-
大量使用石油、煤炭等化石燃料使大气中CO2浓度迅速增加,导致全球变暖,并引发一系列环境问题[1 − 2]. 通过碳捕集利用(CCU)将CO2催化转化为燃料或化学品,具有环境、能源、经济三重效益,前景广阔[3 − 5].
在常压条件下,CO2催化加氢的产物一般为CH4或CO[6]. CO2甲烷化可以将H2中化学能储存在CH4中,但存在能量损失[7];而选择性生成CO,则可与过剩的H2进一步通过费托合成反应,得到种类丰富的燃料或化学品,具有更高的附加值[8]. CO2加氢催化剂常用的活性组分有Ni、Ru、Cu[9]. 其中,Cu虽然具有高CO选择性,但活性和稳定性较差[2]. 而Ru具有高活性,却通常过度加氢生成CH4[10]. 研究表明,当Ru以单原子或原子簇形式存在时,也可将CO2选择性加氢为CO[11]. 但是在高温还原性气氛中,Ru单原子或原子簇会发生团聚,稳定性差[12].
构建Ru-Cu双金属活性位点是一种有效的解决策略. Cu对Ru的稀释作用限制Ru的尺寸可以提高选择性,而Ru可以活化H2并溢流活性H到Cu表面,从而提高活性[13]. 常用的双金属催化剂的制备方法为浸渍法,但难以有效控制催化剂活性组分结构,导致形成单独的单金属纳米颗粒[14]. 而微乳液法是一种可控的催化剂合成方法,可以制备出合金、核壳等结构的双金属纳米粒子[15 − 16].
本文采用微乳液法制备了组成与尺寸均匀的钌铜纳米金属粒子,将其负载在热稳定性好的Al2O3载体上,合成了双金属RuCu/Al2O3催化剂,以及采用浸渍法制备了对比材料. 然后对各材料进行了系列表征并考察了制备方法、钌铜比、负载量对催化活性与选择性的影响,以及测试了材料的稳定性.
RuCu/Al2O3对CO2选择性催化加氢
Selective catalytic hydrogenation of CO2 on bimetallic RuCu/Al2O3
-
摘要: 将温室气体CO2通过催化加氢的方式生产合成气具有重要的环境意义和经济价值. 本文分别采用微乳液法和浸渍法制备了Ru-Cu双金属催化剂. 通过不同分析手段对催化剂结构进行了表征,并考察了催化剂对CO2催化加氢的性能. 表征结果表明,在微乳液法合成的催化剂(ME-0.2Ru1Cu/Al2O3)中Ru和Cu紧密接触,且钌铜纳米粒子尺寸均匀,而浸渍法合成的催化剂(im-0.2Ru1Cu/Al2O3)存在单独的Ru和Cu纳米粒子. 催化实验结果说明,Ru对Cu的掺杂可提高其催化活性但会降低CO选择性. 采用微乳液法合成的双金属催化剂表现出比浸渍法更高的CO选择性. 此外,固定钌铜比不变,提高负载量可以有效提高活性,而CO选择性无明显下降.Abstract: Selective catalytic hydrogenation of greenhouse gas CO2 to synthesis gas has important environmental significance and economic value. In this paper, bimetallic Ru-Cu catalysts were prepared by the microemulsion and impregnation methods, respectively. The catalysts were characterized and their catalytic performances for CO2 hydrogenation were evaluated. The characterization results showed that in the catalyst prepared by the microemulsion method (ME-0.2Ru1Cu/Al2O3), Ru and Cu were in close contact in the Ru-Cu nanoparticles with uniform size, while separate Ru and Cu nanoparticles were identified in the catalyst prepared by the impregnation method (im-0.2Ru1Cu/Al2O3). The results of catalytic CO2 hydrogenation showed that doping Ru in Cu resulted in enhanced catalytic activity but reduced CO selectivity. The bimetallic catalysts prepared by the microemulsion method showed higher CO selectivity than those by the impregnation method. For the catalysts with identical Ru/Cu ratio, their activities increased with metal loading amount, while the CO selectivity did not decrease significantly.
-
Key words:
- CO2 /
- catalytic hydrogenation /
- bimetal /
- microemulsion method.
