-
近年来,我国发布了一系列大气污染防治政策和攻坚方案,环境空气重污染天数明显减少,空气质量状况明显改善[1],但PM2.5仍是我国大气主要的污染物,其季节性和区域性问题依旧是空气质量的主要问题[2]. 而PM2.5作为粒径小于或等于2.5 μm的颗粒物,它不仅在空气中具有滞留时间长和传输距离远等特点,它还能进入人体呼吸道深处,诱发多种疾病,对人体健康的危害极其深刻[3 − 4]. PM2.5主要的组成部分包括碳质气溶胶和水溶性离子. 碳质气溶胶主要包括有机碳(OC)和元素碳(EC),是造成灰霾现象的重要污染物[5];水溶性离子具有吸湿性和易溶于水的特性,是造成酸雨的重要原因[6].
2013年至2020年间,我国西北地区PM2.5浓度的年均下降幅度为3.9 μg·m−3,显著低于东部地区(5.3 μg·m−3)和西南地区(4.1 μg·m−3)[7],但相对于东部地区和西南地区的PM2.5研究来说,西北城市相关的研究总体较少. 目前,国内学者对西安[8]、兰州[9]、西宁[10]、酒泉[11]等西北城市的大气颗粒物开展了研究,如罗玉等[8]于2019年11月至2019年12月对陕西西安大气中PM2.5进行了在线监测,发现PM2.5年平均浓度超过了国家空气质量二级标准限值,并推测西安冬季PM2.5污染主要由机动车排放、二次污染和生物质燃烧共同贡献;蒋慧敏等[9]利用兰州市2019年夏冬两季PM2.5的观测资料对PM2.5的组分和潜在污染源进行研究,结果表明SO42−、Ca2+、NO3−、NH4+在PM2.5中含量最高,且兰州市PM2.5污染除了受本地污染源的影响外还可能受到内蒙古高原和新疆塔克拉玛干沙漠等远距离传输的影响;徐建伟等[10]对西宁2014年11月至2015年1月的PM2.5样品进行采集,分析其水溶性离子和碳质组分,研究发现SO42−、NO3−、NH4+含量较高,表现出较高的二次污染,且存在SOC污染;蒙晓瑞[11]于2019年3月至2020年1月对甘肃酒泉市大气颗粒物进行采集和研究,结果表明酒泉四季PM2.5的日浓度均超过了国家二级标准,且PM2.5污染受本地及附近区域影响较大. 但大部分西北地区的研究都是基于大气颗粒物的短期监测,对PM2.5中的碳质组分和水溶性离子的连续性监测数据仍比较有限,因此对该地区的PM2.5进行连续监测并开展相关研究,这是目前西北地区较为缺乏的.
金昌位于我国河西走廊东段,自古以来自然条件严酷、生态环境脆弱、沙尘天气多. 同时,金昌缘矿兴企、因企设市,因镍的产量丰富又被誉为“我国的镍都”[12]. 近年来,随着金昌市产业结构的调整和能源消费的增长,金昌市PM2.5的化学组分也随之发生变化. 为进一步了解金昌PM2.5的化学组分特征及其潜在污染源,本研究采集了金昌市2020年5月—2021年3月大气PM2.5的样品,分析了PM2.5中元素碳、有机碳和主要水溶性离子的季节性变化,及阴离子当量(AE)和阳离子当量(CE)的污染特征. 本研究为发现金昌市PM2.5的潜在污染源和大气复合污染的控制方案,运用HYSPLIT(后向轨迹)和PMF(正定矩阵因子分解)模型对金昌市PM2.5进行模拟研究,以期为今后金昌市PM2.5的减排管控提供思路,为西北城市的污染防治提供科学理论参考.
