-
合成染料因其赋予颜色的特性,在皮革、纸张和纺织工业等各种重要工业中是必需存在的[1]. 合成染料具有复杂的组成、易于合成、稳定的化学结构和难以分解的特性[2],纺织工业(54%)排放的染料废水量最高,占世界环境中现有染料废水的一半以上[3]. 众所周知,染色工业(21%)、造纸和纸浆工业(10%)、制革和涂料工业(8%)以及染料制造业(7%)也会从各种相关工艺中产生大量染料废水[4]. 染料废水作为最难分解的废水之一,具有高色度、高生化需氧量和高溶解固体含量等特性[5]. 同时,大多数纺织染料具有生物毒性、致癌性和致畸性[6]. 传统的污水处理方法,如混凝-絮凝法[7]、离子交换法[8]、吸附-吸收法[9]、膜过滤法[10]、电絮凝法[11]等,但不能高效地处理染料废水. 为此,科研人员研发了产生·OH或SO4−·等强氧化性自由基的高级氧化技术(AOPs),可有效降解染料等难降解有机污染物[12]. AOPs中常用的芬顿氧化技术,常用于难降解废水的处理,但实际染料废水pH在6—7左右,需加入大了药剂调节适宜pH 3左右,处理成本较高[13];光催化氧化技术则存在可利用光谱范围较窄,处理时间长、效率低、催化剂易失活等缺点,针对大量染料废水处理耗时又耗力[14 − 15]. 催化臭氧氧化技术具有效率高、无二次污染,容易实现自动化和工业化处理等优点. 然而传统的催化臭氧氧化技术一般为均相氧化技术,直接将催化剂溶于溶液中,导致催化剂无法回收,处理成本偏高[16]. 因此,学者们研发了非均相催化臭氧化,催化剂常为固态金属、金属氧化物、氢氧化物等[17],或将催化剂负载于活性炭、硅藻土、分子筛等载体上,催化剂可实现回收和重复利用,处理成本大大降低.
陶瓷膜(CM)因具有耐高温高压、耐酸碱、机械强度高、使用寿命长(大于5年)、不易堵塞、运行稳定性好以及价格低廉、通量大、易于反冲洗和检修等诸多优点[18 − 19],可作为高级氧化催化剂载体,研制出反应性陶瓷膜,组成“更加有效、更加高效、更加小型化”AOPs-CM耦合水处理技术,主要有光催化氧化陶瓷膜技术[20]、芬顿氧化陶瓷膜技术[21]、催化臭氧氧化陶瓷膜耦合技术[22]等. 与其他方法相比,催化臭氧氧化耦合陶瓷膜具备效率高、无污染,易于实现自动化和工业化,陶瓷膜抗污性能等优势[23].
本研究采用新型喷涂成膜技术,将TiO2/MnO2催化剂喷涂在陶瓷膜表面,负载催化剂的反应性陶瓷膜应用在自制的反应器中,催化臭氧氧化处理以罗丹明B(RhB)溶液模拟的染料废水,探究处理过程作用机理,本研究可为染料废水的高效低耗处理提供新思路.
喷涂法负载TiO2/MnO2陶瓷膜催化臭氧氧化降解染料废水
Efficient degradation of dye wastewater by catalytic ozone reactive ceramic membrane of TiO2/MnO2 by a facile spraying method
-
摘要: 染料废水存在排放量大、色度高、COD大、可生化性差、难降解等特点,其处理存在低效高耗的问题. 本研究首先通过水热法制备了TiO2/MnO2催化剂,对催化剂进行了XRD、XPS、SEM/EDS表征,以罗丹明B(RhB)溶液为模拟染料废水,进行了催化臭氧氧化降解RhB的性能对比研究. 再通过喷涂成膜技术将TiO2/MnO2催化剂负载于平板式陶瓷膜表面,研制成反应性陶瓷膜(TiO2/MnO2-CM),自制了配套膜反应器,研究了TiO2/MnO2-CM水处理系统对RhB降解去除效果和水通量变化规律. 结果表明,本工作成功合成了棒状和不规整球状结合的TiO2/MnO2催化剂,XPS结果表明存在Mn4+活性中心,促进了催化臭氧活化能力. 喷涂TiO2/MnO2催化剂后,陶瓷膜的纯水通量略有下降,12层为适宜的喷涂层数,采用TiO2/MnO2-CM对2 L初始浓度为20 mg·L−1的RhB在臭氧浓度为2.5 g·m−3条件下,反应40 min去除率可达100%,去除效率远高于空白膜,陶瓷膜负载TiO2/MnO2有助于提高O3溶解性、加速生成·OH. 本工作可为染料废水等难降解有机废水的高效低耗处理,提供新技术思路.