-
图 2 im-0.2Ru1Cu/Al2O3的HADDF-TEM图(a)及Ru(b)、Cu(c)元素Mapping图和ME-0.2Ru1Cu/Al2O3的HADDF-TEM图(d)及Ru(e)、Cu(f)元素Mapping图
Figure 2. HAADF-TEM images of (a) im-0.2Ru1Cu/Al2O3 and the corresponding EDS elemental mapping of Ru (b), Cu (c), and HAADF-TEM image (d) of ME-0.2Ru1Cu/Al2O3 and the corresponding EDS elemental mapping of Ru (e), Cu (f)
-
[1] COX P M, BETTS R A, JONES C D, et al. Erratum: Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000, 408(6813): 750. [2] WANG W, WANG S P, MA X B, et al. Recent advances in catalytic hydrogenation of carbon dioxide[J]. Chemical Society Reviews, 2011, 40(7): 3703-3727. doi: 10.1039/c1cs15008a [3] RA E C, KIM K Y, KIM E H, et al. Recycling carbon dioxide through catalytic hydrogenation: Recent key developments and perspectives[J]. ACS Catalysis, 2020, 10(19): 11318-11345. doi: 10.1021/acscatal.0c02930 [4] YE R P, DING J, GONG W B, et al. CO2 hydrogenation to high-value products via heterogeneous catalysis[J]. Nature Communications, 2019, 10: 5698. doi: 10.1038/s41467-019-13638-9 [5] YIN G H, YUAN X T, DU D X, et al. Efficient reduction of CO2 to CO using cobalt-cobalt oxide core-shell catalysts[J]. Chemistry - A European Journal, 2018, 24(9): 2157-2163. doi: 10.1002/chem.201704596 [6] WANG L X, WANG L, XIAO F S. Tuning product selectivity in CO2 hydrogenation over metal-based catalysts[J]. Chemical Science, 2021, 12(44): 14660-14673. doi: 10.1039/D1SC03109K [7] YOUNAS M, LOONG KONG L, BASHIR M J K, et al. Recent advancements, fundamental challenges, and opportunities in catalytic methanation of CO2[J]. Energy & Fuels, 2016, 30(11): 8815-8831. [8] KRYLOVA A Y. Products of the Fischer-Tropsch synthesis (A review)[J]. Solid Fuel Chemistry, 2014, 48(1): 22-35. doi: 10.3103/S0361521914010030 [9] JALAMA K. Carbon dioxide hydrogenation over nickel-, ruthenium-, and copper-based catalysts: Review of kinetics and mechanism[J]. Catalysis Reviews, 2017, 59(2): 95-164. doi: 10.1080/01614940.2017.1316172 [10] XU X L, LIU L, TONG Y, et al. Facile Cr3+-doping strategy dramatically promoting Ru/CeO2 for low-temperature CO2 methanation: Unraveling the roles of surface oxygen vacancies and hydroxyl groups[J]. ACS Catalysis, 2021, 11: 5762-5775. doi: 10.1021/acscatal.0c05468 [11] AITBEKOVA A, WU L H, WRASMAN C J, et al. Low-temperature restructuring of CeO2-supported Ru nanoparticles determines selectivity in CO2 catalytic reduction[J]. Journal of the American Chemical Society, 2018, 140(42): 13736-13745. doi: 10.1021/jacs.8b07615 [12] KURNATOWSKA M, MISTA W, MAZUR P, et al. Nanocrystalline Ce1− x Ru x O2 - Microstructure, stability and activity in CO and soot oxidation[J]. Applied Catalysis B: Environmental, 2014, 148/149: 123-135. doi: 10.1016/j.apcatb.2013.10.047 [13] ZHUANG Y C, CURRIE R, MCAULEY K B, et al. Highly-selective CO2 conversion via reverse water gas shift reaction over the 0.5wt% Ru-promoted Cu/ZnO/Al2O3 catalyst[J]. Applied Catalysis A: General, 2019, 575: 74-86. doi: 10.1016/j.apcata.2019.02.016 [14] BOUTONNET M, SANCHEZ-DOMINGUEZ M. Microemulsion droplets to catalytically active nanoparticles. How the application of colloidal tools in catalysis aims to well designed and efficient catalysts[J]. Catalysis Today, 2017, 285: 89-103. doi: 10.1016/j.cattod.2016.12.047 [15] LALIK E, DRELINKIEWICZ A, KOSYDAR R, et al. A role of Au-content in performance of Pd-Au/SiO2 and Pd-Au/Al2O3 catalyst in the hydrogen and oxygen recombination reaction. The microcalorimetric and DFT studies[J]. Applied Catalysis A: General, 2016, 517: 196-210. doi: 10.1016/j.apcata.2016.03.004 [16] TOJO C, BUCETA D, LÓPEZ-QUINTELA M A. Bimetallic nanoparticles synthesized in microemulsions: A computer simulation study on relationship between kinetics and metal segregation[J]. Journal of Colloid and Interface Science, 2018, 510: 152-161. doi: 10.1016/j.jcis.2017.09.057 [17] SUN J Y, HAN Y X, FU H Y, et al. Selective hydrodechlorination of 1, 2-dichloroethane catalyzed by trace Pd decorated Ag/Al2O3 catalysts prepared by galvanic replacement[J]. Applied Surface Science, 2018, 428: 703-709. doi: 10.1016/j.apsusc.2017.09.168 [18] BAN C, YANG S, KIM H, et al. Effect of Cu addition to carbon-supported Ru catalysts on hydrogenation of alginic acid into sugar alcohols[J]. Applied Catalysis A: General, 2019, 578: 98-104. doi: 10.1016/j.apcata.2019.04.003 [19] CHEN D S, ABDEL-MAGEED D A M, DYBALLA D M, et al. Raising the CO x methanation activity of a Ru/ γ-Al2O3 catalyst by activated modification of metal-support interactions[J]. Angewandte Chemie International Edition, 2020, 59(50): 22763-22770. doi: 10.1002/anie.202007228 [20] YAN Y, WANG Q J, JIANG C Y, et al. Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces[J]. Journal of Catalysis, 2018, 367: 194-205. doi: 10.1016/j.jcat.2018.08.026