金昌市PM2.5的化学组分特征及来源分析
Chemical component characteristics and source analysis of PM2.5 in Jinchang City
-
摘要: 为研究金昌市PM2.5及其化学组分(有机碳、元素碳和水溶性离子)的特征,于2020年5月—2021年3月对金昌市大气PM2.5进行手工采样,并运用PMF模型和HYSPLIT模型解析污染来源. 研究结果表明,观测期间金昌市PM2.5年平均质量浓度为(62.2±10.4) μg·m−3,各季节平均质量浓度由高到低依次为春季、冬季、秋季、夏季. 化学质量闭合研究表明:碳质组分(OM+EC)是金昌PM2.5的主要组成部分. PM2.5中的OC与EC的年平均质量浓度分别为(13.4±5.6) μg·m−3、(2.9±1.5) μg·m−3,TC占PM2.5质量浓度的16.3%,并且四季OC/EC的平均值均大于2,表明采样期间各个季节均存在二次污染. 夏季OC与EC之间的相关系数最低,说明夏季污染物来源较其他季节更为复杂. 金昌市PM2.5中总水溶性离子的年平均质量浓度为(25.0±11.6) μg·m−3,占PM2.5质量浓度的40.2%,其中,SO42−、Ca2+、NO3−和Cl−是金昌市主要的4种离子,分别占总离子的22.5%、17.1%、16.8%、12.1%. 对水溶性离子做离子平衡分析表明:夏季、秋季和冬季阴阳离子的相关性较好,没有重要的离子缺失,春季较差,有重要阴离子缺失. PMF模型表明金昌市PM2.5的主要污染源为燃烧源(生物质+燃煤)(30.5%)、土壤尘(24.6%)、二次无机气溶胶(26.0%)和机动车尾气(18.9%),HYSPLIT模型表明金昌市春季PM2.5浓度受外来污染源输入影响较大,夏季、秋季和冬季应主要考虑本地排放的贡献.Abstract: In order to study the characteristics of PM2.5 and its chemical components (organic carbon, elemental carbon and water-soluble ions) in Jinchang City, manual sampling of atmospheric PM2.5 in Jinchang City was conducted from May 2020 to March 2021, and the PMF model and HYSPLIT model were used to analyze the sources of pollution. The results showed that the annual average mass concentration of PM2.5 was (62.2±10.4) μg·m−3 in Jinchang during the observation period, and the average mass concentration of PM2.5 was in spring, winter, autumn and summer from high to low. The chemical mass closure study shows that the carbon component (OM+EC) is the main component of PM2.5 in Jinchang. The average annual mass concentrations of OC and EC in PM2.5 were (13.4±5.6) μg·m−3 and (2.9±1.5) μg·m−3, respectively. TC accounted for 16.3% of PM2.5 mass concentration, and the average values of OC/EC in four seasons were greater than 2, indicating that secondary pollution existed in each season during the sampling period. The correlation coefficient between OC and EC in summer was the lowest, indicating that the pollutant sources in summer were more complex than in other seasons. The average annual mass concentration of total water-soluble ions in PM2.5 in Jinchang City is (25.0±11.6) μg·m−3, accounting for 40.2% of PM2.5 mass concentration, in which SO42−、Ca2+、NO3− and Cl− are the four main ions. They accounted for 22.5%, 17.1%, 16.8% and 12.1% of total ions respectively. The ion balance analysis of water-soluble ions showed that the correlation of canion in summer, autumn and winter was good, and there was no important ion deletion, while in spring it was poor, and there was important anion deletion. The PMF model showed that the main pollution sources of PM2.5 in Jinchang were combustion sources (biomass + coal)(34.4%), soil dust (25.2%), secondary inorganic aerosol (22.6%) and motor vehicle exhaust (18.0%). The HYSPLIT model showed that the PM2.5 concentration in Jinchang in spring was greatly affected by the input of external pollution sources. Summer, autumn and winter should mainly consider the contribution of local emissions.
-
Key words:
- PM2.5 /
- chemical composition /
- source analysis /
- Jinchang City.
