[J]. Geophysical Research Letters, 2006, 33(20):L20815. [37] SCHAUER J J, KLEEMAN M J, CASS G R, et al. Measurement of emissions from air pollution sources. 4. C1−C27 organic compounds from cooking with seed oils[J]. Environmental Science & Technology, 2002, 36(4): 567-575. [38] HE L Y, HU M, HUANG X F, et al. Measurement of emissions of fine particulate organic matter from Chinese cooking[J]. Atmospheric Environment, 2004, 38(38): 6557-6564. doi: 10.1016/j.atmosenv.2004.08.034 [39] 蒋荣. 南通市重污染过程PM2.5中OC/EC浓度水平及污染特征分析[J]. 环境保护科学, 2017, 43(5): 35-38. JIANG R. Concentrations and pollution characteristics of organic carbon and elemental carbon in PM2.5 during the heavy air pollution episodes in Nantong[J]. Environmental Protection Science, 2017, 43(5): 35-38(in Chinese).
[40] WATSON J G, CHOW J C, LOWENTHAL D H, et al. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles[J]. Atmospheric Environment, 1994, 28(15): 2493-2505. doi: 10.1016/1352-2310(94)90400-6