-
关键词:
- 染料废水 /
- TiO2/MnO2催化剂 /
- 催化臭氧氧化 /
- 反应性陶瓷膜 /
- 作用机理.
Abstract: Dye wastewater exhibits characteristics of large production, high color, high COD, low biodegradability, and refractory. In this work, TiO2/MnO2 hybrid catalyst was prepared by a hydrothermal method, and was characterized by XRD, XPS, and SEM / EDS. Its catalytic ozonation performance was evaluated to degrade a simulated dye wastewater of Rhodamine B (RhB). Afterwards, the TiO2/MnO2 catalyst was loaded onto a planar ceramic membrane (CM) by a facile spraying method to prepare a reactive ceramic membrane (TiO2/MnO2-CM). Besides, a new TiO2/MnO2-CM fixed bed water treatment system was proposed, and its degradation performnce of RhB and permeate flux was comprehensively investigated. The results showed that rod-shaped and irregular spherical combined TiO2/MnO2 catalysts were successfully synthesized, and the XPS results showed that the existence of Mn4+ provided active centers for the O3 reaction and promoted the ozone activation ability. In addition, the TiO2/MnO2-CM with twelve spraying layers revealed better degradation performance of the dye solution. As for 2 L of RhB with an initial concentration of 20 mg·L−1, under the condition of ozone concentration of 2.5 g·m−3, a reaction time of 40 min, the removal efficiency of RhB by TiO2/MnO2-CM could reach 100%. Besides, the up-mentioned removal rate is much higher than that of blank CM, which was mainly attributed to a increase of ozone solubility in water and promoting the production of ·OH. This work could provide an alternative solution for the treatment of refractory organic wastewater with lower energy comsuption but higher efficiency. -
-
[1] ABDI J, VOSSOUGHI M, MAHMOODI N M, et al. Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal[J]. Chemical Engineering Journal, 2017, 326: 1145-1158. doi: 10.1016/j.cej.2017.06.054 [2] BILIŃSKA L, BLUS K, GMUREK M, et al. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse[J]. Chemical Engineering Journal, 2019, 358: 992-1001. doi: 10.1016/j.cej.2018.10.093 [3] YASEEN D A, SCHOLZ M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review[J]. International Journal of Environmental Science and Technology, 2019, 16(2): 1193-1226. doi: 10.1007/s13762-018-2130-z [4] DE GISI S, LOFRANO G, GRASSI M, et al. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review[J]. Sustainable Materials and Technologies, 2016, 9: 10-40. doi: 10.1016/j.susmat.2016.06.002 [5] HOLKAR C R, JADHAV A J, PINJARI D V, et al. A critical review on textile wastewater treatments: Possible approaches[J]. Journal of Environmental Management, 2016, 182: 351-366. [6] DONKADOKULA N Y, KOLA A K, NAZ I, et al. A review on advanced physico-chemical and biological textile dye wastewater treatment techniques[J]. Reviews in Environmental Science and Bio/Technology, 2020, 19(3): 543-560. doi: 10.1007/s11157-020-09543-z [7] IWUOZOR K O. Prospects and Challenges of using coagulation-flocculation method in the treatment of Effluents[J]. Advanced Journal of Chemistry-Section A, 2019: 105-127. [8] IKEDA K, KAWAMURA Y, YAMAMOTO T, et al. Effectiveness of the template-ion exchange method for appearance of catalytic activity of Ni-MCM-41 for the ethene to propene reaction[J]. Catalysis Communications, 2008, 9(1): 106-110. doi: 10.1016/j.catcom.2007.05.032 [9] ALSAMMAN M T, SÁNCHEZ J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water[J]. Arabian Journal of Chemistry, 2021, 14(12): 103455. doi: 10.1016/j.arabjc.2021.103455 [10] SINGHA I, KUMAR MISHRAB P. Nano-membrane filtration a novel application of nanotechnology for waste water treatment[J]. Materials Today: Proceedings, 2020, 29: 327-332. doi: 10.1016/j.matpr.2020.07.284 [11] ZHANG H, LUO Z, ZHANG X, et al. Electro-flocculation