-
表 1 采样期间OC、EC、TC、SOC的平均质量浓度和OC/EC、SOC/OC的平均值
Table 1. The average mass concentration of OC, EC, TC, SOC and the average value of OC/EC, SOC/OC during the sampling period
季节
Season组数
Sample numberOC/(μg·m−3) EC/(μg·m−3) TC/(μg·m−3) OC/EC平均值
AverageSOC/(μg·m−3) SOC/OC/% 春季
Spring19 14.0±5.1 3±0.9 16.9±5.9 4.8±0.9 3.1±2.8 19.3% 夏季
Summer31 6.4±1.9 1.1±0.6 7.4±2.4 3.8±0.6 2.9±1.3 46.3% 秋季
Fall28 15.0±4.4 3.3±0.7 18.2±5 4.6±0.7 2.8±2.5 15.5% 冬季
Winter30 18.6±2.7 4.4±0.9 22.8±3.6 4.3±0.4 6.1±1.1 32.8% 表 2 国内不同地区PM2.5中OC、EC的质量浓度
Table 2. Mass concentration of OC and EC in PM2.5 in different areas of China
城市
City采样时间
Day数量
QuantityPM2.5/(μg·m−3) OC/(μg·m−3) EC/(μg·m−3) 文献
Reference西北地区
Northwest area金昌 2020/05—2021/03 108 62.2 13.41 2.92 本研究 西安 2019/10—2020/03 37 78.3 — — [8] 西宁 2014/11—2015/01 41 72.6 19.27 4.09 [10] 兰州 2019/01—2019/07 48 113.6 19.6 6.48 [9] 东部沿海地区
Eastern coastal area上海洋山港 2018 — 44 0.4 0.6 [41] 宁波 2015 — 36.9 — — [29] 杭州 2012/12—2013/11 181 84.4 — — [30] 南京 2016/12—2017/01 32 104.5 11.8 8.2 [31] 西南地区
Southwest area成都 2009—2010 121 165.1 22.6 9.0 [32] 重庆 2014/07—2015/05 120 76.4 22.6 9.0 [33] “—”无数据 -
[1] 姜华, 高健, 李红, 等. 我国大气污染协同防控理论框架初探[J]. 环境科学研究, 2022, 35(3): 601-610. JIANG H, GAO J, LI H, et al. Preliminary research on theoretical framework of cooperative control of air pollution in China[J]. Research of Environmental Sciences, 2022, 35(3): 601-610 (in Chinese).
[2] 陆香怡. 基于城市空气质量数据的中国绿色发展成效评价[J]. 中国统计, 2021(6): 33-36. LU X Y. Evaluation of green development effect in China based on urban air quality data[J]. China Statistics, 2021(6): 33-36 (in Chinese).
[3] 刁刘丽, 李森, 刘保双, 等. 驻马店市区采暖季PM2.5时间和空间来源解析研究[J]. 环境科学研究, 2021, 34(1): 79-91. DIAO LL, LI S, LIU B S, et al. Temporal and spatial source apportionment during the heating period Zhumadian[J]. Research of Environmental Sciences, 2021, 34(1): 79-91 (in Chinese).
[4] 刘笑杰, 王丽丽, 何博汶, 等. 长江经济带PM2.5时空演变及影响因素分析[J]. 长江流域资源与环境, 2022, 31(3): 647-658. LIU X J, WANG L L, HE B W, et al. Spatiotemporal evolution and drivers of PM2.5 in the Yangtze River economic belt[J]. Resources and Environment in the Yangtze Basin, 2022, 31(3): 647-658 (in Chinese).
[5] 沈嵩, 刘蕾, 温维, 等. 北京及周边地区夏季PM2.5中含碳组分污染特征与来源解析[J]. 环境工程, 2022, 40(2): 71-80. SHEN S, LIN L, WEN W, et al. Pollution characterization and source analysis of carbon components of PM2.5 in Beijing and surrounding areas in summer[J]. Environmental Engineering, 2022, 40(2): 71-80 (in Chinese).
[6] 张扬, 王红磊, 刘安康, 等. 南京市不同天气过程下颗粒物中水溶性离子分布特征及其来源解析[J]. 环境科学, 2021, 42(2): 564-573. ZHANG Y, WANG H L, LIU A, et al. Distribution characteristics and source analysis of Water-soluble ions in particulate matter under different weather processes in Nanjing[J]. Environmental Science, 2021, 42(2): 564-573 (in Chinese).
[7] 唐贵谦, 刘钰婷, 高文康, 等. 警惕大气污染和碳排放向西北迁移[J]. 中国科学院院刊, 2022, 37(2): 230-237. TANG G Q, LIU Y T, GAO W K, et al. Alert to the migration of air pollution and carbon emission to northwest China[J]. Bulletin of Chinese Academy of Sciences, 2022, 37(2): 230-237 (in Chinese).
[8] 王怡. 西安秋冬季PM2.5污染特征及化石燃料燃烧等源贡献演变[D]. 西安: 中国科学院地球环境研究所, 2022. WANG Y. Characteristics of PM2.5 pollution and evolution of fossil fuel combustion and other source in autumn and winter at Xi 'an[D]. Xi 'an: Institute of Earth Environment, Chinese Academy of Sciences, 2022(in Chinese).
[9] 蒋慧敏, 李忠勤, 张昕, 等. 兰州市冬夏季大气PM2.5化学组分特征及来源分析[J]. 环境科学学报, 2021, 41(5): 1690-1702. JIANG H M, LI Z Q, ZHANG X, et al. Chemical components characteristics and source analysis of PM2.5 over Lanzhou city in winter and summer[J]. Acta Scientiae Circumstantiae, 2021, 41(5): 1690-1702 (in Chinese).
[10] 徐建伟, 王晓丽, 于高峰, 等. 西宁冬季PM2.5中碳质组分与水溶性离子特征分析[J]. 环境工程, 2018, 36(8): 98-101,112. XU J W, WANG X L, YU G F, et al. Analysis of carbon components and water-soluble ions in pm2.5 of Xining during winter[J]. Environmental Engineering, 2018, 36(8): 98-101,112 (in Chinese).
[11] 蒙晓瑞. 酒泉市大气颗粒物PM10、PM2.5中无机元素污染特征研究和来源解析[D]. 兰州: 兰州交通大学, 2020. MENG X R. Pollution characteristics and source analysis of inorganic elements in atmospheric PM10 and PM2.5 in Jiuquan city[D]. Lanzhou: Lanzhou Jiatong University, 2020 (in Chinese).
[12] 李雅薇, 马利邦, 方芳, 等. 乡村人居环境质量评价及其分区治理对策研究——基于甘肃省金昌市村庄调查截面数据[J]. 湖南师范大学自然科学学报, 2022, 45(1): 20-31. doi: 10.7612/j.issn.1000-2537.2022.1.hnsfdx-zr202201003 LI Y W, MA L B, FANG F, et al. Research on the evaluation of rural human settlement quality and district governance countermeasures: based on the cross-sectional date of village survey in Jinchang city, gansu province[J]. Journal of Natural Science of Hunan Normal University, 2022, 45(1): 20-31 (in Chinese). doi: 10.7612/j.issn.1000-2537.2022.1.hnsfdx-zr202201003
[13] 王帅, 丁俊男, 王瑞斌, 等. 关于我国环境空气质量监测点位设置的思考[J]. 环境与可持续发展, 2012, 37(4): 21-25. WANG S, DING J N, WANG R B, et al. Study on the settings of ambient air quality monitoring sites in China[J]. Environment and Sustainable Development, 2012, 37(4): 21-25 (in Chinese).
[14] 李世雄. 甘肃省金昌市主要污染物以及重金属污染物环境健康风险评价[D]. 兰州: 兰州大学, 2013. LI S X. Health risk assessment of major pollutants and heavy metals in Jinchang city, Gansu Province[D]. Lanzhou: Lanzhou University, 2013 (in Chinese).
[15] 折远洋, 陈青雁, 李忠勤, 等. 甘肃南部典型城镇PM2.5浓度及水溶性离子特征分析[J]. 环境科学学报, 2022, 42(7): 53-62. SHE Y Y, CHEN Q Y, LI Z Q, et al. Characteristics of PM2.5 concentration and Water-soluble ions in the typical town of southern Gansu[J]. Acta Scientiae Circumstantiae, 2022, 42(7): 53-62 (in Chinese).
[16] 李朝阳, 袁亮, 张小玲, 等. 成都碳质气溶胶变化特征及二次有机碳的估算[J]. 中国环境科学, 2022, 42(6): 2504-2513. LI Z Y, YUAN L, ZHANG X L, et al. Characteristics of carbonaceous aerosols and estimation of secondary organic carbon in Chengdu[J]. China Environmental Science, 2022, 42(6): 2504-2513 (in Chinese).