pretreatment experiments of shale gas drilling wastewater[J]. Natural Gas Industry B, 2020, 7(4): 309-316. doi: 10.1016/j.ngib.2019.12.001 [12] GIWA A, YUSUF A, BALOGUN H A, et al. Recent advances in advanced oxidation processes for removal of contaminants from water: A comprehensive review[J]. Process Safety and Environmental Protection, 2021, 146: 220-256. doi: 10.1016/j.psep.2020.08.015 [13] GIANNAKIS S. A review of the concepts, recent advances and niche applications of the (photo) Fenton process, beyond water/wastewater treatment: Surface functionalization, biomass treatment, combatting cancer and other medical uses[J]. Applied Catalysis B: Environmental, 2019, 248: 309-319. doi: 10.1016/j.apcatb.2019.02.025 [14] HUANG X, ZHU T, DUAN W, et al. Comparative studies on catalytic mechanisms for natural chalcopyrite-induced Fenton oxidation: Effect of chalcopyrite type[J]. Journal of Hazardous Materials, 2020, 381: 120998. doi: 10.1016/j.jhazmat.2019.120998 [15] WANG F F, YU X L, GE M F, et al. One-step synthesis of TiO2/ γ-Fe2O3/GO nanocomposites for visible light-driven degradation of ciprofloxacin[J]. Chemical Engineering Journal, 2020, 384: 123381. doi: 10.1016/j.cej.2019.123381 [16] 刘莹, 吴德礼, 何宏平, 等. 颗粒活性炭催化臭氧氧化降解活性黑5[J]. 环境化学, 2016, 35(5): 990-997. doi: 10.7524/j.issn.0254-6108.2016.05.2016011001 LIU Y, WU D L, HE H P, et al. Catalytic ozonation of aqueous reactive black 5 with granular activated carbon[J]. Environmental Chemistry, 2016, 35(5): 990-997 (in Chinese). doi: 10.7524/j.issn.0254-6108.2016.05.2016011001
[17] 彭澍晗, 吴德礼. 催化臭氧氧化深度处理工业废水的研究及应用[J]. 工业水处理, 2019, 39(1): 1-7. doi: 10.11894/1005-829x.2019.39(1).001 PENG S H, WU D L. Research on catalytic ozonation and its application to the advanced treatment of industrial wastewater[J]. Industrial Water Treatment, 2019, 39(1): 1-7 (in Chinese). doi: 10.11894/1005-829x.2019.39(1).001
[18] 周谨. 无机陶瓷膜在印染废水处理中的应用[J]. 膜科学与技术, 2010, 30(3): 116-119. doi: 10.3969/j.issn.1007-8924.2010.03.023 ZHOU J. Application of inorganic ceramic membrane in the treatment of dyeing and printing wastewater[J]. Membrane Science and Technology, 2010, 30(3): 116-119 (in Chinese). doi: 10.3969/j.issn.1007-8924.2010.03.023
[19] ASIF M B, ZHANG Z H. Ceramic membrane technology for water and wastewater treatment: A critical review of performance, full-scale applications, membrane fouling and prospects[J]. Chemical Engineering Journal, 2021, 418: 129481. doi: 10.1016/j.cej.2021.129481 [20] PARK K H, SUN P F, KANG E H, et al. Photocatalytic anti-biofouling performance of nanoporous ceramic membranes treated by atomic layer deposited ZnO[J]. Separation and Purification Technology, 2021, 272: 118935. doi: 10.1016/j.seppur.2021.118935 [21] SUN S B, YAO H, FU W Y, et al. Enhanced degradation of antibiotics by photo-Fenton reactive membrane filtration[J]. Journal of Hazardous Materials, 2020, 386: 121955. doi: 10.1016/j.jhazmat.2019.121955 [22] LI M M, YANG K L, HUANG X, et al. Efficient degradation of trimethoprim by catalytic ozonation coupled with Mn/FeO x -functionalized ceramic membrane: Synergic catalytic effect and enhanced anti-fouling performance[J]. Journal of Colloid and Interface Science, 2022, 616: 440-452. doi: 10.1016/j.jcis.2022.02.061 [23] MANSAS C, MENDRET J, BROSILLON S, et al. Coupling catalytic ozonation and membrane separation: A review[J]. Separation and Purification Technology, 2020, 236: 116221. doi: 10.1016/j.seppur.2019.116221 [24] 张昌远, 黄祥平, 王昭, 等. TiO2/γ-MnO2纳米复合物的制备及其在可见光下的催化性能[J]. 三峡大学学报(自然科学版), 2010, 32(3): 105-109. ZHANG C Y, HUANG X P, WANG Z, et al. Preparation of TiO2/ γ-MnO2 nanocomposite and photocatalytic activity in visible light[J]. Journal of China Three Gorges University (Natural Sciences), 2010, 32(3): 105-109 (in Chinese).