[17] 肖德安, 徐浩, 池继松, 等. 贵阳市城区PM10和PM2.5水溶性离子特征分析[J]. 中国环境监测, 2021, 37(4): 65-74. XIAO D A, XU H, C J S, et al. Characteristics of water-soluble ions in PM10 and PM2.5 in urban areas of Guiyang City[J]. Environmental Monitoring in China, 2021, 37(4): 65-74 (in Chinese).
[18] STEIN A F, DRAXLER R R, ROLPH G D, et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system[J]. Bulletin of the American Meteorological Society, 2015, 96(12): 2059-2077. doi: 10.1175/BAMS-D-14-00110.1 [19] 高阳, 韩永贵, 黄晓宇, 等. 基于后向轨迹模式的豫南地区冬季PM2.5来源分布及传输分析[J]. 环境科学研究, 2021, 34(3): 538-548. GAO Y, HAN Y G, HUANG X Y, et al. PM2.5 source distribution and transmission in winter in southern Henan Province based on backward trajectory model[J]. Research in Environmental Sciences, 2021, 34(3): 538-548 (in Chinese).
[20] 王郭臣, 王东启, 陈振楼. 北京冬季严重污染过程的PM2.5污染特征和输送路径及潜在源区[J]. 中国环境科学, 2016, 36(7): 1931-1937. WANG G C, WANG D Q, CHEN Z L. Characteristics and transportation pathways and potential sources of a severe PM2.5 episodes during winter in Beijing[J]. China Environmental Science, 2016, 36(7): 1931-1937 (in Chinese).
[21] 蒋轶伦, 张锋, 欧阳静静. 某钢厂大气PM2.5污染特征与潜在源区贡献分析[J]. 环境科学导刊, 2019, 38(3): 41-47,52. JIANG Y L, ZHANG F, OU Y J J. Analysis of pollution characteristics and Potential source Contribution of ambient PM2.5 in an iron and Steel Factory[J]. Environmental Science Guide, 2019, 38(3): 41-47,52 (in Chinese).
[22] PAATERO P, TAPPER U. Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values[J]. Environmetrics, 1994, 5(2): 111-126. doi: 10.1002/env.3170050203 [23] 李娇, 滕彦国, 吴劲, 等. 基于PMF模型及地统计法的乐安河中上游地区土壤重金属来源解析[J]. 环境科学研究, 2019, 32(6): 984-992. LI J, TENG Y G, WU J, et al. Source apportionment of soil heavy metal in the middle and upper reaches of le’an river based on PMF model and geostatistics[J]. Research of Environmental Sciences, 2019, 32(6): 984-992 (in Chinese).
[24] PAATERO P. Least squares formulation of robust non-negative factor analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35. doi: 10.1016/S0169-7439(96)00044-5 [25] 张夏夏, 袁自冰, 郑君瑜, 等. 大气污染物监测数据不确定度评估方法体系建立及其对PMF源解析的影响分析[J]. 环境科学学报, 2019, 39(1): 95-104. ZHANG X X, YUAN Z B, ZHENG J Y, et al. Establishment of an uncertainty assessment framework for atmospheric pollutant monitoring data and its impact on PMF source apportionment[J]. Acta Scientiae Circumstantiae, 2019, 39(1): 95-104 (in Chinese).
[26] MAENHAUT W, SCHWARZ J, CAFMEYER J, et al. Aerosol chemical mass closure during the EUROTRAC-2 AEROSOL Intercomparison 2000[J]. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions With Materials and Atoms, 2002, 189(1/2/3/4): 233-237. [27] 矫健. 我国中东部背景地区大气气溶胶PM10理化特征及来源分析[D]. 南京: 南京信息工程大学, 2021. JIAO J. The characteristics and source of PM10 at background stations of eastern China[D]. Nanjing: Nanjing University of Information Science and Technology, 2021 (in Chinese).
[28] 卢江涛, 彭章娥, 刘琳. 上海市PM2.5浓度特征及影响因素分析[J]. 应用技术学报, 2022, 22(1): 61-66. LU J T, PENG Z E, LIU L. Characteristics and influencing factors of PM2.5 concentration in Shanghai[J]. Journal of Technology, 2022, 22(1): 61-66 (in Chinese).
[29] 潘勇, 郑捷, 肖航. 长三角地区典型 PM2.5污染过程和跨区域传输对宁波污染贡献评估模拟[J]. 环境科学, 2023, 44(2): 634-645. PAN Y, ZHENG J, XIAO H. Simulation evaluation of the contribution of typical PM2.5 pollution and trans-regional transport to Ningbo pollution in the Yangtze River Delta[J]. Environmental Science, 2023, 44(2): 634-645 (in Chinese).
[30] 吴丹, 蔺少龙, 杨焕强, 等. 杭州市PM2.5中水溶性离子的污染特征及其消光贡献[J]. 环境科学, 2017, 38(7): 2656-2666. WU D, LIN S L, YANG H Q, et al. Pollution characteristics and light extinction contribution of water-soluble ions of PM2.5 in Hangzhou[J]. Environmental Science, 2017, 38(7): 2656-2666 (in Chinese).
[31] 贺瑶, 韩秀秀, 黄晓虎, 等. 南京市不同功能区冬季大气PM2.5分布特征及其来源解析[J]. 环境科学学报, 2021, 41(3): 830-841. HE Y, HAN X X, HUANG X H, et al. Distribution characteristics and source apportionment of atmospheric PM2.5 in winter season from different functional areas of Nanjing[J]. Acta Scientiae Circumstantiae, 2021, 41(3): 830-841 (in Chinese).
[32] 张智胜, 陶俊, 谢绍东, 等. 成都城区PM2.5季节污染特征及来源解析[J]. 环境科学学报, 2013, 33(11): 2947-2952. ZHANG Z S, TAO J, XIE S D, et al. Seasonal variations and source apportionment of PM2.5 at urban area of Chengdu[J]. Acta Scientiae Circumstantiae, 2013, 33(11): 2947-2952 (in Chinese).
[33] 余家燕, 王军, 许丽萍, 等. 重庆城区PM2.5化学组分特征及季节变化[J]. 环境工程学报, 2017, 11(12): 6372-6378. YU J Y, WANG J, XU L P, et al. Characteristics of chemical components of PM2.5 and its seasonal variations in Chongqing urban area[J]. Chinese Journal of Environmental Engineering, 2017, 11(12): 6372-6378 (in Chinese).
[34] 张娜, 周国富, 黄启芬, 等. 贵阳市主城区大气污染物时空分布特征及成因分析[J]. 生态科学, 2022, 41(2): 137-148. ZHANG N, ZHOU G F, HUANG Q F, et al. The temporal-spatial distribution features and cause analysis of atmospheric pollutants in Guiyang main urban area[J]. Ecological Sciences, 2022, 41(2): 137-148 (in Chinese).
[35] 张玉洁, 冯俊杰, 张武, 等. 青岛市大气颗粒物污染特征及潜在来源分析[J]. 高原气象, 2023, 42(1): 244-256. ZHANG Y J, FENG J J, ZHANG W, et al. Analysis of pollution characteristics and potential sources of atmospheric particulate matter in Qingdao[J]. Plateau Meteorology, 2023, 42(1): 244-256 (in Chinese).
[36] 王翠连, 张军, 郑瑶, 等. 郑州城区PM10、PM2.5质量浓度变化特征及其对气象因子的响应[J]. 环境保护科学, 2019, 45(6): 76-83. WANG C L, ZHANG J, ZHENG Y, et al. Variation characteristics of PM10 and PM2.5 mass concentrations and their response to meteorological factors in Zhengzhou city[J]. Environmental Protection Science, 2019, 45(6): 76-83 (in Chinese).
[37] TAO J, ZHANG L M, ENGLING G, et al. Chemical composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust storms and biomass burning[J]. Atmospheric Research, 2013, 122: 270-283. doi: 10.1016/j.atmosres.2012.11.004 [38] 李泓, 李广, 刘茜, 等. 北京市PM2.5质量浓度特征及组分化学质量闭合研究[J]. 中国环境监测, 2015, 31(4): 35-43. LI H, LI G, LIU Q, et al. Study on Beijing PM2.5 mass concentration characteristics and aerosol chemical mass closure[J]. Environmental Monitoring in China, 2015, 31(4): 35-43 (in Chinese).