[25] YU C L, FAN C F, MENG X J, et al. A novel Ag/BiOBr nanoplate catalyst with high photocatalytic activity in the decomposition of dyes[J]. Reaction Kinetics, Mechanisms and Catalysis, 2011, 103(1): 141-151. doi: 10.1007/s11144-011-0291-6 [26] YAN C Q, CHENG Z L, WEI J, et al. Efficient degradation of antibiotics by photo-Fenton reactive ceramic membrane with high flux by a facile spraying method under visible LED light[J]. Journal of Cleaner Production, 2022, 366: 132849. doi: 10.1016/j.jclepro.2022.132849 [27] ZHU S, CHENG G, QUAN X J, et al. Intensification of ozone mass transfer and generation of hydroxyl radicals by ceramic membrane[J]. Ozone: Science & Engineering, 2022, 44(4): 372-383. [28] HUANG X X, QUAN X J, CHENG W, et al. Enhancement of ozone mass transfer by stainless steel wire mesh and its effect on hydroxyl radical generation[J]. Ozone: Science & Engineering, 2020, 42(4): 347-356. [29] ZULFIQAR S, LIU S, RAHMAN N, et al. Construction of S-scheme MnO2@CdS heterojunction with core-shell structure as H2-production photocatalyst[J]. Rare Metals, 2021, 40(9): 2381-2391. doi: 10.1007/s12598-020-01616-w [30] FU P F, ZHANG P Y, LI J. Photocatalytic degradation of low concentration formaldehyde and simultaneous elimination of ozone by-product using palladium modified TiO2 films under UV254+185nm irradiation[J]. Applied Catalysis B: Environmental, 2011, 105(1/2): 220-228. [31] CHEN J Y, WU X F, GONG Y, et al. Synthesis of Mn3O4/N-doped graphene hybrid and its improved electrochemical performance for lithium-ion batteries[J]. Ceramics International, 2017, 43(5): 4655-4662. doi: 10.1016/j.ceramint.2016.12.138 [32] PERRON H, VANDENBORRE J, DOMAIN C, et al. Combined investigation of water sorption on TiO2 rutile (110) single crystal face: XPS vs. periodic DFT[J]. Surface Science, 2007, 601(2): 518-527. doi: 10.1016/j.susc.2006.10.015 [33] CHOU S L, CHENG F Y, CHEN J. Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films[J]. Journal of Power Sources, 2006, 162(1): 727-734. doi: 10.1016/j.jpowsour.2006.06.033 [34] GOPI T, SWETHA G, CHANDRA SHEKAR S, et al. Catalytic decomposition of ozone on nanostructured potassium and proton containing δ-MnO2 catalysts[J]. Catalysis Communications, 2017, 92: 51-55. doi: 10.1016/j.catcom.2017.01.002 [35] GUO H Z, WANG J O, HE X, et al. The origin of oxygen vacancies controlling La2/3Sr1/3MnO3 electronic and magnetic properties[J]. Advanced Materials Interfaces, 2016, 3(5): 1500753. doi: 10.1002/admi.201500753 [36] LI S J, MA Z C, WANG L, et al. Influence of MnO2 on the photocatalytic activity of P-25 TiO2 in the degradation of methyl orange[J]. Science in China Series B: Chemistry, 2008, 51(2): 179-185. [37] BAI C P, XIONG X F, GONG W Q, et al. Removal of rhodamine B by ozone-based advanced oxidation process[J]. Desalination, 2011, 278(1/2/3): 84-90. [38] 程雯. 催化臭氧氧化处理难降解有机废水及其机理研究[D]. 重庆: 重庆理工大学, 2019. CHENG W. Catalytic ozonation for the treatment of refractory organic wastewaters and its mechanism[D]. Chongqing: Chongqing University of Technology, 2019 (in Chinese).
[39] PAN Y W, ZHOU M H, ZHANG Y, et al. Enhanced degradation of Rhodamine B by pre-magnetized Fe0/PS process: Parameters optimization, mechanism and interferences of ions[J]. Separation and Purification Technology, 2018, 203: 66-74. doi: 10.1016/j.seppur.2018.03.039 [40] LIU W, ZHANG Y Q, ZHANG L F, et al. Polysulfone ultrafiltration membrane promoted by brownmillerite SrCu x Co1- x O3–λ-deposited MCM-41 for industrial wastewater decontamination: Catalytic oxidation and antifouling properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 7805-7815. [41] 黄小雪. 催化臭氧化处理垃圾渗滤液生化出水的研究[D]. 重庆: 重庆理工大学, 2020. HUANG X X. Catalytic ozonation for the treatment of biologically-treated leachate[D]. Chongqing: Chongqing University of Technology, 2020 (in Chinese).
[42] WANG Y, YANG W Z, YIN X S, et al. The role of Mn-doping for catalytic ozonation of phenol using Mn/γ-Al2O3 nanocatalyst: Performance and mechanism[J]. Journal of Environmental Chemical Engineering, 2016, 4(3): 3415-3425. doi: 10.1016/j.jece.2016.07.016