[39] 杨磊, 陈传雷, 曹世腾, 等. 2015年11月沈阳地区一次PM2.5重污染过程综合分析[J]. 气象与环境学报, 2019, 35(3): 37-44. YANG L, CHEN C L, C S T, et al. Comprehensive analysis of a heavy PM2.5 pollution event over Shenyang in November of 2015[J]. Journal of Meteorology and Environment, 2019, 35(3): 37-44 (in Chinese).
[40] 吴明, 吴丹, 夏俊荣, 等. 成都冬季PM2.5化学组分污染特征及来源解析[J]. 环境科学, 2019, 40(1): 76-85. WU M, WU D, XIA J R, et al. Analysis of pollution characteristics and sources of PM2.5 chemical components in Chengdu in winter[J]. Environmental Science, 2019, 40(1): 76-85 (in Chinese).
[41] MAMOUDOU I, ZHANG F, CHEN Q, et al. Characteristics of PM2.5 from ship emissions and their impacts on the ambient air: A case study in Yangshan Harbor, Shanghai[J]. Science of the Total Environment, 2018, 640/641: 207-216. doi: 10.1016/j.scitotenv.2018.05.261 [42] 张婷婷, 马文林, 亓学奎, 等. 北京城区PM2.5有机碳和元素碳的污染特征及来源分析[J]. 环境化学, 2018, 37(12): 2758-2766. doi: 10.7524/j.issn.0254-6108.2018051701 ZHANG T T, MA W L, QI X K, et al. Characteristics and sources of organic carbon and element carbon in PM2.5 in the urban areas of Beijing[J]. Environmental Chemistry, 2018, 37(12): 2758-2766 (in Chinese). doi: 10.7524/j.issn.0254-6108.2018051701
[43] 黄菊. 西北典型城市大气颗粒物组分污染特征及其健康风险评估[D]. 兰州: 兰州大学, 2020. HUANG J. Pollution characteristics and health risk assessment of atmospheric particulate matter in northwest China[D]. Lanzhou: Lanzhou University, 2020 (in Chinese).
[44] 阿米拉, 耿柠波, 曹蓉, 等. 大气颗粒物中典型有机物的分析方法和污染特征研究进展[J]. 环境化学, 2021, 40(12): 3774-3786. doi: 10.7524/j.issn.0254-6108.2020081204 A M L, GENG N B, CAO R, et al. Research progress of analytical methods and pollution characteristics of typical organic pollutant in atmospheric particulate matter[J]. Environmental Chemistry, 2021, 40(12): 3774-3786 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020081204
[45] HE Q S, GUO W D, ZHANG G X, et al. Characteristics and seasonal variations of carbonaceous species in PM2.5 in Taiyuan, China[J]. Atmosphere, 2015, 6(6): 850-862. doi: 10.3390/atmos6060850 [46] LI H W, WANG D F, CUI L, et al. Characteristics of atmospheric PM2.5 composition during the implementation of stringent pollution control measures in Shanghai for the 2016 G20 summit[J]. Science of the Total Environment, 2019, 648: 1121-1129. doi: 10.1016/j.scitotenv.2018.08.219 [47] TURPIN B J, CARY R A, HUNTZICKER J J. An in situ, time-resolved analyzer for aerosol organic and elemental carbon[J]. Aerosol Science and Technology, 1990, 12(1): 161-171. doi: 10.1080/02786829008959336 [48] 郭佳灵, 李友平, 刘欢, 等. 南充冬季大气PM2.5污染特征及来源分析[J]. 四川环境, 2020, 39(1): 46-54. GUO J L, LI Y P, LIU H, et al. Pollution characteristics and source apportionment of atmospheric PM2.5 in Winter of Nanchong[J]. Sichuan Environment, 2020, 39(1): 46-54 (in Chinese).
[49] 张婧伟, 杜诗文, 周雪明, 等. 淮南市不同功能区大气PM2.5的化学组分季节分布及其来源解析[J]. 安全与环境工程, 2023, 30(1): 212-220. ZHANG J W, DU S W, ZHOU X M, et al. Seasonal distribution and sources analysis of chemical components of atmospheric PM2.5 in different functional areas of Huainan City[J]. Safety and Environmental Engineering, 2023, 30(1): 212-220 (in Chinese).
[50] 毛翔, 徐立, 韩清, 等. 武汉市大气PM2.5主要水溶性离子的时空污染特征[J]. 环境卫生学杂志, 2019, 9(3): 235-241. MAO X, XU L, HAN Q, et al. Temporal and spatial pollution characteristics of main water-soluble ions of atmospheric PM2.5 in Wuhan[J]. Journal of Environmental Hygiene, 2019, 9(3): 235-241 (in Chinese).
[51] 李明燕, 杨文, 魏敏, 等. 典型沿海城市采暖期细颗粒物组分特征及来源解析[J]. 环境科学, 2020, 41(4): 1550-1560. LI M Y, YANG W, WEI M, et al. Characteristics and sources apportionment of fine particulate matter in a typical coastal city during the heating period[J]. Environmental Science, 2020, 41(4): 1550-1560 (in Chinese).
[52] 肖致美, 武婷, 卫昱婷, 等. 天津市PM2.5中二次硝酸盐形成及防控[J]. 环境科学, 2021, 42(6): 2616-2625. XIAO Z M, WU T, WEI Y T, et al. Formation and prevention of secondary nitrate in PM2.5 in Tianjin[J]. Environmental Science, 2021, 42(6): 2616-2625 (in Chinese).
[53] 李欣悦, 张凯山, 武文琪, 等. 成都市城区大气细颗粒物水溶性离子污染特征[J]. 中国环境科学, 2021, 41(1): 91-101. LI X Y, ZHANG K S, WU W Q, et al. Characterization of water-soluble ions pollution of atmospheric fine particles in Chengdu City[J]. China Environmental Science, 2021, 41(1): 91-101 (in Chinese).
[54] 任娇, 尹诗杰, 郭淑芬. 太原市大气PM2.5中水溶性离子的季节污染特征及来源分析[J]. 环境科学学报, 2020, 40(9): 3120-3130. REN J, YIN S J, GUO S F. Seasonal variation and source analysis of water-soluble ions in PM2.5 in Taiyuan[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3120-3130 (in Chinese).
[55] SONG M D, LIU X G, TAN Q W, et al. Characteristics and formation mechanism of persistent extreme haze pollution events in Chengdu, southwestern China[J]. Environmental Pollution (Barking, Essex: 1987), 2019, 251: 1-12. [56] 向欣, 张立生, 杨琨, 等. 北京市大气细颗粒物污染时空分布特征及其降水清除影响[J]. 环境污染与防治, 2022, 44(10): 1314-1317,1361. XIANG X, ZHANG L S, YANG K, et al. Spatial and temporal distribution of fine particulate matter pollution and scavenging effect on of precipitation in Beijing[J]. Environmental Pollution and Control, 2022, 44(10): 1314-1317,1361 (in Chinese).
[57] 任秀龙, 牛红亚, 李淑娇, 等. 邯郸市大气细颗粒物中水溶性离子的污染特征及来源解析[J]. 环境化学, 2021, 40(11): 3510-3519. doi: 10.7524/j.issn.0254-6108.2020070301 REN X L, NIU H Y, LI S J, et al. Pollution characteristics and source of water-soluble ions in atmospheric fine particles in Handan City[J]. Environmental Chemistry, 2021, 40(11): 3510-3519 (in Chinese). doi: 10.7524/j.issn.0254-6108.2020070301
[58] 郑敬茹, 瞿厚淑, 付山, 等. 黄石市大气PM2.5中水溶性离子浓度特征及来源分析[J]. 环境科学研究, 2019, 32(7): 1170-1178. ZHENG J R, QU H S, FU S, et al. Characteristics and source analysis of water-soluble inorganic ions in PM2.5 in Huangshi city[J]. Research of Environmental Sciences, 2019, 32(7): 1170-1178 (in Chinese).
[59] 曾兆荷, 张海潇, 赵云卿, 等. 南京北郊冬夏季大气PM2.5中水溶性有机碳的研究[J]. 环境科学学报, 2019, 39(11): 3659-3667. ZENG Z H, ZHANG H X, ZHAO Y Q, et al. The study of water-soluble organic carbon in PM2.5 during winter and summer in the northern suburb of Nanjing[J]. Acta Scientiae Circumstantiae, 2019, 39(11): 3659-3667 (in Chinese).